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The usual description of Rayleigh scattering (the component of elastic photon-atom scattering
identified with scattering from bound electrons) separates the high-energy fixed-momentum-transfer
limit (generally taken to be specified in terms of the atomic form factor) from additional contribu-
tions to the amplitude, known as anomalous scattering factors or anomalous dispersion corrections.
We use explicit results from a full relativistic numerical calculation of Rayleigh scattering to em-

phasize that several common assumptions regarding these anomalous scattering factors, still mis-

takenly used although previously criticized, are not entirely appropriate: (1) The anomalous scatter-
ing factors should not be identified with the difference from form factor; (2) the im. aginary forward
scattering factor f" is not determined solely from photoeffect at high energy (&2mc }; (3) the
imaginary forward amplitude includes bound-bound resonance contributions below the photoeffect
threshold, which are needed to ensure that the real forward scattering factor obtained from f"
through a dispersion relation goes to a finite value as the threshold is approached from above; (4)
the imaginary anomalous amplitudes do not have the angular dependence of the form factor, but
rather a weaker angular dependence, with the consequence that the imaginary amplitude can be
comparable in magnitude with the real amplitude at some nonforward angles; and (5) the ratio of
parallel and perpendicular anomalous amplitudes is not simply cos8.

I. INTRQDUCTIQN

In this paper we use results obtained from our pro-
cedures' for relativistic numerical evaluation of Rayleigh
scattering in partial waves to examine the validity of as-
sumptions often made in the description of anomalous
scattering of photons from atoms. This work discusses
the atomic scattering factor f which characterizes the
anomalous effects due to electron binding in the scattering
from an isolated atom;

~ f ~

must for example be multi-
plied by a structure function to obtain the intensity of
scattering from a crystalline sample. Our calculation of
Rayleigh scattering (the contribution to elastic photon-
atom scattering due to scattering from the bound-atomic
electrons) describes the matrix element as the coherent
sum of second-order S matrix elements for photon scatter-
ing from electrons bound in a relativistic screened self-
consistent central potential. This approach, which
neglects correlation and exchange (beyond a local Slater
exchange term), is expected to be sufficient except within
some tens of eV of a threshold. In obtaining cross sec-
tions a constant nuclear Thomson amplitude is added,
which becomes significant for larger momentum transfers.
Generally satisfactory agreement has been achieved with
experimental studies of x-ray' and y-ray' scattering from
atoms, representing an improvement upon previous nu-
merical and analytic ' calculations. Here we focus
our attention on the energy and momentum-transfer
dependence of the scattering factor above and below the
K-threshold region, looking both at a light-Z element
(aluminum) and a high-Z element (lead).

By anomalous scattering, early studied by the x-ray
crystallographers, " ' is meant the rapid variation of
scattering cross sections at energies near (both above and

below) regions of atomic excitation and ionization thresh-
old, resulting in "anomalous" behavior of the x-ray index
of refraction. Anomalous scattering factors may be de-
fined in terms of the difference from the (constant)
scattering amplitudes found far above threshold and, if so
defined, in the forward direction the real and imaginary
parts of such anomalous factors may be related through
dispersion relations. ' ' The high-energy limit of the
scattering amplitude is often assumed to be determined
from the atomic form factor (the Fourier transform of the
electron charge distribution, which is real), giving at high
energy a forward amplitude proportional to the number of
bound atomic electrons. The forward imaginary ampli-
tude, which is the same as the imaginary anomalous
scattering factor f", is often taken as proportional to the
total photoelectric cross section from a photon of the
given energy off the atom in question" '; the forward
real amplitude at the same energy is then determined from
these imaginary amplitudes through the dispersion rela-
tion. " ' The angular dependence of these anomalous
amplitudes has sometimes been assumed to be the same as
in form-factor approximation, as suggested by a classical
argument. ' %e shall demonstrate with our explicit calcu-
lations that there are difficulties with all of these assump-
tions, namely, (1) the identification of the anomalous
scattering factors with the difference from form factor, (2)
the identification of the forward imaginary amplitude
with only atomic photoeffect, (3) the use of only atomic
photoeffect in the dispersion relation, (4) the assumption
that the perpendicular anomalous scattering factors have
the angular dependence of the form factor, and (5) the as-
sumption that that ratio of parallel to perpendicular
anomalous scattering factors is given by cos19. %'hile
these difficulties have been noted at various
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times, ' ' ' ' the assumptions continue to be
d 6, 14, 19,20

More precisely, the exact Rayleigh amplitude may be
written

f =ez ~~e& tf~~(co, 6)+ez je, haft(co, B),
characterized by two complex amplitudes f

I
I,fq for

scattering of a photon of energy fico through an angle 8,
where e& and e2 are the complex polarization vectors of
the initial and final photon, eII and et their components
parallel and perpendicular to the scattering plane. One
may show that

fI~(~,0 ) =fg(co, O'), f~~(co, 180')= fz(co—, 180'). (2)

In form-factor (or dipole) approximation fII
=fzcos8.

Anomalous scattering factors (real) f' and f"are often de-
fined' '" through

(3)

As we shall see, this definition ' is inconsistent with the
connection of the forward anomalous scattering factors
through a dispersion relation, which is why we have writ-
ten f ' rather than f' in Eq. (3).

In Secs. II and III we will use our numerical data to dis-
cuss the properties of the forward real and imaginary
scattering amplitudes and in Sec. IV we will use the data
to discuss the angular dependence of these amplitudes and
the anomalous factors. In the process we shall also note
the extent to which nonrelativistic Coulomb dipole results
for the I!: shell, when combined with a modified-form-
factor approximation, suffice for a qualitative under-
standing of the Rayleigh scattering amplitudes.

We see that the high-energy limit of the amplitude f,
which serves to define the anomalous scattering factors f'
and f" if they are to be connected through a dispersion re-
lation, differs from the form-factor prediction Z by terms
of relative order (Za) . If we write

f(co):Ref—(co= ce )+f'+if"
then,

In fact, for scattering from each atomic electron the
correction is of the order of its binding energy, as is
predicted by the modified form factor, in Levinger's es-
timate of relativistic corrections to the dipole sum rule,
in the high-energy limit calculation of Goldberger and
Low, ' and as clearly seen in the work of Florescu and
Gavrila. ' The result is that the correction is of the order
of the total binding energy of the atom in comparison to
the total rest-mass energy of the atomic electrons. The
correction is very small for a light element such as Al, but
it is visible at the 1% level in the forward cross section of
a high-Z element. The difference from the form-factor
value in Pb is primarily due to the differences arising in
the scattering from its K-shell electrons, but does also re-
flect the deviations from the form factor of the high-
energy limit for the other electrons. The use of f ' rather
than f' in Eq. (5) provides an explanation for the sys-
tematic discrepancy noted by Creagh between f' calcu-
lated from photoeffect and f' measured relative to form
factor, since the difference f' f ' of form fac—tor from
high-energy limit is larger than f in the circumstances

II. THE FORWARD REAL AMPLITUDE

In Fig. 1 we show the forward real amplitude
ft(co, O') =

f II(co,O') for Al and Pb in units of Z, as a func-
tion of photon energy fico in units of the IC-she11 binding
energy ex. We may focus our attention on the following
features of the amplitude: (1) high-energy behavior, (2)
slight maximum for co near twice the photoionization
threshold, (3) finite drop near threshold, (4) resonance re-
gion, and (5) low-energy behavior. Gavrila s nonrelativis-
tic Coulomb dipole calculation for hydrogen explicitly il-
lustrates all these features, which can already be seen in
the Kramers-Heisenberg matrix element, giving f=Z at
high energies (form-factor value), vanishing at low energy,
exhibiting resonances at the 1s-np dipole bound-bound
transition energies, and dropping (though not so much as
for Al) to a finite value as threshold is approached from
above. The modified form factor, originally suggested by
Franz, predicts for the forward amplitude a constant
which differs from one by terms of order (Za) . The
component g;(q) of the modified form factor due to the
charge distribution p;(r) of the ith electron is defined as

2

g;(q) = f d r e'q''
E; —u(r) '

where E; is the total energy (including rest-mass energy)
of the electron.
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FIG. 1. Forward real amplitudes Z 'Ref&(co, O')
=Z 'Ref II(co,O') in units IIi=m, =c =1 for Al (Z=13) aud &b
(Z=82) as a function of photon energy Ace in units of K-shell
binding energy e~ (1.510 keV for Al and 87.9 keV for Pb in our
model); L edge positions are marked. The solid curve ( )
shows our numerical data, the dotted curve ( ~ ~ . ~ ) shows the
form-factor predictions. Below the K threshold the reduced
form-factor value Z —2 is shown. The inset shows in detail the
approach to a resonance (the 1s-3p resonance) for Al. Note that
Reft(AI) =0 at ico/e~) -=0.9, implying a deep minimum iu the
scattering cross section.
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(relatively high energies) of the measurements. Note that
this, in principle, affects the interpretation of scattering
amplitudes as tabulated by Henke et al. , but at low ener-
gies where f' is bigger the relative error is much smaller.

Figure 1 shows that the amplitude for scattering from
an electron changes little from its high-energy value until
the photon energy is only a few times the binding energy,
when it exhibits a gentle maximum (rising about 20% in
Gavrila s calculation) at a couple of times the binding en-

ergy. The rise in the total amplitude above the K thresh-
old is due to the K electrons and so is more noticeable for
Al (=3%) than for Pb ( & 1%), since the K electrons are a
greater fraction of the total in a light-Z element. The rise
above Z —2 in Al above the L threshold is much greater,
since most of the electrons in Al are in the L shell and the
rise above Z —2 in Pb above the L threshold is more visi-
ble, again because the electrons are a more significant
fraction of the total. The gentle maximum in f' was ob-
tained in calculations with dispersion relations" ' using
photoeffect results in f", and it is already predicted in the
classical calculation of photon scattering from an electron
bound in a harmonic oscillator potential.

The amplitude drops, but to a finite value, as the
threshold is approached from above. Gavrila's calculation
shows this feature, whereas dispersion relation calcula-
tions of f' based on f" from photoeffect data only instead
exhibit a logarithmic divergence. '" ' This divergence is
canceled if the contribution to f' from the allowed
bound-bound transitions is also included in f". In Al (in
contrast to hydrogen) the ls-2p transitions are not allowed
(and is-3p is reduced) so that the K-shell amplitude drops
further corresponding to the omission of their contribu-
tion, and evidently is small at threshold. In fact both for
Al and Pb the E amplitude is negative just above the K
threshold, so that the total amplitude is less than Z —2.
At the L edge of Al the drop is even greater.

Between the E threshold and the lowest photoexcitation
energy of the very outermost electron, the sequence of
subshell thresholds is accompanied by a sequence of reso-
nance regions in scattering (which overlap for outer elec-
trons). In principle the scattering amplitude below each
subshell threshold exhibits an infinite sequence of reso-
nances at energies corresponding to allowed bound-bound
transitions, as in Gavrilas calculations; this region was
not explored in our numerical calculations. These reso-
nances correspond to transitions to unoccupied (excited)
states of the atom. In the approximations of our calcula-
tions the scattering amplitude will be infinite at the ener-

gies corresponding to such bound-bound transitions but if
the lifetimes of the excited states are considered the reso-
nances will have finite level widths, with high-lying res-
onances so broadened and overlapping that they are not
observable. Similarly, for an atom in a solid broadening
to a continuum with edge-lowering can occur.

Below the K-resonance region photon energies co be-
come small compared to those needed to excite or ionize a
K electron. At such energies the contribution to the total
scattering amplitude due to scattering from a K electron
decreases monotonically to zero with decreasing energy (as
co ), as exhibited in Gavrila's calculation. The amplitude
in this region is opposite in sign to its value above thresh-

old in the form-factor regime. This means that, except in
hydrogen and helium, there is a minimum in the cross sec-
tion just below the first real resonance of the resonance re-
gion (as well as inbetween resonances) as the amplitude (K
shell, in this case) cancels the real parts of amplitudes
from l. shell and higher. This behavior is shown for Al in
the inset of Fig. 1. At still lower energy the given electron
amplitude is unimportant (if other more lightly bound
electrons are present) and the scattering behaves like that
for an atom of reduced charge. However, between thresh-
olds the influence of the resonance regions is sufficiently
extensive that there are no regions where anomalous ef-
fects may be safely ignored, as has long been known. '

For comparison the dotted lines of Fig. 1 show the re-
duced form factor values Z —2 below the K shell. For en-
ergies so low that photoexcitation of the atom is not possi-
ble the amplitude will go to zero as co . (At these energies
the separation into Rayleigh scattering and nuclear Thom-
son scattering is not formally valid, but the Rayleigh am-
plitude alone essentially describes the extreme low-energy
regime if the Thomson amplitude is omitted. ) The
scattering at very low energies from a free atom may be
described as scattering from a neutral slightly polarizable
target. '

III. THE FOR%'ARD IMAGINARY AMPLITUDE
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FICx. 2. Forward imaginary amplitudes Imf&(co, 0')
[=Imf ~~(co, 0')] for Al and Pb as in Fig. l.

In Fig. 2 we show our data for the forward imaginary
amplitude in the same circumstances which we have thus
far been discussing for the forward real amplitude. Ac-
cording to the optical theorem

CX %CO ~abs COImf (co,0)= —= o~bs4~ mc (e /mc ) 4~c

where o.,b, is the difference in photoabsorption total cross
sections (for transitions involving bound atomic electrons)
for a photon incident on an atom and on the correspond-
ing bare atomic nucleus. ' (Photoabsorption involving
pair production of continuum electrons and positrons is
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identified with the Delbruck, rather than with the Ray-
leigh, amplitude. ) We may identify three regions of this
amplitude: (1) High energies ru) 2me, (2) the photoeffect
regime, and (3) the resonance regime.

While c7,b, is often taken as the photoeffect cross sec-
tion, in fact there are two other contributions which are
important if correct results are to be obtained when f" is
inserted into a dispersion relation. In the first place, the
subtracted photoabsorption cross section on a bare nucleus
gives a contribution for co) 2,mc —Ez, E~ the Coulomb
K-shell binding energy, corresponding to the possibility of
creating an electron-positron pair with the electron bound
to the bare atomic nucleus. ' The high-energy limit of
photoeffect is -ai ', so its contribution to Imf tends to a
constant and the corresponding integral for the dispersion
relation would not exist; this difficulty led to the realiza-
tion' of the existence of the subtracted bound-pair-
production term, which has the same high-energy limit as
photoeffect. For high energy one then expects a behavior
in Imf like (Za) mc /fuu-(Za) /(ex /fico), which is not
yet achieved for the energies shown in our data. (Sub-
tracting the bound-pair creation cross section formally
cuts off the dispersion integrals, in effect justifying the
cutoff used in numerical calculations of f'. ) Secondly,
below photoeffect thresholds there will be 6-function
(when level widths are not considered) contributions corre-
sponding to real bound-bound radiative transitions. As al-
ready noted, these must be included in the dispersion rela-
tion if the correct finite threshold limit for f is to be ob-
tained as threshold is approached from above.

Otherwise, except for the bound-bound transition ener-
gies and below the pair-production threshold, Imf is
determined from the photoeffect cross sections. In
Coulomb dipole approximation the curves as shown
should be Z independent, and they do somewhat merge
for co )ex. but not too large; screening causes larger differ-
ences below the K threshold. The amplitudes are dom-
inated by the most deeply bound shell which can be excit-
ed. Only as one approaches outer-shell thresholds do
magnitudes of Imf(co, O') become comparable with the
real amplitudes (in contrast to the finite momentum
transfer situation).

IV. THE ANGULAR DEPENDENCE OF
ANOMALOUS SCATTERING

We now study the angular dependence (q dependence)
of the Rayleigh scattering amplitudes from aluminum (Al)
and lead (Pb) near and above the E threshold in the x-ray
and soft y-ray regimes. Here fiq is the momentum
transfer to the atom in scattering, often expressed in terms
of the variable x, where

triq = (2fuu/c) sin(8/2),

q =4~x, x =A, 'sin(8/2),

with 0 the scattering angle and A, the wavelength. We will
see that even in the circumstances which have been of in-
terest to crystallographers commonly used assumptions re-
garding the q dependence can fail. We first illustrate the
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FIG. 3. Momentum dependence of the real perpendicular am-

plitude normalized to the corresponding forward amplitude,
[Ref&(co,q)]/[Ref&(co, q =0)], plotted against momentum
transfer x —=sin(0/2)/A, (A), for Al at various photon energies as
indicated in keV. The solid curve of numerical predictions can-
not be distinguished from form factor on this scale. Note that
Rayleigh and nuclear Thomson amplitudes are being added to
obtain Ref&', this has no effect for the Al data shown.

situations for ft, which decreases monotonically with q in
these ranges and then discuss how the q dependence of f

~~

departs from that predicted by f~~ =ftcos8. (There is a
systematic movement of the zero in f~~ towards angles
smaller than 90'. ) After studying Reft, Imft, and fI, we
will also consider the differential scattering cross section
when photon polarization is not observed,

do ~o

d&
=

2
( Ift+ANT I'+ If+ANTcos8')

where ro ——e /mc is the classical electron radius and ANT
is the nuclear Thomson scattering amplitude. (At higher
energies further elastic amplitudes would have to be in-
cluded to specify the observable elastic scattering process. )

For Al, we show in Fig. 3 the q dependence
~Reft(co, q)/Reft(co, O) ~, the real part of ft normalized to
its forward direction value for various photon energies A'co

in keV as well as the ~ independent form-factor predic-
tion (which is essentially the same as modified form factor
in this light Z case). At 1.5 keV the resonance corre-
sponding to a 1s-3p bound-bound transition is very close
(see inset of Fig. 1). It results in a large enhancement of
the electric dipole contribution which is independent of
angle; consequently the scattering amplitude is
anomalously flat. Otherwise, the form factor gives a good
prediction for the q dependence of the amplitude at all en-
ergies considered. For larger q (at higher energies) the
form factor will eventually fail, but the expectation is that
at such high q's the nuclear Thomson amplitude (and oth-
ers) small in the forward direction, will by far dominate
over the Rayleigh amplitude contribution to elastic
scattering.

However, for high-Z elements form factor fails badly,
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tude is responsible for the back-angle flattening at high energy.

FIG. 6. Same as Fig. 5, but for Pb. Solid curves ( ) are
our numerical data, the dotted curve ( ~ ~ ) is the K-shell rela-
tivistic form factor, and the dashed curve ( ———) is the E-
shell modified form factor.

as is seen in Fig. 4 where we show the same comparisons
for Pb. In this case we have added the nuclear Thomson
amplitude, so that the curve goes to a constant for x )90
A '. The form factor (dotted line) seriously overestimates
our data (solid curves), even for fairly small q. What we
are showing is a relativistic form factor, i.e., the Fourier
transform of the relativistic charge distribution. As has
been pointed out, a nonrelativistic form factor is in fact
considerably more satisfactory up to x=10. Except at 88
keV the modified form factor well represents our data

0
when x &20 A ' for all co, or when 0&100' for all co.
The calculated amplitudes systematically stay above this
common curve at back angles, showing a further depen-
dence on co as well as q, for high energies at back angles
giving results which are intermediate between the form
factor and modified-form-factor predictions. The perpen-
dicular amplitude from lead at 88 keV (above but extreme-
ly close to threshold) changes sign at 143' because the K-
shell contribution has changed sign and, although small, is
nearly q independent: At back angles it can cancel the
contribution from higher shells which is decreasing with
q.

I I I I 1 I I I
I

I l I I I I I I

Near threshold then, it is clear that the assumption of
form-factor q dependence can be incorrect for any atom.
The assumption also generally fails for high-Z elements
where, however, the form factor may be replaced by the
modified-form factor for moderate q's.

A form-factor q dependence has also been assumed for
Imf& =f". In Fig. 5 for Al and Fig. 6 for Pb we show the
q dependence of Imfr(co, q)/Imfr(c0, 0) for various ener-
gies. In Fig. 5 we also show for 1.5 and 279 keV the form
factor-based scheme suggested in Ref. 30,
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Al (z=i~) 279 f~'(~,q)= g f/,"r(~,0)ff (q)/ff (0), (8)
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0. I I IQ where the sum runs over all subshells j, f/"r(co, O) is the
forward imaginary amplitude from the jth shell, and

f f/(q) is the form factor for the jth shell. (Note this pre-
diction is energy dependent; the total atom form factor,
not shown, would drop even more rapidly. ) We see that in
fact the imaginary scattering amplitude is less q dependent
than any form-factor prescription. Below 59.5 keV, our
data can be well fitted by a two-term multipole series

X [sin(g/s) / g (A)]

FIG. 5. Momentum dependence of the imaginary perpendicu-
lar amplitude normalized to the corresponding forward ampli-
tude [Imfz(co, q)]/[Imfz(co, q =0)]:f"(co,q)/f"(co, q =0)—, as in

Fig. 3, for Al. Solid curves ( ) are our numerical data, dot-
ted curves ( ~ ~ ~ ) the subshell form-factor scheme (see text), not
the total atom form factor which would drop even more rapidly.
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FIG. 7. Ratio of real and imaginary perpendicular ampli-
tudes [ImfI (co,q)]/[Ref&(co, q)] for Pb as in Fig. 3.

be the same as

fD'+ f~'cos8 (see Ref. 18) forced to fit at 0' and 180', while
at higher energies more multipo1es are needed. In Fig. 6
for Pb we display the K-shell form factor and K-shell
modified form factor along with our data. With increas-
ing energy our data (always less q dependent than total
atom form factors) moves from more to less q dependent
than K-shell modified form factor and form factor. For
both Al and Pb, the q dependence of Imfl decreases as the
photon energy increases; at back angles the amplitudes
continue to drop. On crossing the bound-pair creation
threshold new structure appears in Imfl around 90', but it
can be expected that other amplitudes probably dominate
the Rayleigh contribution to elastic scattering at large q
just as they do at forward angles.

The weaker q dependence of the imaginary parts of the
amplitudes has the consequence that, although real for-
ward amplitudes are much larger than the imaginary for-
ward amplltudcs in thc circumstances wc have considered,
at larger q the imaginary parts may become comparable to
the rea1 parts. In Fig. 7 we show the q dependence of the
ratio Imf1(co, q)/Reft(co, q) (note that forward amplitudes
are not factored out) for various photon energies. Even
excepting the 88-keV data, where Reft vanish at a partic-
ular q, in our data the ratio is as large as 50% and gen-
erally reaches more than 10% at intermediate angles.

The dispersion relations Eq. (5) for the scattering ampli-
tude in the form usually used do not involve Ref, but
rather" "

f'—:Re f(el) lim f(co)—
which then defines the real part of the anomalous scatter-
ing factor f'. However, in the literature6" ' f' is not
usually referenced to the high-energy 1imit, as defined
above in the forward scattering case, but rather is taken to

(f ')=Ref (co,q) fff(q) . —

This is only appropriate for low-Z dements and low q.
(Note that the correct q dependence of the full amplitude
in the high-energy limit is not known, though it has been
obtained for the Coulomb IC shell. ' ) In other cir-
curnstances the study of the q dependence off ' is not par-
ticularly instructive. In light-Z elements the differences
from form factor are sufficiently small that f '

rapidly be-
comes unimportant within the precision of our data. In
high-Z elements the difference from form factor is always
large and the q dependence of f ' is similar to that of Ref
itsdf. We show in Fig. 8 the q dependence off ' for Al at
small q, where f '=f'. Under these circumstances f' is
nearly q independent, not at all like the form factor, and
wlt11lll thc Rcclllacy of tllc data bcllavcs sl11111RI'ly to f
This q independence is of some importance for the
behavior off in the near threshold region.

Beginning in the hard x-ray regime the simple relation
between parallel and perpendicular amplitudes,

begins to break down. ' ' The amplitude fI~ continues
to change sign as the general behavior of Eq. (2) requires,
bui at increasingly forward angles. To see the conse-
quences for cross sections we show in Fig. (9) the ratio

( I ficos~
I

+ I fl I
) coslg+ 1

—,'( lf~~ I'+ If. I') Ifii/fl I'+

The error at some angles due to the use of Eq. (11) in-
creases with Z for fixed energy, as we11 as growing with
energy; for Al at 22 keV it is only 0.2%, while for Pb at
145 keV it is S%. By the MeV range the effect has
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I.0 I

1.00—

reached 30% (though of course at such energy large angle
amplitudes are small).

We could also examine the q dependence of

(co,q)
dc'

(co,O)
do

I.02

1.00

Qualitatively, the results are similar to those for Ref al-
ready shown. For Pb the modified-form-factor predic-
tion,

~ f +A ~, is in good agreement with our data
for I9 & 100' at all energies and also at all angles for lower
energies not too near threshold. Serious errors can result
if instead of the MFF the form-factor approximation is
used.
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