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Time-dependent effects in nucleation near the critical point
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Application of the critical dynamics to the nucleation process results in a Langevin-type equation
for the radius of the nucleus, which is transformed to a Fokker-Planck equation for the distribution
function. The time-dependent solution of this equation is shown to be crucially dependent upon the
initial conditions. The time lag associated with the establishment of the steady state following a fast
quench is exponentially larger than that for a slow quench. Numerical estimates of the time lag are
presented.

I. INTRODUCTION

(1.2)

The first term in Eq. (1.2) describes the systematic growth
(decay) of the nucleus and the second term is responsible
for the diffusive growth. The two unknown functions F
and D can be related through the formation energy" AG
of a nucleus of size r. In fact, the equilibrium distribution
function W,„(r)corresponds to zero flux and, from Eq.
(1.2), one obtains

W,q(r) = W,q(1)exp — dr'
r F(r')

I D r'

W ( 1)e eGlkT— (1.3)

The most familiar examples of metastable states are the
supersaturated vapor and the supercooled liquid. Such
states are thermodynamically stable against small pertur-
bations. If, however, the "droplet" of the new phase is
large enough, it will grow rather than dissipate and will fi-
nally bring the entire system into a stable state. An
understanding of the kinetics of such a process is very im-
portant for many practical applications and, at the same
time, is a very interesting task for nonequilibrium thermo-
dynam1cs.

The traditional phenomenological approach to the de-
cay of metastable states goes back to the classical results
of Seeker, Doring, Zeldovich, and Frenkel. ' In these
theories, the relaxation of a metastable state is described
by the distribution function W(r, t) of nuclei of size r at
time t The vari.ation of W(r, t) is related to the flux
J(r, t) of nuclei along the size axes. In the appropriate
continuity equation,

"c)W(r, t) t)J(r, t)
Bt Br

the flux J(r, t) can be written as2

where W,q(1) is the number of nuclei of unit size (the unit
can be a molecule, a correlation length, etc.).

One usually assumes some model expressions for the
two unknown functions D(r) and EG [or, alternatively,
F(r)]. The function D(r) is related to the probability per
unit time of a unit nucleus joining a nucleus of size r, and
it is usually taken to be proportional to the surface of the
nucleus. The formation energy 46 consists of the volume
and surface parts, the competition of which results in the
decay of the small nuclei with r & r„where r, is the size
of the so-called critical nucleus, and the growth of nuclei
with r &r, .

As was shown by Langer and Turski and by Patashin-
sky and Shumilo, near critical points the properties of the
metastable state (and thus, of the functions F and D) are
completely determined by the critical dynamics. Howev-
er, in these treatments of the decay of metastable states,
only stationary solutions of Eq. (1.1) were considered. In
the stationary regime, one finds that the flux J„doesnot
depend upon the size of a nucleus. The lifetime of a

tastabl~ stat~ is then d~f~~~d as J,~'. The maj
theoretical effort is directed towards the computation of
the so-called "preexponential factor" that appears in the
expression for J„,and the manner in which the metastable
state was reached plays no role in the considerations.

If one considers the time lag associated with the estab-
lishment of the steady-state regime following the quench
to the metastable state, it is very important to distinguish
between "slow" and "fast" quenches. This can be seen
from the following argument. The metastable state that
appears after a quench is a state of incomplete equilibri-
um. The short-range degrees of freedom (nuclei with sizes
r such that r &A, &r, ) come to equilibrium immediately
and can be described by the Gibbs distribution. The
dynamic behavior of the system depends upon the value of
the characteristic length A, . In the case of a slow quench
(r, & I, »1), the large nuclei appear immediately after the
quench and the stationary regime of nucleation is estab-
lished after a relatively small time lag. In the case of a
fast quench (1&A,«r, ), we have a drastically different
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situation. The nonstationary contributions to the integrat-
ed flux become important and, contrary to what is as-
sumed in traditional treatments of nucleation, they cannot
be neglected.

It turns out that, while the characteristic time lag asso-
ciated with the approach to steady state is r, /cI for the
case of a slow quench, it is

"preparation" of the steady-state distribution of nuclei,
which for fast quenches is very different from the initial
distribution. Finally, a quantum-mechanical analogy is
drawn between the nucleation process following a fast
quench and the vibrational predissociation of "long-
range" molecules following excitation by a laser pulse.

1/4
T~ Do p 2/p4Dc 0

D, cr

i.e., exponentially larger in the case of a fast quench,
where kTDo ' is proportional to the surface tension and
cl is the diffusion coefficient. Only the first time scale
has been obtained by previous investigators.

%'hile, strictly speaking, our results apply only in the
critical region, we believe that the analysis presented in
this paper can be useful in understanding the transient re-
gime of nucleation even away from these points. Note
that the application of critical dynamics to the rnetastabil-
ity depends only upon the possibility of dividing the
dynamical variables into slow and fast ones. Such a parti-
tioning is common to most modern treatments of non-
equilibrium states.

In Sec. II, we present the critical-dynamics approach to
the problem of rnetastability and nucleation. The equa-
tion of motion for the order parameter is transformed, in
the quasistatic approximation, into an equation that de-
scribes the motion of the boundary of the nucleus under
the influence of systematic and diffusive forces. The tran-
sition from a dynamic to a stochastic description is made
and a Fokker-Planck equation for the size distribution is
derived. In the process, the F(r) and D(r) functions are
computed in a straightforward manner. Therefore, the
form of the Fokker-Planck equation is uniquely deter-
mined by critical dynamics.

In Sec. III, separation of variables is used to reduce the
time-dependent Fokker-Planck equation to an eigenvalue
problem of the Sturm-Liouville type. The latter equation
is then transformed into a Schrodinger equation that must
be solved subject to appropriate boundary conditions. The
distribution function and the fluxes are expanded in terms
of the solutions of the Schrodinger equation. Expressions
for the expansion coefficients are then obtained and their
dependence upon the initial conditions (slow versus fast
quenches) is discussed.

In Sec. IV, the Schrodinger equation is solved in the
harmonic approximation and the integrated flux at r =r,
is expanded in terms of the eigenfunctions of the harmon-
ic oscillator. The expansion coefficients are evaluated for
the slow- and fast-quench cases, using asymptotic proper-
ties of the Herrnitian polynomials, and the resulting sum-
mations are carried out in the Appendix.

Section V deals with the analysis of the results in the
case of fast quenches. We obtain an exponentially large
time lag associated with the approach to steady state. Nu-
merical estimates of this time lag are given.

In conclusion, Sec. VI discusses further the appearance
of a new time scale for fast quenches and provides a phys-
ical interpretation of the time lag in terms of the

II. A CRITICAL-DYNAMICS APPROACH
TO METASTABILITY

The general approach of critical dynamics is well
known. Near critical points, one distinguishes between
slow and fast degrees of freedom. The former determine
the critical dynamics and the latter play the role of a
thermal bath. Their influence is taken into account by in-
cluding random forces in the equations of motion for slow
variables, such as the hydrodynamic modes and the order
parameters considered here. Thus, dynamic variables and
fluctuations appear in the same equations as systematic
and random forces, respectively.

The situation described is, in fact, the same when a sys-
tem undergoes a transition from a stable to a metastable
state. The small-scale degrees of freedom come to essen-
tially immediate equilibrium and are described by the
Gibbs distribution for a given configuration of large-scale
degrees of freedom. The latter relax toward the stable
state via the formation of nuclei of the new stable phase
and their kinetics is determined by their critical dynamics.
Therefore, no additional assumptions need be made con-
cerning the form of the functions D and F (or D and b,G ).

Consider the simplest case of a system having only one
hydrodynamic mode: the scalar-field order parameter
P(r, t). The effective free-energy functional can be written
in the familiar I.andau-Ginsburg form:

A I/I = Jd r —V'P
~

+U(P) (2.1)

The equation of motion of the order parameter is

BP ~ 5P'=I — +f„(r,t)
Bt

(2.2)

where the transport coefficient operator I is given by I
and I,T for a nonconserved and a conserved field,
respectively. The Gaussian random force f„(r,t) in Eq.
(2.2) simulates a thermal ensemble.

Note that, by using the continuous approximation for
the free-energy functional in Eq. (2.1), we have assumed
implicitly that some coarse graining (averaging over very
short-scale degrees of freedom) has been performed. An
additional coarse graining has to be carried out in order to
pass from a dynamical to a statistical description of the
phase separation process. This will be discussed later in
this section.

The evolution of a nucleus of a new phase is described
by the quasistationary solution P(r, t) of Eq. (2.2), where
P(r, t) is almost everywhere close to the values Pi and P2 in
the two coexisting phases, except at the boundary of the
nucleus. Therefore, the gradient term in Eq. (2.1) is of
crucial importance while the explicit form of U(P) plays
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no role in our treatment.
A typical approach to the solution of Eq. (2.2) is the

following. Consider a spherical nucleus with its center at
the origin. Nuclei of a size smaller (larger) than the criti-
cal one decay (grow) in time while, for the critical nucleus,
BPIBt =0. In the absence of a random force, the critical
nucleus is described by the following equation:

d P c(n —1) ~d

dr r& dr
(2.3)

+ c(n —1) ——— +f„1 1 BP
r r, dr

(2.4)

For a conserved order parameter, an additional operator
(V ) will act on the right-hand side of Eq. (2.4).

The order parameter depends upon time only through
the variation of the boundary of the nucleus, i.e.,
dgldt=(BQ/cd)(dr/dt). Substituting the latter expres-
sion into Eq. (2.4) and taking into account the fact that,
for the quasistatic solutions considered here, the sum of
the first three terms in Eq. (2.4) is approximately zero [ac-
cording to Eq. (2.3)], one can rewrite Eq. (2.4) as

dr = —I c(n —1) ———+X
dt rc

(2.5)

where n is the dimensionality of space. For n =1, and as-
suming a typical form of U(P), Eq. (2.3) can be solved ex-

actly [P=tanh(r r, ) for —U(P)= ——,
' a/2+ —,

'
bg ].

Consider now the time-dependent solution of Eq. (2.2)
which, for a nonconserved order parameter, can be rewrit-
ten in the form

ay a2y c(n —1) ay= —I c +
dt fr~ r, dr

conserve the uniformity of a system and by itself cannot
induce a transition to a new phase. Such a transition can
be induced by the second term in Eq. (2.5), i.e., the ran-
dom force describing the flucutations. " The two forces in
Eq. (2.5) determine the exact form of the two functions
D (r) and I' (r) in Eq. (1.2).

The problem of the statistical description of metastable
states has received widespread attention (see, for example,
the review article' ). Strictly speaking, statistical mechan-
ics deal with stable states only. In order to describe the
metastable states, an additional coarse graining of the
free-energy functional, Eq. (2.1), has to be performed. Ac-
cording to Ref. 12, the appropriate cutoff for dealing with
the dynamics of phase separation is of the order of the
correlation length g. Such a choice means that we restrict
our consideration to the region on the phase diagram near
the coexistence curve (shaded region in Fig. 1) where the
critical nucleus r„which is of infinite size on this curve,
is much larger than the correlation length g, r, »g.
Therefore, the correlation length will be considered as the
minimal length in the following analysis.

Using the well-known methods of probability theory, '

one can pass to the statistical description of systems
governed by Eqs. (2.5) and (2.7). We introduce the transi-
tion probability as follows:

P(r, ro, t, O) = (5[r —r (t)] ), ro =—r (0) (2.g)

where the averaging is performed over the realizations of
the random force X. The size distribution of the nuclei at
time t is given by

8'(r, t)= fP(r, r Ot, 0)W~, (r0,0)dro, (2.9)

where 8;„;,(r0,0) is the initial distribution.
One can now construct the Fokker-Planck equation'

corresponding to the Langevin equation (2.5) and obtain

where X=(BQ/Br) 'f„and, for the Gaussian random
force f„with a mean deviation of 2kTI, the time-
correlation function for X(t) is equal to

. z

(X(r, t)X(r, t') ) =2kTI' f d r
dr

(2.10)

where, according to Eq. (2.5), for the three-dimensional
case we have

(2.6)

In Eq. (2.6) we consider only the X part of the random
force f„,which determines the change of the size of a nu-

cleus. Equation (2.6) can be rewritten using the well-

known formula for surface energy, 9

So.= cf (V'P) d'r,
2

where S(r) is the surface area of a nucleus and cr is the ef-

fective surface tension. Then,

://
//

//
//

//
//
//

/

(2.7)

The first term in Eq. (2.5) determines the systematic
force driving the decay (growth) of the nuclei of a size
smaller (larger) than a critical one. This force tends to

FIG. 1. Typical (T,p) phase diagram close to the critical
point c. Coexistence curve is given by the solid line. Two dotted
lines bound the cloud-point region. System is quenched from
the single-phase region (point 1) to the shaded region (point 2).



29 TIME-DEPENDENT EFFECTS IN NUCLEATION NEAR THE CRITICAL POINT 1499

1 1F(r)=2cI'
r r,

(2.11) ( ) 1, r&r, —5

0, r&r, +5 (3.4)

Do kTD (r) =cI, Do =
r2 '

4mo
(2.12}

W,q(r) = W,q(g)exp

The functions F(r) and D (r) can be found in an analogous
way for the case of a conserved order parameter:

2cI r,F(r)= (2.14)
r r r~

and

cI D0r,D(r)=
3

The equilibrium distribution is obtained by substituting
Eqs. (2.11) and (2.12) into Eq. (1.3):

T

2

(2.13)
D0

with a narrow transition region of width 25 «r, centered
at r, .

In order to find the general time-dependent solution of
Eq. (1.1), we separate variables and write

W(r, t) = W„++A„X„(r)e (3.5)

Using Eqs. (1.1) and (1.2) we obtain the Sturm-l. iouville
equation:

dX„(r)
F(r)X„(r)+D(r) X„X„(r—), (3.6)

where the eigenvalues A,„aredetermined by the boundary
conditions. The coefficients A„arefound from the initial
conditions.

In addition to the analysis of the distribution function,
it is interesting to consider the nonstationary behavior of
the fiux J(r, t) This . flux can be partitioned into station-
ary and nonstationary parts,

As we have shown in this section, near critical points
there is no need for any special assumptions concerning
the form of the functions D(r) and F(r); both are deter-
mined by the universally accepted critical dynamics.

J(r, t) =J„+QA„J„(r)e

where, using Eqs. (1.2) and (1.3),

(3.7)

III. TIME-DEPENDENT PROBLEM

In this paper we consider only the first stage of the nu-

cleation process, before the appearance of a macroscopic
amount of the new phase. ' In this regime, F(r} (or b,G)
and the boundary conditions do not depend explicitly
upon time.

We will solve Eqs. (1.1) and (1.2) with D(r) and F(r)
given by Eqs. (2.11) and (2.12). In addition to the equili-
brium solution Eq. (2.13), one can easily find the steady-
state solution of Eq. (1.1), which corresponds to the con-
stant stationary current (1.2), J„,namely,

X„(r)J„(r)=—D(r) W,q(r)
Br Wqr

(3.8)

Another important quantity is the integrated flux (at r, )

N(t), defined as N(t): J(r„t'—)dt',
0

N(r}=J„t+gA„A,„'J„(r,)(1—e "
) . (3.9)

W(g, t) = W~(g) (3.10)

Now, let us proceed with the boundary conditions. The
appropriate boundary conditions are

drW„(r)= W,q(r) 1 —J„ (3.1)
W( oo, t) =0, (3.11}

dr'
D (r') W,q(r')

(3.2)

(3.3)

Application of steepest-descent arguments to Eq. (3.1) re-
sults in

and g is the correlation length.
The function W,q'(r) has a sharp maximum at r„

which reflects the existence of a barrier to nucleation.
Therefore, the integrals Eqs. (3.1) and (3.2) can be evaluat-
ed easily by the method of the steepest descent. Perform-
ing the integration in Eq. (3.2) and using Eqs. (2.11) and
(2.12), one obtains

1/2
Do cr

&st = i W~(r, ) .
7T r

i.e., the number of correlation-sized nuclei (r =g) is equal
to their number in equilibrium and no large nuclei
(r +Do ) are present. —

The nonhomogeneous boundary condition (3.10) is time
independent. Thus, it must be satisfied by the stationary
solution of Eq. (3.6), i.e., by the term in Eq. (3.5) corre-
sponding to the eigenvalue X=0:

Xi.=o(k) = W.q(k) . (3.12)

X„(g)=0 . (3.13)

According to Eq. (3.11) all solutions satisfy homogeneous
boundary conditions at infinity, i.e., for all n

X„(oo)=0. (3.14)

All other nonstationary solutions satisfy homogeneous
boundary conditions at r =g', namely,
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Before setting up the initial conditions, we transform
Eq. (3.6) into a Schrodinger equation to which well-known
approximation methods can be applied. First, we deb.
the function

C}x r
Dp

J„(r)= —D (r) W,q(r)
' 1/2

W,q' (r)g„(z(r)} (3.26)

U„(r)=X„(r)/W,q(r),

which satisfies the equation

d dU„(r)
D (r) W,q(r)dr dr

= —A,„W,q(r) U„(r).

%'e introduce a new dimensionless variable

z =r /2D0,

with Do defined in Eq. (2.12).
Finally, defining a new function g(z) by

1/2

(3.15)

(3.16)

(3.17)

The A„coefficients are determined from the initial condi-
tions, which play an important role in our considerations
since it turns out that the temporal behavior of the distri-
bution function W(r, t) and the integrated flux depends
crucially upon the nature of the quench (slow or fast).

Immediately following the quench, the system is in a
state of incomplete equilibrium characterized by a length
scale A, such that an equilibrium distribution (at the new
temperature) has been attained only for nuclei of size
r &A, . Correspondingly, for the so-called fast quenches
A,~g, and for slow quenches A,~r, . Therefore, the ap-
propriate initial condition is

X„(r)=n W.'q" (r)P.(z(r)), (3.18) W(r, 0)= W,q {r)e(A, —r), (3.27)

and using Eq. (2.13) for the equilibrium distribution func-
tion, we arrive at the Schrodinger equation:

where e(A, —r) is the unit step function [e(x)=1 for
x &0 and e(x)=0 for x &0]. Substitution of Eq. (3.27)
into Eq. (3.25) leads to

d g„(z)+ [ V(z) —E„]P„(z)=0,
dz

where the "energy" of the nth eigenstate is

E„=Dp
n + n

(3.19)

(3.20)

QA„Q„(z{r) )=—
1/2

0 W' (r)

W„(r)
X —e(A, —r)

eq

(3.28)

The potential V(z) has the form

V(z)=, + + 1—5 1 z

16z 2z zc
(3.21)

(3.29)

1/2

Assuming that the 1t„(z)eigenfunctions are orthogonal

f P„(z)g (z)dz =5

one obtains for the coefficients A„

a„=—f "dz W,'q (r(z)}P„(z)
r

2D

The boundary conditions, Eqs. (3.13) and (3.14), are

(3.22)

Wst(r (z) }
X —e(A, —r (z) )

W,q(r(z) )
(3.30)

g„(zo)=g„(oo ) =0,
where

(3.23)

2Dp
(3.24)

Notice that only dimensionless variables (z,E„)appear in
the Schrodinger equation.

After solving the Schrodinger equation, we use Eqs.
(3.18) and (3.5) to express the time-dependent distribution
function W(r, t) in terms of the eigenfunctions P„(r):

+5f '
d—z W,'q (r(z))f„(z), (3.31)

where the lower cutoff is determined by the initial condi-
tions

where, as before, the variables r and z are connected by
Eq. (3.17).

Brief reflection on the properties, Eq. (3.4), of the
steady-state distribution leads to the final expression

1/2

2D0
(3.32)

W(r, t)= W„(r)+
0

W",
q (r)

Xg&„@„(z(r) )e (3.25)

The nonstationary contribution to the flux, Eq. (3.7), is
found by substituting Eq. (3.18) into Eq. (3.8):

Returning now to the Schrodinger equation (3.19), no-
tice that the potential V(z) reaches its minimum at z—z,
(up to corrections of order 1/z, « 1) and at the minimum
V(z, )=(1/2z, ). Clearly, this is the lower bound to the
spectrum of eigenvalues, i.e.,

) 1
(3.33)

2Z.
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As one can see from Fig. 2, the potential V(z) is almost
parabolic close to its minimum, suggesting the use of the
eigenvalues E„and the eigenfunctions 1(t„(z)of the har-
monic oscillator. The solutions are oscillatory in the
domain bounded by the potential and are exponentially de-
caying outside this domain. Thus, we will replace the
boundary conditions gn(zo) =0 by gn( —cc ) =0, approxi-
mate the exact potential by that of the linear oscillator,
and obtain the harmonic-oscillator spectrum and eigen-
functions. After the eigenfunctions Pn(z) are found the
expansion coefficients A„will be found using Eq. (3.31).

1 1 zV„,(z) = + — 1 ——
2zc 4 zc

(4.1)

The well-known solution for eigenvalues and eigenfunc-
tions is given by'

IV. SOLUTION OF THE SCHRODINGER EQUATION

Turning now to the solution of the Schrodinger equa-
tion (3.19) and expanding the potential (3.21) about its
minimum, we obtain in the harmonic approximation

z +5 —1./4 f(z)H z
Zl

(4.7)

The function f(z) has the form
1/2

2 zf(z) = —z 1 ——
3 zc

zc z
1——

zc
(4 8)

g ( ) 2—9/4D —3/4 —5/4 I IVI/2( )

X [H„(0)+2/ z,' nHn ((0)] . (4.9)

Now, using the expression for the stationary flux, Eq.
(3.3), and the eigenvalues )(,n,

(n+1),cr
n (4.10)

we obtain the integrated flux

N(r) =J„I+ ,'z,' —e 'cr

Using the eigenfunctions (4.3) in Eq. (3.26), the nth-state
contribution to the nonstationary flux at r, can be written
in the form

and

E„=(n+1)lzc

gn(r) =c„e H„(P),

(4.2)

(4.3)

X g ,
2 "I„„,(n+1)!

where H„(p)are the nth-order Hermite polynomials with X [H„(0)+2 z,' nH„ I(0)]

p=(2z )
'/ (z —z, ) .

The normalization coefficients c„aregiven by

(4.4)
(cI't/Doze)(n—+ I)

X 1 —e (4.11)

c„=(2m.z, )
' (2"n!)

Substitution of Eq. (4.3) into Eq. (3.31) yields

1/4

2

where I„is the following integral:

(4.5)

(4.6)

The initial conditions (slow versus fast quenches) enter
through the I„integral. We notice that the integrand in
Eq. (4.7) is a monotonically decreasing function of z.
Thus, the main contribution to the integrand comes from
its lower limit, i.e., from z;; and since z; is inversely pro-
portional to the speed of the quench, we expect larger con-
tributions to I„in the case of fast quenches. Let us
proceed now to analyze the stationary flux for both slow
and fast quenches.

A. Slow quenches, z; —+z,

In this case, the contribution to the integral, Eq. (4.7),
comes from a narrow interval z, —z;. Expanding f(z), Eq.
(4.8), about z, we obtain

z, z, (z, —z)
f(z)= +——

3 4t z3
(4.12)

I

2C

Vosc{z )
/

v{z)

-Z

that is, the exponential in Eq. (4.7) varies very slowly close
to z, . Therefore, we can approximate the integral by tak-
ing the product of the integrand (at z, ) and the interval
z, —z;. Using the properties of the Hermite polynomi-
als, "

FIG. 2. Characteristic plot of the exact potential V(z) (solid
line) and the appropriate harmonic-oscillator potential V„,(z).
Left-hand boundary condition is given at the dotted line (z =zo).

( —1)"/ 2 / (n —1)!!, n =evenH„O=
0, n =odd

(4.13)

(4.14)
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we obtain B. Fast quenchcs, z;~zp

z, / 1 ——e '
( —2)"/ [(n —1)!!], n =even

C (4.15)

0, n =odd. (4.16)

Since the integrand in Eq. (4.7) is decreasing monotoni-
cally with z, most of the contribution comes from z~z;
and we can use as asymptotic expansion of the Hermite
polynomials for large values of their argument'

Substitution into Eq. (4.11) yields II, (P)=(2P)",

where, since z; «z„
(4.19)

N(t) =J„t 8~r 1—
r2

C

2zc

zc
(z —z, )=—

2
(4.20)

n =even

[(n —1 )!!] ( —2cI't /r~)(n+ ()

(n +1)!

(4.17) e f(z) (4.21)

Similarly, neglecting terms of order (z/z, ) /, we can ap-
proximate the exponent in the integrand of Eq. (4.7) by

—z/2 —zc/4

The summation is carried out in the Appendix. The re-
sulting integrated flux is obtained by combining Eqs. (A3)
and (A4)

1/2
1 m rc

N(t) =J„t
8 2 cI

leading to the integral

( 1) (2 )
/2: d —)/4 —/2

zg

The remaining integral can be evaluated, ' giving

I„=2 f'( —,
'

)( —1)"(2z,)" e

(4.22)

(4.23)
1/2 r

2c 1 t
)& erf 2

rc
(4.18)

Notice that the integrand flux vanishes for very slow
quenches, A,=r, .

where the gamma function I ( —', ) has been obtained by
—z /2

neglecting terms of order e
Substituting I„,Eq. (4.23), into Eq. (4.11) for the in-

tegrated flux gives, after some rearrangements,

zc
1/2 n

z /12e'
n=0 (n+1)!

The n summation is performed in the Appendix. Using Eq. (A10), we obtain

(4.24)

N (t) =J„t —I ( —,
'

)
0

1/4
Dp r /24Dc 0

cr

—4crc/r
2

2

&C
. exp — e

Dp
—exp

4DO

1/2
1 m.DO

erf
4 2

1/2 '

rc

4Dp

' 1/2
r,—erf

4Dp

—2cl g/r2
e c (4.25)

Comparing the slow- [Eq. (4.18)] and fast- [Eq. (4.25)] quench results, we see that the time lag associated with slow

quenches is negligible with respect to that for fast quenches. This result has a simple physical meaning. Following the
slow quench, the distribution of nuclei with radii r & A, is very close to equilibrium and the approach to steady state is in-

complete only in a narrow region, A, &r &r, (A,~r, ). Therefore, in Sec. V, we will focus on the analysis of the fast-

quench results.
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V. TIME LAGS FOR FAST QUENCHES

We proceed with the analysis of the integrated flux, Eq.
(4.25). It is convenient to rewrite this equation using the
two dimensionless parameters

r,p= and v=2I ( —,
'

)p / e" (5.1)
2Do

and the characteristic time

r,
4cI

We obtain

(5.2)

FIG. 3. Plot of the integrated flux 1V(t) vs time. Time lag is
indicated by v~. Nonmonotonic region at small t is blown out of
scale.

4 1/2 1/2 —t /2' (5.3)
cm /sec and we use Eq. (5.2) to obtain (in seconds)

where the term in the square brackets gives the contribu-
tion of the nonstationary flux. This term vanishes at t =0
and is negligible for t & vr. Thus, vr is the time lag asso-
ciated with the approach to steady state.

Expanding the nonstationary term in Eq. (5.3) in the
two limiting cases t « ~ and t ~&~, we obtain

(5.4)

(5.5)

Do -—3 ~10 (5.6)

For a quench depth corresponding to a critical radius
r, =10 cm, using Eq. (5.1) we obtain

p=150 and v=4&(10 (5.7)

Since cl is at a distance of the order of the diffusion coef-
ficient away from the critical point, we take cI =10

As we can see from Eqs. (5.4) and (5.5) and Fig. 3, the
integrated flux is almost everywhere linear in time, except
for a narrow region close to t=r Notice . that the non-
monotonic behavior of the flux at short times
[t/r-O(1)] can be neglected since, as will be shown
below, v is exponentially larger than unity. Thus, the non-
monotonic region shrinks to a point on the diagram if Fig.
3 is drawn to scale.

The negative value of the integrated flux in Fig. 3, for
t & vw, is closely connected with the time-lag phenomenon
for nuclei of critical size. However, from mass-
conservation considerations, it follows that the integral of
the nonstationary flux, over nuclei of all sizes, must van-
ish. Thus, the nonstationary flux must be positive for nu-
clei of some sizes other than critical. This phenomenon
has been studied by Abraham. '

The physically important feature appearing in Fig. 3 is
the magnitude of the time lag v~. Let us estimate this
time lag for some typical conditions in the shaded region
of Fig. 1. Taking the surface tension o.=10 erg/cm
and kT=4&&10 ' erg (room temperature) and using Eq.
(2.12), we obtain (in cm )

(5.8)

and so the estimated time lag is (in seconds)

vv.=40 . (5.9)

VI. CONCLUSIONS

Although direct measurements of the flux J(r, t) and
the integrated flux X(r, t) are prohibitively difficult under
usual experimental conditions, indirect information about
these quantities may be obtained experimentally. Most
treatments of nucleation focus on the stationary relaxation
regime. In this case, the decay time of the metastable
state is J,, and the integrated flux of nuclei along the size
axis grows linearly in time. It is clear, however, that some
time is necessary for the establishment of this stationary
regime. All previous investigators have estimated this
time lag as proportional to r, /cl (in our notation).

Our treatment of nucleation in the critical region shows
that it is essential to distinguish between cases of slow and
fast quenches. While, for slow quenches our result, Eq.
(4.18), is similar to that of previous treatments, we have
obtained a strikingly different result for fast quenches.

In the case of fast quenches, the nonstationary part of
the integrated flux, Eq. (4.25), is proportional to an ex-
ponentially large factor exp(r, /24DO). Accordingly, the
time lag acquires a factor of

p 2/2
/r 2)3/4e "c / Do

compared to the case of slow quenches. This new time

As is well known in considerations of nucleation, time
estimates are extremely sensitive to the parameters used.
The most important parameter is p, which, according to
Eqs. (5.1) and (2.12), is proportional to r, o /kT or, close to
the critical point, r, /g The tim. e lag depends exponen-
tially upon this parameter and, therefore, physically
reasonable time lags can be obtained only for comparative-
ly small values of (r, /g); i.e., in the vicinity of the criti-
cal point but, at the same time, not too close to the coex-
istence curve.
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scale may play an important role in the experimentally ob-
served "slowing down" of the transition from metastable
to stable states.

The drastic increase in the time lag has a simple physi-
cal interpretation. In the case of a fast quench, the cutoff
factor I, in Eq. (3.27) is close to the correlation length g;
i.e., only relatively small nuclei in equilibrium immediate-
ly following the quench. Therefore, it takes a long time
for the nonstationary flux to prepare a steady-state distri-
bution of nuclei of sizes from A, to r„and only after this
time does the flux start to move in the direction of large-
sized nuclei.

Following the Landauer-Swanson-Langer analogy' '

between the fluctuational decay of a metastable state and
the quantum-mechanical tunneling through a potential
barrier, we notice that the predicted kinetic effects associ-
ated with fast quenches have their counterparts in the
predissociation of long-range diatomic molecules. ' The
latter phenomenon occurs when a molecule is excited to a
manifold of high-vibrational states that are very close to
the barrier to dissociation. Such states are characterized
by large distances between the turning points for classical
motion and, correspondingly, very long vibrational
periods. If a localized combination of such states close to
the inner turning point could be prepared by, say,
Franck-Condon absorption of pulsed radiation from the
ground state, a significant "population" would have to be
transferred to the vicinity of the outer turning point prior
to the establishment of the steady-state decay through the
barrier. This would involve many vibrational periods and
result in a considerable time lag in the dissociation pro-
cess.

(b) Replace the sum by an integral:

[(tt —1)!!] (cI'—t/Doz )( n+1)
1 —e

(n +1)!n =even

=1T ' dx [(2x + 1)x ' ]0

(cI'—t/Doz, )(2x+) )

The first integral is easily computed':

f dx [(2x+ 1)x '/ ] (A3)

cI t
21/2 Doz

1/2

(A4)

In the case of fast quenches, we have to compute the
sum in Eq. (4.24). We introduce a generating function
f(x;t,a),

1f(x;t,a)= g (0)ex(n+a)
0 7l +EX Pl!

(A5)

The four sums in Eq. (4.24) can be represented in the form
f(0;t,a). Taking the derivative of f and performing the
resulting summation, we obtain

Bf(x;t,a) ~ (te")"

The second integral can be represented in terms of the er-
ror function, i.e., '

f [( ) )/2] I ( I /D )(2 +))
0
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APPENDIX

eaxe —t e2e 2x
(A6)

Integration of Eq. (A6) and taking the limit x~ 0 yields

f(0;t,a)=a ' f dye (A7)

In our case [Eq. (4.24)], we have a=1 and 2. For a= 1,
we obtain

In order to perform the summation in Eq. (4.17) for the
case of slow quenches, we introduce the following approx-
imations.

(a) Use the Wallis formula':

1/2
f(0;t,a) = erf(

~

t
i ),

and for a =2 we obtain

(A8)

(n —1)!! 2
' 1/2

(Al)
f(0;t,a)= (1—e '

) .
2t2

(A9)

After some simple algebra, we arrive at the final result:

[(—2 /2))/2 n

n+1!

7T

2zc

' 1/2
C

erf
2

1/2
zc—erf
2

' 1/2
—(,CI t/Doz ) —*,/2 —(,/2) —(2cI't/D )

( 10)+4(e ' —e ' e
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