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Time-dependent behavior of one-dimensional many-fermion models:
Comparison with two- and three-dimensional models
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Time-dependent behavior of one-dimensional (1D) many-fermion models is obtained by a method of re-
currence relations. The Hilbert space of the density-fluctuation operator is two dimensional (2d), resulting
in a time-independent generalized random force. The relevant Hilbert spaces of 2D and 3D many-fermion
models, however, are infinite dimensional and the generalized random forces are consequently time depen-
dent. The structure of these Hilbert spaces provides a picture of time-dependent behavior for 1D models
which is fundamentally very different from that for 2D or 3D models.

The Tomonaga model is perhaps the best known strictly
one-dimensional (1D) many-fermion model. ' It is an exact-
ly soluble model. The exact solutions for the Tomonaga
model are not generalizable to higher dimensions. Hence
this model is not so useful for understanding the impor-
tance of dimensionality in many-body problems. The stand-
ard electron gas model, when restricted to electron-hole
scattering, is often referred to as the Sawada mode. ' The
Sawada model is not exactly soluble, but one can show that
the Sawada model in 1D reduces to the Tomonaga model if
the electron-hole excitations are further confined to the vi-
cinity of the Fermi surface. Hence one may regard the
Sawada model as a generalizable version of the Tomonaga
model.

The time-dependent behavior of the Tomonaga or 1D
Sawada model is basically very different from that of the
Sawada model in 2D or 3D. If a dense electron gas in the
ground state is slightly perturbed momentarily, the system
will undergo a relaxation process. In 1D the relaxation pro-
cess will be purely oscillatory. It will remain oscillatory even
when the electron-hole interaction is removed, i.e., when
the system becomes an ideal, degenerate electron gas. This
is because the 1D system has only one degree of freedom in
momentum space whether there is an interaction or not. In
2D or 3D the system has infinitely many degrees of free-
dom and its relaxation process is richer, reflecting the two
distinctly different single-particle and collective modes. 4

The different time-dependent behavior of the Sawada
model in 1D and 2D or 3D is especially apparent if we study
the time evolution in this model via the method of re-
currence relations. ' Consider the density fluctuations at
wave vector k,

pk = ~Cp C&+k
P

where ck and ck are, respectively, the creation and annihila-
tion operators at wave vector k. %e shaB confine our con-
sideration to ~k/kF~ ((1, where kF is the Fermi wave vec-
tor and A =1. The time-dependent behavior of this system
can be completely determined by pk(t) and its generalized

random force 5'(t). According to the method of recurrence
relations, ps(t) and 9q(t) are given by

pk(t) = X a„(t)f„,
v 0

d-1
9g( t) - X b„( t)f, ,

(la)

(lb)

5„+ta„+t(t) = —a„(t) +a„ t(t), 0 ~ v ~ d —1, (2)

where

a I~O, a„=da„/dt, /s, „=(f„,f„)/(f„ t, f„ t)

with 50~1. The inner product denotes the Kubo scalar
product. We shall term 4„ the vth recurrant. Also, {b„}sa-
tisfies exactly the same recurrence relation but starting with
v=1 and b0=0. Hence dl does not appear in the re-
currence relation for b„(t) Every b„ is. , furthermore, relat-
able to a„via a convolution, 5

a„(t) =„dt'ac(t —t')b„(t'), 1 ~v ~d —1 . (3)

To realize the recurrence relation, one must know the re-
currants, which are functions of the static properties of the
model. Since the a„'s are coefficients associated with the
orthogonal basis vectors spanning the Hilbert space, the
structure of the Hilbert space already implies the form of

where (f„}is a set of basis vectors in g the Hilbert space of
pk, (a„}and {b„}are sets of real time-dependent functions,
and d is the dimensionality of + If the space P'is realized
by the Kubo scalar product and {f„}is orthogonal in that
space, the Hilbert space is spanned by (f„}.

If one chooses fc =pk, the time-dependent functions then
satisfy the initial condition:

ac(0) =1, a„(0)=0 if v «I
bt(0) =1, b„(0) =0 if v ~~2

In addition, these functions are connected by a recurrence
relation'
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the time evolution. The structure is shaped by the recur-
rants. Observe also that the generalized random force Pq(t)
extends in a space P') spanned by f), fq, . . . , fq ), which is
thus a linear manifold of the Hilbert space P.' We shall
denote the dimensionality of P') by d). This subdimen-
sionality d» is related to dimensionality d by d» =d —1. We
shall refer to [a„j and [b„), respectively, as the relaxation
and memory functions.

For the Tomonaga model,

lL» =2A(0)

1»p»
(13a)

(13b)

where h=k~~F~, with ~F the 2D Fermi energy. For the in-
teracting system, only the first recurrant is modified:

Now we shaH compare the above with the time evolution
in 2D and 3D. The recurrants for the 2D ideal system are
found to be6

iok='[Ã [W Pk]] = —~kpk,

where

(4) 5» =2k+I
1»p»oo

(14a)

(14b)

Qlk = (kit) +k 7)'Uk (4a)

fr=f3= "=0 .

Also,

~) = (f),f))/(fo, fo)

(Pk& Pk)l(Pk& Pk) (Pk& Pk)/(Pk& Pk) = ~k

(5b)

~here k is measured in units of the Fermi vector kF,
g = m p /m, p is the number density, and vk is the interac-
tion of the Tomonaga Hamiltonian H. Observe that the
above relation (4) holds in the ideal case. For the Sawada
model, Eq. (4) is valid if and only if ~k~ 0. Now, given
fo= pk, we then find that

f)=Pk=t[~ Pk], (5a)

where 1 ' = w~, the classical plasma frequency. The above
results are valid for ~k~ ((1 only. Hence in 2D, d
The recurrence relation for such a Hilbert space can be real-
ized. For the ideal system,

a„'"(t) =2 "p, "J„(pt), 0 (v (~,
where p, =25' =2keF and J„is the cylindrical Bessel func-
tion of order y.

The relaxation functions for the interacting gas can be ob-
tained from (15), noting that the difference between the
ideal and interacting cases is in 6» only. In particular,

ao(t) =A, X ( —n)' +Avcos((orat)
J)(p.t)

I dk p&

where

a)(t) = ao(t)

Hence we obtain

and

Pk( t) = ao( t)Pk +a)( t) Pk

4„=0, v «2
The dimensionality d of the Hilbert space & for the 1D
model is thus two. The time evolution in such a finite
space can only be oscillatory and there can be no time evo-
lution at all in its subspace Xj. The time behavior follows
directly from the recurrence relation (2).

The recurrence relation for d=2, i.e., 5» =mI, %0 and
=0, becomes

4) )a( )=t—a()( t)

and

n=(x +~)/(x +T~), x=~ /p, ~ =n I p

A, = 1 —(1 —n)'t', Av =2[(1—n)'t' —(1 —n)]/n

The other a„'s may be obtained from the recurrence rela-
tion using (16). Observe that unlike in 1D, the general
structure of the relaxation functions in 2D is not preserved
when the interaction is introduced. Also, the time evolu-
tion in this infinite-dimensional Hilbert space is one in
which the amplitude decreases with oscillations. Also, the
subdimensionality d» ~ 0 . For the 2D system, ideal or in-
teracting, we have

b„(t) = v2"p, "+'J„(pt)/p t, 1 (v (m,
since 5» does not enter into the recurrence relation for b„'s.
The random force is now itself time dependent.

The recurrants for the 3D ideal system are found to be'

g(0) 2v2(4 2 1) -)
1 ( (

a()(t) =cos(cukt), a)(t) =sin(0)kt)/~k

Similarly, the recurrence relation for d» ——1 gives

b, (t) =0 .

(10)
where p, =2keF, with eF the 3D Fermi energy. For the in-
teracting system, only the first recurrant is modified:

(19b)

Hence, b)(t) =const. But since b)(0) =1, the constant
must be unity. Thus

~k«) =Pk (12)

at all time, being independent of time and there is no time
evolution. We observe that the general structure of pk(t) is
preserved when vI, 0. This ideal limit is also attained
when p ~ ~, where p is the electron number density. 3

(0) (
2 "[(2v+1)!!]j„(p,t)

p, "(2v!!) (20)

where I' =w~, the 3D classical plasma frequency. The
above result is valid for ~k~ &&1 only. Thus, as in 2D,
d ~ for both ideal and interacting. The recurrence rela-
tion for these Hilbert spaces can be realized. For the ideal
system, the relaxation functions are
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where j„is the spherical Bessel function of order w.

For the interacting system, the leading relaxation function

2f

ap(r) =2 X ( a) b)(t) +A~cos(rept)
r-0 P

(21)

where

e =3s(1 —s) ', s = AI"/5t = (1+3x') ', x —= ra,"/p, ,

A, = iu, e/3, A~ = 2s(xp —I)/(1 —s) (I —sxiI ), xp =—rp, /p

where cu~ is the solution of tanh[iu/ra~(1 —s) ] = p/rp~. The
above solution is valid for s (& 1. For other values of s, it
is possible to give analytic solutions. ' Other relaxation func-
tions can be obtained from (21) via the recurrence relation.
The above solution (21) is given in terms of bt(r), the lead-
ing memory function, which as in 2D does not depend on
the interaction. We find that, unlike in 20, bt( t)
= 3j~(p t)/p r even though the subdimensionality d~ ao. '

The different time-dependent behavior between 1D and
2D or 3B is formally attributable to the dimensionality of
the Hilbert spaces. For the 1D electron gas, we have d =2
and di= 1. Hence the random force, being time indepen-
dent, is like a constant imposed force and is not driven in
time. Also, since the random force is orthogonal, the
dynamical variable (i.e., the density fluctuations) can only
rotate simply in the 2D Hilbert space, resulting in a periodic

oscillation. Physically it means that the 1D electron gas at
long wavelengths has but one macroscopic or giant mode
and it is thus unable to redistribute the perturbation energy
imparted. This behavior is the same as the dynamic
response in single-spin models and many-body models in
dynamic mean-field approximation. That is, their time-
dependent and dynamic behavior is formally identical.

In 2D and 3D, the random force is not constant. Hence
the dynamical variable is continuously driven towards higher
dimensions spanning the Hilbert space, resulting in a com-
plex rotationary motion. This behavior denotes the ex-
istence of infinitely many multiply degenerate modes excited
by the perturbation. Hence the time-dependent behavior in
1D is fundamentally very different from that in 2D or 3D.

Finally, we note that in 1D

(pk, pk) = pk'q

Hence with the definition for A~ and our result [Etl. (6a)],
we obtain the static susceptibility

(pk, p)k= p(n +~ )k

in agreement with the result of Mattis and Lieb. '
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