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Electric field dependence of trapping in one dimension

MARCH 1984

B. Movaghar
General Electric Company Research Laboratories, Hirst Research Centre,

Wembley, Middlesex HA9 7PP, United Kingdom

B. Pohlmann
Department of Physics, University of Marburg,

D-3550 Marburg, Federal Republic of Germany

D. Wurtz
Insti tute for Theoretical Physics, University of Hei delberg,

D-6900 Heidelberg, Federal Republic of Germany

(Received 18 February 1983; revised manuscript received 27 June 1983)

We have derived an exact analytic solution for the electric field and time dependence of the survival

fraction in the one-dimensional trapping problem. The intermediate- and long-time behavior is discussed

below and above a threshold region of the electric field strength. The mean decay rate is given as a func-

tion of trap concentration and electric field strength.

Some time ago we derived an exact analytical formula' for
the survival fraction n (t) of excitations in the presence of
deep traps in one-dimensional systems. We showed that the
long-time behavior obeyed an exp[ —(t/to)' '] law in the
absence of a bias field. The influence of a bias q was

analyzed numerically. 7t is defined by Eq. (2) in the text.
From our numerical inversion of the series [see Eq. (24) in

Ref. I], we deduced an effective "threshold" bias q ~ x (x
is the trap concentration) above which the nonexponential
behavior of n(t, q) changed to an exponential behavior.
This was consistent with the physical reasoning presented by
Haarer and Mohwald and the results of the "first passage
time" approach due to Montroll and gneiss. Unfortunately,
we did not have an anlaytic expression for the field depen-
dence at that time and we were thus unable to deduce the
strict asymptotic t ~ behavior of n(t, q) for small fields

(v) & x).
Recently, Grassberger and Procaccia, using a diffusion

equation approach, have shown that the asymptotic long-
time form of n(t) is exponential however small the bias
field. They find

lim n ( t ) —exp( —ct ' ) exp( —Vo t/4D )
f~oo

where VD is the drift velocity and D is the diffusion con-
stant. These authors state that conclusions regarding the
existence of a threshold of q =x are incorrect.

We have now succeeded in deriving an exact analytical
expression for n (t, q) for any value of the bias field and for
all times in the trap concentration range of physical interest
(x ~ 10 2). We would like to report this result and at the
same time show the following. (a) The long-time decay is

I

exponential as soon as q & 0. (b) limn (t, q) is indeed dom-
inated by exp( —V~t/4D) t ~ but only when q~x. (c)
The intermediate- and long-time behavior of the function
n (q, t) changes drastically at q =x. For 2t ~x the function
is a superposition of exp( —ct'/ ) laws multiplied by

exp( —Vtjt/4D), whereas when q & x it is a superposition
of exponentials with rate constants now linear in field. In
the region rt & x and Vot/4D » I the survival fraction is a

simple exponential law. (d) An exact analytical expression
is given for the averaged relaxation time v- or rate constant

'=k. This quantity is evaluated explicitly as a function
of field.

Starting from the exact series for n (p, q) in the space of
the Laplace variable p given by Eq. (7) of Ref. I, we derive
the following representation which is exact' in the range
x ~10

n p, q = —+
2

d e1 + 2x y ~"
d „t cosh(7l() —cosh(y()

p p' "0 sinh(y()

where y= (p/IV+2i )'/, IV is the symmetric zero field

jump rate, and the bias is defined by the relation,

—eEa/kT

1 + v)

where E, e, and a are electric field strength, electronic
charge, and lattice constant, respectively. For small fields

(q « I) this reduces to 7/ = eEa/2kT.
Inverting (I), we obtain after some long and tedious alge-

braic manipulations the result

oo
n 7r

n(t, q) =4x' J d(e "t X [I —( —I)"cosh(qg)] " exp
0 (n2 2+ 2(2)2

1

2 2n m +

when g ~ x this can be rewritten in the simple form
oo S 2 2 2 S —S (1 —3/x ) —S(l+~/x)

(t )
—q w( dg

—w r IYl/s q ~x, (4)
[1+(gS/7rx)']' —s 2(1+ —s(( —g/x)) 2(1+e— ( n/ )
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which in the limit of zero bias (q = 0) becomes

4 fooo

n (t)=, „~ dS Scsch(S)e

with the asymptotic long-time form

() 16xtW 3
vrxWt

3m
]

4
(6)

Defining a mean relaxation time r( ri) as the limit p 0 of
n (p, q), we obtain after some manipulations the expression

r 3

x Wr(rt)= 1 — +2 ( 3, 1+, (7)
2~ . 2~ , 2n . ,

'
2~, .

'

where f(z, q) is the Riemann ( function.
The mean relaxation time r( tr) is the relevant quantity

entering, for example, the steady-state photoconductivity.
The field dependence of r can be evaluated using (7) on a
desk calculator. The plot of [x'Wr(rt)] ' vs (2q/x) is

shown in Fig. 1.
Let us now briefly draw the main conclusions from these

results. Noting that VD ——2qWa and D = Wa, statements
(a) and (b) immediately follow from (4) without further
discussion: The asymptotic (t ~) limit of n(t) is indeed
always exp( —Vot/4D) as soon as g ) 0 but only when

I

rt~x. Statement (c), that the intermediate- and long-time
behavior of n (t, rt) changes drastically at rt ~x, can be seen
from (3). To see this we first look at the regime rt (x.
Using steepest descent on (4) we obtain a sum of three
terms n(t) = (2n)+nz+n3)/2 with

2a,, 8(x Wt/3rrC„) 't

[1+(2vy Wt/7rxC ) ]
1 ' ]./3~x C„Wtx exp

4 (8)

with C~= 1, C2= (1 —q/x), C3= (1+q/x). The exponen-
tial factor dominates only at times for which

3
g Wt ~27m
xc„ 2

(9)

The survival fraction obeys the "t'~" law for q && x and
remains nonexponential up to at least q ~ 2x in the
intermediate-time domain.

When rt~x, the terms 1 and 3 in Eq. (4) remain un-
changed. To the second term in the integrand (4) we obtain
an additional contribution which can no longer be represent-
ed in this way. This term is dominant in the intermediate-
and long-time domain; n (t, q) now becomes n (t)
= S(t) + L (t), where S(t) is given by (4) and L (t ) is

(n + —,
'

) exp (Wt[(v) —x)/(2n +1)]']
L (t, g) = 8x'(g —x)'e

(2nrt+x)'[2(n +1)q —x]'

For long times (g Wt )) 1)

4('6 x ) —(2' —x ) wt

(27i —x ) '

q&x (10)

2q/X

FIG. 1. Function t~(q) 8'x ] ' is plotted against 2g/x. The effective rate constant is defined as t~(q) H ] '=k and VD=2qafK
For a given concentration this is therefore essentially a plot of k vs VD.
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so that

n (t, v)) —437re '~' —,ex I
q ] ~'Wr

n3+ni+ +L as t
2

Equation (11) gives us the exact asymptotic (t ~)
behavior of n(t, q) when q ~x. It easily follows that when

q )x, L dominates the time dependence of n (r, 7i) in the
intermediate- and long-time domain.

Our disucssion in Ref. IE and the conclusions drawn by
Haarer, Mohwald, Montroll, and Weiss remain qualitatively
valid in the intermediate-time domain. %hen the drift velo-
city exceeds a certain threshold VD = 2a Wq (q =x), the
survival fraction n (r, q) is nearly a pure exponential law in
the intermediate- and long-time domain and exactly—exp[ —(2xq —x') Wr] as t ~. There is, of course, no
sharp transition but a smooth crossover between nonex-
ponential to exponential behavior as the drift velocity passes
through the threshold region.

Turning our attention now to the effective decay time ~

given by (7), we note that for x/27' (& 1 and x/27' )) 1 we
recover the known limits r =1/2qWx and 1/2Wx2, respec-
tively. The average rate constant is proportional to the drift
velocity at high fields.

We have plotted the function [x'Wr(q)] ' vs 2q/x in
Fig. 1 in the range [0,7]. The averaged rate constant is a
smooth function for all q. The quadratic behavior with field
is present for (7i/2x) (( 1 and at large fields the function
becomes linear as is obvious from (7).

Finally, we would like to point out that the solution of the
present model for all field strengths is not only of
mathematical interest but that there exists a large class of
materials for which such a description is valid. The polydi-
acetylenes in crystalline and film form represent quasi-one-
dimensional semiconductors. Chain and defects act as deep
trapping centers for photoconduction. Preliminary measure-
ments of photoconductivity decay on PDA 10H films which
have a relatively large trap concentration (x —10 ') can be
described by an exp[ —(r/to)' ] law over four decades in
time. Field and temperature dependence of the photocon-
ductivity decay of quasi-one-dimensional systems are
currently under study.
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The relative error is as in Ref. 1 of order x.
The result for q=0 previously derived in Ref. 1, Eq. (23), still

contained an infinite sum. A change of variables allo~s the sum
to be carried out explicitly and the result is, of course, identical to
Eq. (5) in the text. Note the simplicity of the final answer.
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