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Non-Markovian theory of activated rate processes. III. Bridging between the Kramers limits
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Kramers' theory of activated processes yields expressions for the steady-state escape rate in the
large- and small-friction limits and for Markovian dynamics. The present work extends this theory
to non-Markovian dynamics and to the whole friction range. Kramers results are recovered in the

appropriate limits.

I. INTRODUCTION

(R (0)R (t) ) =2yMktt T6(t), (R (t) ) =0 (1.2)

where kz is the Boltzmann constant and T is the tempera-
ture. The Langevin equation (1.1) is equivalent to the
Fokker-Planck equation for the probability distribution
P =P(x, v, t)

Kramers' approach to the theory of activated rate pro-
cesses, ' using a model of a Brownian particle moving in a
one-dimensional potential well, has played a central role in
many areas of science. This approach starts from the
Langevin equation

—yx+ R (t),1 dV(x) . 1

M dx I
where x is the coordinate of the particle of mass M mov-
ing in the potential V(x), and where y and R are the
damping rate and the (stationary Gaussian) random force
associated with the coupling to the thermal bath. y and R
are related by the fluctuation-dissipation theorem

2'ITALO g

2 1/2 Ett-
p

In applying the Kramers model to problems in molecu-
lar physics the Markovian assumption inherent in Eqs.
(1.1) and (1.2) is a serious drawback. In many situations
an internal time scale characterizing the system of interest
is shorter than that of the surrounding thermal bath. In
this case Eqs. (1.1) and (1.2) should be replaced by their
non-Markovian analogs.

~ ~X=—1 dV(x) ' 1

M dx
—J drZ(t —r)x(r)+ R(t),

M

(1.7)

This expression yields (1.4a) for y scott while for y~0 it
goes to the transition state theory (TST) rate

coo —Eg
TTsT = exp

2m'

aP 1 dv(x) aP
Bt I dx BU

gp kgT g2p ()—v +y , + (vP)
Bx M Bv~ Bv

(R(t )Rt(t )2) =Z(tt t2)Mktt T, (—R(t) ) =0. (1.8)

The objective is to find the steady-state escape rate r out
of the potential well (Fig. 1). Kramers' has obtained dif-
ferent limiting results for this rate:

cogd)g —Eg
exp

2my kg T
(1.4a)

exp as y —+0 (1.4b)

where coo and catt are the frequencies associated with the
second derivative of the potential at the bottom of the well
and at the barrier top, respectively, and where Ez is the
well depth. Equation (1.4b) is valid only for a truncated
harmonic potential. Note that E~ &&k~T is necessary for
the steady-state escape rate to be experimentally meaning-
ful. Kramers has also derived an expression which is sup-
posedly appropriate for "intermediate" values of y

Xi

FIG. 1. A schematic representation of the potential well. x~
and E~ denote the position and energy associated with the
matching point discussed in Sec. II.
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with

Zo(co)= f dtZ(t)=y .

In addition, Z(t) is associated with the correlation time ~,
which characterizes the time scale for its decay to zero.
For specificity we shall often refer to the simple case

(1.10)

Z(t) = exp

The memory function Z ( t) is characterized by its
Fourier-Laplace components

Z„(co)= f dt Z(t)e (1.9)

—cori +A Z i ( —i A ) =0 . (1.20)

Equations (1.13) and (1.20) give the result in the form ob-
tained originally by Grote and Hynes.

Carmeli and Nitzan, and Grote and Hynes, have cal-
culated the steady-state escape rate associated with the
model of Eqs. (1.7) and (1.8) and Fig. 1 for the case in
which the rate determining process is the energy accurnu-
lation in the well. In this case which corresponds to the
y~O limit, the steady-state escape rate may be identified
with the inverse mean first passage time to reach the es-

cape energy. This limit is characterized by the reduced
Fokker-Planck equation for the probability distribution
P(J, t) for the action variable J

Z„(co)= (1.12)1+lg Q)vc

Several workers have recently treated different aspects
of the escape problem represented by Eqs. (1.7) and (1.8).
Grote and Hynes, and later Hanggi and Mojtabai have
treated the non-Markovian behavior associated with the
barrier dynamics. This case corresponds to the limit
where the escape process at the top of the potential barrier
is considered to be the rate determining step, while the
particles in the well are taken to be in an equilibrium
Boltzmann distribution. This yields the result (1.5} in the
Markovian limit. In the non-Markovian case the escape
rate is obtained in the form

dP c}
«(J) king T +co(J)P

"dP

t c}J
(1.21)

with «(J) given by

«(J)=2M g n
~
x„(J)

~

Re I Z„[co(J)]], (1.22)

x =x (J,y) = g x„(J}e'"~ (1.23)

where x„are the coefficients of the Fourier expansion of
the deterministic motion [determined by Eq. (1.7) without
the Z and R terms]

where

Ap = 11m
y() ()

y(t) = ——lnC (t),
dt

~octor = exp
2''6)g kg T

y(t)
2

(1.13)

(1.14)

(1.15)

(y is the angle variable). Equation (1.21) implies the fol-
lowing expression for the mean first passage time w(J, JO)
to reach a point J on the action axis starting from a point
Jo and given that there is a reflecting barrier at J=O (the
bottom of the potential well):

E(,J')/k~ T

r(J,JO) = f dJ', f dJ"e
k~ T Jo

(1.24)

co g(t) = —&(t) /+'(t),

4(t)=p(t) 1+cog f dv. p(r)
I

cosp (t), —

0(t)=cos [p(t)p(t) p'(t) ], —
and where the function p(t} is defined from

(1.17)

(1.18)

1

s —cog+SZi( is)—2 2
(1.19)

with W ' being the inverse Laplace transform. Note that
by Eq. (1.9)

Zi( is)= f dte—"Z(t)
0

is the Laplace transform of Z (t). In the Markovian limit

S —Q)g +Sf2 2

which may be used to show that y(t) =y and co ~(t) =cos
in this limit. It may also be shown (see Appendix A) that
Ao Eq. (1.14), is the largest (real and positive) root of the
equation

The escape rate is obtained using

J~ J P„J JJ (1.25)

where P»(JO) is the steady-state distribution. From deep
wells the latter may be approximated by a Boltzmann dis-
tribution. In the Markovian limit (1.25) may be shown to
reduce to the Kramers result (1.4b) for the low-friction
limit.

Kramers' treatment of the escape problem, as well as
generalizations of the Kramers theory like those described
above, have considered separately cases governed by either
well or barrier processes. Several works have tried to pro-
vide a unified theory. Skinner and Wolynes have sug-
gested an interpolation formula using Pade approximants
based on expansion in powers of the friction. Visscher "
has investigated the Kramers model numerically and has
suggested an analytical form that fits his results in the
whole friction range. A similar approach was taken by
Larson and Kostin. ' ' Risken Vollmer and Denk have
outlined an approach based on evaluating the eigenvalues
of the Kramers equation. This approach is, however, dif-
ficult to implement. Matkowsky, Schuss, and Ben-Jacob'
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have suggested a form for the transition rate associated
with a double potential well problem. Even though their
form goes to the proper limits (-y for y~O, —1/y for
y~ ao ), the origin of the y —+0 behavior in their model is
different from the one discussed here (and in the original
Kramers' work). Buttiker et a/. " have described a pro-
cedure which connects between the results (1.4b) and (1.6).
All these works involve the Markovian approximation.

Recently' we have described a procedure which, in the
Markovian limit, yields a unified expression for the
steady-state escape rate and which for deep wells is valid
in the entire friction range. In the present paper we ex-
tend our work to the non-Markovian situation, thus deriv-
ing a unified expression for the escape rate associated with
Eqs. (1.7) and (1.8) which is valid for all frictions and
which reduces to the previously obtained results of Grote
and Hynes and of Hanggi and Mojtabai in the high
viscosity hmit, and to the results of Carmeli and Nitzan
and of Grote and Hynes in the low viscosity limit.

In Sec. II we derived the unified result for the steady-
state rate in the Markovian limit and provide some details
of the procedure that are missing in the preliminary short
publication. ' The theory is extended in Sec. III to the
non-Markovian case. Numerical results and discussion
are given in Sec. IV.

(2.6)

provided that I satisfies the equation

I —cog+I y=0 .

A general solution of Eq. (2.5) is

(2.7)

Q o,MzF(u) =Fi+F2 dz exp
0 8

(2.8)

2 1/2

(2.9)

is relevant. Then the requirement P~(x, v)~0 for x~ m

implies

00 o.Mz
F1———E2 dz exp

0 2k' T

' 1/2
~kg T
2uM

E

where E1 and F2 are constants to be determined. We look
for a solution which vanishes for x~ 00. For this to hap-
pen the integral in (2.8) should remain finite for

~

u
~

~Do. This implies that a&0, nainely, of the two
roots of (2.7) only

II. STEADY-STATE RATE
IN THE MARKOVIAN LIMIT

V(x) =EIi ——,Mcoiix (2.1)

and looks for a steady-state solution P~(x, v) (8 denotes
the barrier) to Eq. (1.3) of the form

Starting from Eq. (1.3) in the steady state (dP/dt=O)
we first divide our discussion into barrier and well dynam-
ics and, after obtaining results for the steady-state proba-
bility distributions and for the fluxes appropriate to the
two dynamical regimes, we join the solutions in a way that
satisfies essential continuity requirements.

Consider barrier dynamics first. In this case we follow
exactly Kramers' procedure. ' The essential points in this
procedure are as follows. Kramers approximates the po-
tential near the barrier top (x =0) by a parabula

(2.10)

Pii(x, v) =Fz

' 1/2
m.kg T
2aM

u —/I Jx aMz+ dz exp
0 2k' T

MU /2+ V(x)
(2 1 1)

AT
The current associated with this distribution is calculated
using

jii = f du UPit(x, v) (2.12)

which may be evaluated [using Eqs. (2.1} and (2.11)j to
give

Pii(x, u) =exp
Mu /2+ V(x)

kgT
F(x,v) . (2.2) 3/2

8
ia =E2 (2.13)

Using Eqs. (1.3), (2.1},and (2.2), the "correction function"
F is shown to satisfy the equation

kaT BE BE BE 2 BE
yv —U Q)gx 0 . (2.3)

Kramers looks for a solution of the form F(x,v)=F(u)
with

AT d2E
2 +au — =0

dg du
(2.5)

(2.4)

and finds that such a function F(u) should satisfy the
equation

Pgr(x, u) =Pg(x~ —ao, u)
1/2

2+kg T
aM

Mu /2+ V(x)
exp

AT
(2.14)

This result is independent of the position x as expected of
a steady-state current.

Before proceeding to consider the steady-state distribu-
tion in the well, P@,we notice that Kramers' derivation of
Eq. (1.5) is based on Eq. (2.13) where Fz is determined
from the requirement that the Pii is an equilibrium
Boltzmann distribution obtained from (2.11) for x —+ —ao.
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For a deep well the total number X of particles in the well
is approximated by Kramers as

X = f dv f dx P~(x, v) (2.15)

which, taking V(x) =Mcopx /2 in (2.14), results in
3/2

F2 2~k' TX= (2.16)
co() o; M

Equation (1.5) results from taking r =jj)/N, using Eqs.
(2.6), (2.9), (2.13), and (2.16).

The inconsistency in Kramers' derivation which leads
to the fact that Eq. (1.5) does not go over to (1.4b) as
y~O, is seen in that the current associated with the distri-
bution (2.14) is zero, while in steady state the current
should be the same everywhere [and therefore given by jjj
of Eq. (2.13)]. For y large enough Eq. (2.14) is neverthe-
less a good approximation for the well distribution which,
for a deep enough well yields a good approximation for
the total number of particles X, Eq. (2.16). For small fric-
tion the escape of particles over the barrier causes a distor-
tion in the distribution even deep down in the well:
Thermal relaxation due to the coupling with the thermal
bath cannot "keep up" with this escape which depletes the
well of the more energetic particles. In the extreme limit
this thermal relaxation (i.e., energy accumulation in the
well) becomes the rate determining step.

To take proper care of these effects we depart from
Kramers' procedure by replacing Eq. (2.14) by a steady-
state distribution in the well corresponding to the ap-
propriate current. Our approach is based on the following
observations:

(a) For most problems in molecular dynamics one may
safely assume that deep in the well the oscillations are fast
relative to other relevant time scales (e.g., y, and for non-

Markovian cases Z„(co) and r, ). This implies' that deep
in the well Eq. (1.3) may be reduced to a Smoluchowski
equation in the action J [the Markovian equivalent of
(1.21)]

steady-state concept is valid, this source should not
change any physical observable.

We thus use Eq. (2.17) and, in addition, assume that a
source exists at the bottom of the well such that the distri-
bution P~(J) at 0&J & Jp is fixed and given by a Boltz-
man form'

—E(J)ra~ r
Pw(J) =Ape, 0&J& Jp . (2.19)

d yJ —F(J)/kg~ dI
dJ co(J) dJ

(2.21)

whose general solution, which corresponds to (2.19), is

F(J)=Ap AdJ—', e
Jo yJ

(2.22)

We anticipate the following steps by introducing a point
J=J) )Jp (corresponding to E =E, ) and redefining

Ap ( co(J) E(j)/k&T""'yJ
so that [using (2.20), (2.22), and (2.23)]

(2.23)

E(j)/kj)T — ),co(J ) E(j')/k~T
~

"'
yJ

(2.24)

The steady-state current in J space is obtained from (2.24)
using

yJ dPpj~= — kj) T +co(J)Pg
co(J) dJ

(2.25)

This imposes a boundary condition on Eq. (2.17). For the
result to be meaningful the final rate should not depend
on the choice of Jp and Ap. We look for a steady-state
(aP~/at=0) solution in the form

P~(J) =F(J)e (2.20)

and [using dE(J)/dJ =co(J)] obtain for F(J)

J ~PM
=y k~T +co(J)P~, (2.17)

dt c)J co J c)J
which yields

g~=xk~r . (2.26)
where the action distribution function P~(J, t) is related to
Pgr(x, u, t) by

Pg (x,u, t)= Pg (J,t) .M
2' (2.18)

Equation (2.18) expresses the fact that because of the fast
oscillations deep in the well the distribution is uniform
[(2') '] in the phase. The mass M is the Jacobian of the
(x,u) ~(J,y) transformation. '

(b) A steady state in the strict sense cannot exist in
Kramer's model because the number of particles in the
well decreases as particles escape. The rates (1.4)—(1.6)
actually correspond to the quasi-steady-state situation
which exists if the well is deep enough so that the escape
is slow relative to the other time scales in the system. As
a mathematical convenience it is possible to convert this
into a real steady-state situation by providing a source at
or near the bottom of the well. As long as the quasi-

E( ——V(x) ) =Ej)—
~ Mcoj)x ( (2.28)

The "transition point" (x),E) ) is to be determined togeth-
er with the parameters F2, A, and 8 of Eqs. (2.11) and

We now turn to the task of piecing together the two dis-
tributions PB [Eq. (2.11)] and P~ [Eq. (2.24)]. We assume
that there exists a region in phase space (x, u) in which
both results are valid. Since Pz is valid for x large enough
while Pz is valid for J (or E) small enough, we may as-
sume that there is a point in this region with U=O. We
thus carry our adjoining procedure at the point x &, U

&

——0
(Fig. 1) and denote the corresponding action and energy
by J( and E) [thus identifying the previously arbitrary
point J( in (2.23)]. These are related to each other by

Jl
E) ——f dJ co(J) (2.27)

and
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(2.24) from the continuity requirements. These are taken
to be

~0 & dES= 8
kg T o co(E)

Ja=Jw ~

M
Pg (Ji) =Ps(xi, u =0),2'

(2.29)

(2.30)
&& q(E, E—)+rI(E E—, )

1+R
2

(2.37)
a

Pz(x, v =0) Mco(Ei )
Pg (E)2'

(2.31)

with

R =erf([(a+1)(E& E&)—/k&T]' ) (2.38)

1/2

F =AM3/2 a+1 EB JkBT

2+kg T
(2.32)

8 =fr(1+erfI [(a+1)(Eg E[ )/kgT]'—) )
'

]./2
cx+ 1 E~/k~ T

X (2.33)

and Eq. (2.31) leads to

E —E
exp —a

8

1/2
kg T Eg —E]

a
yJ, (a+1)v ~

(2.34)

Equation (2.34) may be used to determine the transition
point energy E, . It is easy to show [using the fact that J&
monotonously increases while (Ez E& )'~ monoto—nically
decreases with E~] that Eq. (2.34) must have a single real
and positive solution E&. With E& known, Eqs. (2.32) and
(2.33) determine the parameters F2 and 8, leaving A to be
determined from the normalization condition. The pro-
cedure and the approximations used to carry out this nor-
malization are described in Appendix B. There we show
that the number N defined by

Equation (2.29) expresses the fact that in steady state
the number of particles crossing per unit time the line
E =E, (Fig. 1) in the upward direction (increasing energy)
should be the same as the number of particles crossing per
unit time the line x =x& (Fig. 1) in the outward direction
(increasing x). This, in fact, is true for any horizontal and
perpendicular lines in Fig. l. Equations (2.30) and (2.31)
are conditions on the continuity of the distribution at the
point (x~,E~), taken along the v=O direction which, as
noted above, is the most likely direction for overlapping of
P~ and P@. The factors M and Mco(E) appearing in
(2.30) and (2.31) are the Jacobians of the (x,v)~(J,y) and
(x,u) ~(E,p) transformations, respectively.

Using Eqs. (2.11), (2.13), (2.24), and (2.26), Eqs. (2.29)
and (2.30) yield

and with rI(E) being the step function (1 for E& 0 and 0
for E& 0). In Eq. (2.38) erf denotes the error function, rz
is the Kramers rate given by r of Eq. (1.5), and

1 & co(J) &(,J)ik& T

J

is the mean first passage time to reach J, [in a process
governed by Eq. (2.17)] starting from Jp (J] & Jp )0)
given a reflecting barrier at J=O. r is the Markovian
equivalent of the result (1.24).

The steady-state escape rate is now obtained as the nor-
malized net current, r =j /N. Using Eq. (2.26) we obtain

r =[r(J),Jp)+&rx '] (2.40)

I.O

which is our final result for the escape rate in the Marko-
vian case. To investigate its behavior as a function of the
friction y we refer to Fig. 2 which shows the typical
behavior of E~ as a function of y. For large y, E&~0
and r(J~+p)~0. At the same time R~l and [using

E
Eg )& AT, f dEco '(E)exp( E/k&T) ——k&T/cop]
S~1 and we get r~r~. For small y, E&~E~ so that
r +[r(J~—+p) + (2') '] '. However, for a deep well
r( Jggp ) dominates so that r ~r( JI3 yap ) ~ For the model
V(x) = —,Mcop(x —xp ), x & 0 and V(x) =0, x & 0 (truncat-

N= f dx f duP(x, u) (2.35)

with P(x, u) given by Eqs. (2.11) or (2.18) and (2.24) in the
appropriate regimes is well approximated by

—I

) p g ( g/QJ 0 )
lQ

N =deka T[&(Ji Jp)+Sr~ '],
where

(2.36) FIG. 2. Ej/E~ vs log&p{y/~p) calculated from Eq. (4.7) in
the Markovian limit {cop'T =0) and in the non-Markovian case
{cop~,——10). Solid lines: E~——10k&T. Dashed lines: E& ——4k&T.
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ed harmonic potential), it is easy to show' that r(J~,Jp)
reduces to the result (1.4b) independent of Jp. [For
Ep E——(Jp) «E~.] Our result (2.40) thus reduces properly
to the Kramers results in the appropriate limits. We defer
more discussion of this result to Sec. V and turn now to
consider the non-Markovian case.

2

+~ B

1/2

(3.8)

and

the largest root of Eq. (1.20). In what follows we shall use
the relations

III. STEADY-STATE RATE
IN THE NON-MARKOVIAN CASE

2

r=—
Ar0

2

+ CO B

1/2 2
COB

—2
CO B

P(x, u, t)=F(x, u, t)exp
Mu /2+ V(x)

B
(3.2)

[with V(x) given by (2.1)] and seek for F the form

F(x,v, t)=F(u, t), u =v+1 x .

Inserting (3.3) and (3.2) in (3.1) we get

(3.3)

(jF kg T QzF(X+r), +X u-
Bt M BQ

COB BF
2 x, (3.4)

Bu

where

For the non-Markovian case described by Eqs. (1.7) and
(1.8) we again consider first separately the barrier and the
well dynamics and after that join the solutions in a way
similar to that described in the Markovian case. For the
barrier dynamics we follow the formulation of Hanggi
and Majtabai which is based on the generalized Fokker-
Planck equation obtained by Adelman' for Eqs. (1.7) and
(1.8) with a parabolic potential. Using Eq. (2.1) this equa-
tion takes the form

aP a ~ a'P
dt Bu Bx Bu M

kBT COB g2P
+ (3.1)

Bx Bu

where y =y(t) and co+ ——io~(t) are the functions of time
defined by Eqs. (1.15)—(1.19). In looking for a steady-
state solution to Eq. (3.1) Hanggi and Mojtabai consider
the long-time limit of the functions to& and y. However,
it may be shown that these functions, though bounded, do
not always have a long-time limit. We are therefore
forced to proceed more cautiously using the observation
[Ref. 4(b) and Appendix A] that the limit defined by Eq.
(1.14) does exist. We again look for a solution of the form

with

QF+au =0
M au' au

(3.10)

2
COBa=

I —COB

(3.11)

These results are identical in form to the expressions ob-
tained in the Markovian limit [Eqs. (2.5) and (2.6)] [note
that Eqs. (2.6) and (2.7) imply a=co&/(I —co&)). In this
limit ioz ~coz, y~y, and I of Eq. (3.9) becomes indeed
identical to its Markovian equivalent [Eq. (2.9)]. We note,
however, that in the general non-Markovian case we can-
not ascertain that a & 0 [thus making the solution of (3.10)
physically relevant] or that this is the only relevant solu-
tion. (See Appendix C.) We proceed with the assumption
that this is indeed so.

Since Eqs. (3.10) and (3.11) are identical to their Marko-
vian counterparts, the calculation of Pz and of jz
proceeds as before, yielding

1/2
mkB T

P~(x, v) =F,
2Ma

aMz2
+ I dz exp

0 B

Xexp — u + V(x) /kttT
M
2

(3.9)

with the understanding that the long-time limit has been
taken.

Equations (3.5)—(3.9) imply that Eq. (3.4) admits a
long-time steady-state solution which satisfies the equa-
tion

to g(t)
X(t) = —y(t)+ I

COB

We further require [as our choice for I in (3.3)] that

2
COB

lim A.(t)=—

(3.5)

(3.6)

and

(3.12)

- 1/2

exp( Eg/kgT) (3.13)—

lim X(t) =A,p,f~ co
(3.7)

where A,p [defined in (1.14)] is identified (Appendix A) as

To prove that this requirement is possible we have to
show that this limit exists. This is done in Appendix C
where we further show that

with I and a given by Eqs. (3.9) and (3.11).
Turning now to the well dynamics we again assume

that deep in the well the frequency is high enough so that
in the action-angle representation the angle distribution is
uniform and that the Smoluchowski equation for Pz (J,t)
is valid. Instead of Eq. (2.17) we now have to use Eq.
(1.21) which differs from its Markovian counterpart in
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that the function yJ/co(J) is replaced by e(J) defined by
Eq. (1.22). P~ satisfies Eq. (2.18) and, adopting the same
source trick as in Sec. II, we take it also to satisfy the
boundary condition (2.19). With the change
yJ/co(J)~e(J) the calculation proceeds as in Sec. II and
we get

E(J)—/k~T t' i, 1 E(J')jk~T
e(J')

[TNM(J( JO)+S.» NM] (3.22)

IV. RESULTS AND DISCUSSION

Our final result is represented by the remarkably simple
expression for the escape rate

This, with r» NM and rNM given by Eqs. (1.13), (1.14), and
(1.24), respectively, is our final result for the escape rate in
the non-Markovian case.

and using

(J )J0) (3.14) r =[T(J(,J0)+Srk ']

where

(4.1)

dPp (J)
jP ———e(J) kE T +a)(J)PP (J)

dJ

Eq. (3.14) leads to

(3.15)

(3.16)

f dJ exp
1 ( co(J) E (J)

kg T Jo yJ k~T

X f dJ'exp
&(J')

0 k~T
Equations (3.14)—(3.16) are the non-Markovian counter-
parts of Eqs. (2.24)—(2.26).

To determine the constants F2, A, and 8 and the transi-
tion point [x =x&, U=O, E =E(, J=J( with E( and J(
satisfying Eqs. (2.27) and (2.28)] we again use the con-
tinuity requirements (2.29)—(2.31) and the normalization
condition. Equations (2.29) and (2.30) now yield the ana-
logs (a replaces a) of Eqs. (2.32) and (2.33)

1/2
3/2 &+ l E~/k~T

2~kg T
(3.17)

' 1/2

B =m(1+erfI [(a+ 1 )(E& E, )/k&T]'—j )
cz

E~/kB T
Xe (3.18)

while Eq. (2.31) leads to the analog of (2.34) [which may
also be obtained directly from (2.34) by replacing yJ/co(J)
by e(J)]

(Markovian)
(» 0

&( f dJ'exp
E(J')

0 k~T

(non-Markovian)

2

+COg
2

1/2

2
(Markovian)

Xo—
lim

'2
y(t)

+CO g

1/2
y(t)

2

(non-Markovian)

ohio
r» —— exp( EE IkE T)—,

27Th)g

(4.2a)

(4.2b)

(4.3)

(4.4a)

(4.4b)

Eg —E1
exp —cz

AT
kgT

e(Ji )co(J( )(a+ 1)Mn.
' 1/2E —E,

kgT
(3.19)

0 ~ dE ES = exp
kE T o co(E) kE T g(E( E)—

2

+ Ti(E E()—
For the normalization factor N [Eq. (2.35)] we now get

(see Appendix B)

N =AkE T[TNM(J( Jo)+Sr»NM], (3.20)

Jwr= (3.21)

leading to the analog of Eq. (2.40)

where S is given by Eqs. (2.37) and (2.8) with a replaced
by a, rz z~ is the non-Markovian analog of the framers
rate, Eqs. (1.13) and (1.14), and TNM(J(, J0), the non-
Markovian analog of the T appearing in (2.39), is given by
Eq. (2.24).

The steady-state escape rate is obtained from

(4.5)

erf j [(a+ 1)(EE E( ) IkE T]'~ j-
( Markovian)

erf I [(a+ 1 )(EE Ei )IkET]'—
(non-Markovian) .

(4.6a)

(4.6b)

The functions y(t) and co E(t) and the parameters o. and a
were defined in previous sections [Eqs. (1.15)—(1.19)
(2.6)—(2.7), and (3.8)—(3.11)]. A0 is most easily deter-
mined as the largest positive root of Eq. (1.20) (note that
A,0 is identical to the "reactive frequency" A,, of Grote and
Hynes ). It should be noted that using the equivalent
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Eg —Eg
exp —a

B

(Markovian) (4.7a)

variables J (action) or E (energy) in the integrals of Eqs.
(4.2) and (4.5) is done merely for convenience of presenta-
tion, and that to(E) denotes the frequency at energy E
which is equal to co(J) for J=J(E).

The "transition energy" E] and the corresponding ac-
tion J& are obtained as solutions to the equations

1/2
kg T Eg —E]

yJ, (a+1)v ~

—f dJ'exp1 ~, E—(J')
J o g T

E
k~T

by its J=Jz value and evaluating it approximately as

1 ~, E(J) 1dJ'exp — = f dE exp
J~ p kg T scop

exp —a
kgT

kgT

e(Ji)co(Ji)(a+1)v m.

1/P
Eg —E)

kgT

we get

1 B kg T E~/kr(Ja, Jo}= dEexp = e '
pscop 0 kg T pJgcop

(4.11)

(non-Markovian) . (4.7b)

Finally the function e(J) is given by

Comparing this to (4.9) we see that for y~O, r makes the
dominant contribution to Eq. (4.1) and the rate is given by

r

e(J)=2M y n ~X„(J)
~

Re[Z„[cu(J)]I
n=1

(4.8a)
tuoJa

r ~r '(Jtt, Jo )=y exp
kgT kqT

(4.12)

and may be shown (Appendix D) to be identical to

e(J)= 2 f dt Z(t)(u(0)u(t) ),
co (J)

(4.8b)

This is a generalization of Eq. (1.4b) (cooJ~ Ett for ——the
truncated harmonic-oscillator model).

In the high viscosity limit (y~ no ) E&~0, R~1, Eq.
(4.5) becomes

Srx '~ exp(Eg/k~ T)
COp

while Eq. (4.2) leads to r(J„Jo)~r(Jtt Jo),

1 & co(J) E(J)
r(Ja,Jo)=„,dJ exp

(4 9)

X f dJ'exp E (J')
k~T

(4.10)

which may be evaluated approximately' by noticing that
(for deep wells, Ett »ka T) the largest contribution to the
integral comes from the neighborhood of J=Jz. Replac-
ing

where the correlation function (u(0)u(t)) corresponds to
the isolated system (no coupling to the heath bath) and

( . ) denotes averaging over the initial phases.
The result (4.1) has the expected form of an overall rate

associated with two consecutive rate processes. r(J&,Jo) is
the mean first passage time to reach the point j& starting
from the source point Jo in the well, while rx: is the time
associated with the transition over the barrier. The transi-
tion point between the two regimes is the solution E

&
(or

J~ ) of Eq. (4.7). This is a function of the systems parame-
ters. In particular, it varies between Ez and zero as the
friction y (or the magnitude of the function e) increase
from zero to ao (see Fig. 2).

The following points regarding these results should be
noticed:

(a) The result (4.1) yields all the previously derived Kra-
mers limits. To see this consider first the Markovian case.
In the low viscosity limit (y~O) E&~Et'. Equations
(4.3)—(4.5) yield'

S = f dE exp( E/ktt T)—=1,
kttT o cu E

z becomes small and negligible relative to r& ', and we re-
cover the familiar Kramers expression r =rx with rx
given by Eq. (4.3).

In the non-Markovian case the situation is very much
the same. In the low friction limit the rate again ap-
proaches r '(J&,Jo) now given by Eq. (1.24).' For very
deep wells this may be shown ' to yield again Eq. (4.12),
where the non-Markovian effects disappear. For wells
which are not too deep the full expression (1.24) for r has
to be used and non-Markovian effects may be appreci-
able. ' In the high friction limit similar arguments as
above lead to r =rz, now giv. en by Eqs. (4.3) and (4.4b).

(b) The result, at least for low friction, appears to for-
mally depend on the source point Jp that was chosen arbi-
trarily with the condition Eo =E(Jo) ((Eg. In fact, there
is no dependence on Jp for those cases where the steady-
state rate is physically meaningful (i.e., where the escape
time scale is much longer than the time scale for thermal
relaxation in the well). In this case if r(J~,Jo) ln Eq. (4.1)
is not negligible [i.e., if E& E(J& ) »k&T] th——en it is also
much larger than the thermal relaxation time. It is there-
fore independent of the starting point Jp because starting
from any point on the Jp surface a trajectory will first
thermally relax [on a time scale short relative to r( J&,Jo )].

We have checked this point numerically for the poten-
tial of Fig. 1 for the Markovian case and also for the
non-Markovian model, Eqs. (1.10)—(1.12), for several
values of y and r, . This was done by calculating r(J&,Jo)
for fixed J& and different values of Jo in the range
0, . . . , —,

' J&. For E& ——E(J&)=4k+T the variation in

r( J~ Po) is about 5%%uo in this range while for E& ——10k& T
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my Jg 1. (4.13)

In the truncated harmonic-oscillator model (copJs E~——)
this yields

the variation is -O. l%%uo.

(c) Comparing Eqs. (4.9) and (4.11) we may get a simple
condition for the validity of the low friction result (4.12)

laxed particles from the far wall of the product well. This
effect has been investigated numerically by Montgomery,
Chandler, and Berne and will be discussed within the
present formalism in a separate publication. '

(f) A simple approximation to (4.1) may be tried. In
this approximation we replace r(J~,Jp) by the Kramers
approximation

k~T
r(J~,Jp )= exp(E & /ks T) (Markovian) (4.15a)

yJ&cop

yEa «k&T .
COp

(4.14)
noting that the same kind of approximation also leads to

Noting that Es 2(E~——s ), where (Ezz ) is the average ki-
netic energy at the barrier, and that y(E~ ) is the rate of
energy loss due to thermal relaxation, Eq. (4.14) states that
the amount of energy damped during one period of oscil-
lation should be much less than k&T. For the Morse os-
cillator yJz (y/cop——)/(E~/2) (where cop is the well bottom
frequency) and the interpretation of (4.13) is not as simple.
However, quite generally, it is seen that the behavior is
determined by the dimensionless parameter y&J/k&T so
that departure from the low friction limit occurs on in-

JB
creasing either y or Ez ( = dJ co(J)). This conclusion

p
is valid also when Eq. (4.12) cannot be used and the more
rigorous expression (4.10) (or its non-Markovian analog) is
needed.

(d) The transition rate theory (TST) rate is obtained as
the zero friction limit for rx. , Eq. (4.3). Equation (4.1) and
the above discussion imply that the rate r approaches zero
for both y ~0 and y ~ oo and thus goes through a max-
imum for some intermediate y. Denoting this maximum
by r,„, it is easy to see that r,„(rrsr (see also Figs. 4
and 5 below). This follows from the fact that rz, Eq. (4.3)
is a decreasing function of y while S approaches 1 (as
R —+ I when Es E~ becomes large —relative to ks T) faster
than rx attains its maximum value ( =rrsr) r,„wi11 .be
larger (hence closer to rrsr) for larger Es. The reason for
this is that for larger Ez the range of validity of the ap-
proximation which neglects r relative to Srx in Eq. (4.1)
extends to lower values of y and that, for large Es, S—+ I
(Ref. 18) and rx becomes equal to rrsr [Eq. (1.6)]. Thus,
the transition state theory result is obtained from Eq. (4.1)
by taking first the large Es limit, then the small y limit,
while the result (4.12) is approached as y —+0 for fixed Es.
As seen in the computations described below, for large
ranges of parameters r,„and, of course, the actual rate r
are appreciably smaller than rzsz in agreement with obser-
vation made in many previous works. '

(e) The dependence of the rate r on the friction (y or
generally Z), namely, the linear dependence on y and on
y

' for y~O and for y~ao, respectively, is related to
the presence of the two consecutive processes. The rate of
energy accumulation in the well is proportional to y
which measures the strength of coupling of the system to
the surrounding thermal bath. For low friction this be-
comes the rate determining step. For high friction the
barrier crossing becomes the rate determining step and it
becomes inversely proportional to the friction.

For a double well appropriate for modeling isomeriza-
tion processes there is another mechanism that makes the
rate linear in y for small y—the back scattering of unre-

E[/kBT ~~& EB/kBT1 B + e B B

e(Ji )co(Ji )cop Apcop
(4.16)

where A,p is given by (4.4) and where the factor e(J& )co(J ~ )

goes to yJ& in the Markovian limit. Comparing results
based on (4.16) to those obtained using Eq. (4.1) we have
seen that Eq. (4.16) provides a reasonable approximation
(error less than 20%%uo) in the Markovian limit; however, it
seems to fail in non-Markovian cases.

To further investigate the dependence of the steady-
state rate on the parameters characterizing the system we
have carried numerical computations of Eq. (4.1). This
involves numerical integrations of Eq. (4.2) and of Eqs.
(4.5) and (4.6) and a numerical solution (by iteration) of
Eq. (4.7) to find E, . All these are simple numerical pro-
cedures. In the non-Markovian case we also have to ob-
tain A,p [by solving Eq. (1.20)] and e(J). The procedure
used for the latter is described in Appendix D.

The potential used for these calculations is

2
x XV(x) =D exp ———exp
a b

(4.17)

for which we have taken a /b =20. This implies
Es —0.658D and cop/cog: 5.236. This potential is shown
in Fig. 1. In Fig. 2 we show the results for E& as a func-
tion of the friction y obtained from Eqs. (4.7) for the
Markovian case, cop7 =0, and for the non-Markovian
model, Eqs. (1.10)—(1.12) with cops; = 10. As seen in Fig.
2, E, is close to E~ for low friction and is decreased
abruptly to zero in the range y -0.1. . . 1.0cop.

Non-Markovian effects enter into our results in the bar-
rier functions, Eq. (1.14)—(1.20), and in the well function
e(J), Eqs. (1.22) and (D5). The former were investigated
by Grote and Hynes. Figure 3 depicts the behavior of the
function e(J)co(J)/yJ (which is unity in the Markovian
limit) calculated for the potential of Fig. 1 and the model
(1.10)—(1.12). We see that the deviation of this function
from its Markovian limit are large through almost all the
energy range. It should be noted, however, that for cases
where the escape is dominated by the dynamics very close

kgT
r(J),Jp)= exp(E, /ksT) (non-Markovian) .

e(Ji)co(Ji)cop

(4.15b)

We also replace S by 1, noting that it takes this value if y
is large enough for the Srx ' term to dominate Eq. (4.1).
With these approximations we get

1
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FIG. 3, q(J)~{J)/yg vs I/g&. Solid line: ~p&, =0. Dashe
line: cop~, ——2. Dotted-dashed line: mpw, =4. Dotted line:
cop7~ = 10.

0.0 ''

log)0(y/u)o)

FIG. S. Same as for Fig. 4 with E~ ——10k~ &.

to the barrier top (very deep wells and friction not too
small} this will not affect the escape rate (but will have
strong effects on the rate of energy relaxation in the well).

Figures 4 and 5 display the behavior of the escape rate,
Eq. (4.1) as a function of the friction for the potential
(4.17) with barrier energies 4k& T and 10k&T and for dif-
ferent values of the correlation time r, . These results
display the features discussed above. We have also com-
pared some of our results in Fig. 4 to numerical simula-
tions using stochastic classical trajectories based on Eqs.
(1.7) and (1.8). Excellent agreement with the analytical re-
sults is obtained. Similar agreement in the non-
Markovian low viscosity case has been obtained previous-
ly 5

The numerical results obtained above (Figs. 4 and 5)
show that the range of weak dependence on the friction y

EB/kT=4

0.5

1

-l
I o g 0( y&~0 }

FIG. 4. Escape rate r as a function of friction y for a particle
moving in the potential (4.17) with a /b =20 (implying
Ez ——0.6580 and ct)p/ct)g =S.236) and with E~ ——4k~ T. Solid line:
cop~, ——0. Dashed line: cop~, ——2. Dotted-dashed line: cup~, ——4.
Dotted line: cop7 =10. Circles with error bars are results of nu-
merical simulations based on the Langevin equation (1.7).
Closed circles: cop~, ——0. Open circles: cup~, ——4.

may be as large as one decade of the friction. This ex-
plains the success of transition state theory which, with a
corrective "steric" factor can account for many condensed
phase reactions. As seen from the present result this
correction factor is not necessarily steric in origin. To go
from the friction scale used in this study to the experi-
mental viscosity scale is a rather ambiguous process which
involves some bold assumptions. If we adopt the sim-
plest hard-sphere relation y =naris/M, where n is an in-
teger depending on the (slip or stick) boundary condition
on the particle's surface and where q is the solvent's
viscosity, we obtain y —10' —10' sec ' for a range of
normal solvents at normal temperature. Typical values of
the parameters characterizing the potential surface are
o- 10' —10' sec ' and ma —10' —10' sec '. In addi-

tion to this, it should be kept in mind that the actual time
scale for thermal relaxation is determined not by y but by
Z(ro) [where co is the local frequency, i.e., co(J) in the well
and co& during the barrier crossing] which is less than y
and which, deep in the well, may be in fact orders of mag-
nitude smaller than y. Unfortunately, no reliable results
for Z(m) in liquids exist in the molecular frequency
range.

There have been in recent years a number of experimen-
tal works in which chemical reaction rates were stud-
ied as functions of pressure and solvent viscosity. Most
relevant to the present work are the results of Velsko,
Waldeck, and Fleming " on the isomerization rate of
3.3 diethyloxadicarbocyanine iodide which were interpret-
ed using non-Markovian barrier dynamics ' ' and the
results of Hasha, Eguchi, and Jonas which have demon-
strated for the conformational isomerization of cyclohex-
ane that the rate indeed goes through a maximum as a
function of the solvent viscosity, as implied by Eq. (4.1) or
the approximation (4.16). A fuller discussion of these re-
sults should, however, be made in terms of a double well
model. "

V. CGNCLUSIQN

In this paper we have derived a general expression for
the escape rate of a particle out of a potential well. Our
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result, Eq. (4.1), is valid for Markovian as well as for
non-Markovian dynamics and throughout all the friction
range. A simple approximation to (4.1), Eq. (4.16), has
been shown to be quite accurate for most applications.
These results should be useful as simple models for chemi-
cal reactions in condensed phases. The formalism used in
the present work is applicable also for more complicated
situations (double well, location dependent friction and
multimode dynamics). Work in these directions is
currently in progress.
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APPENDIX A

Here we show that A,o appearing in Eq. (1.14),
1/2

Mo —2
Note that the term involving t ' in the rhs of Eq. (AS)
appears only if Mo & 1.

We distinguish between three different cases: case 1—
Mp = 1 and A, i ——A,z, case 2—Mp ——1 and Rek, » Rei, z,
ImA, , =0; case 3—Mp & 1. For these three cases we evalu-
ate y(t) and co z(t) in the limit t~ a&.

A,p= liiii + '(t)CO g
y(t),

2
(Al) Case 1:

In this case M1 ——M2 and B3——B4 and we denote

is the largest (real and positive) root of [Eq. (1.20)]
A i=p+Ev . (A10)

—cori +A Z i ( —l 1 )=0 . (A2)

This result was previously obtained by Hanggi and is stat-
ed without proof in Eq. (4.20) of Ref. 4(b). The roots of
these equations are poles of p(A, ) [Eq. (1.19)]

p(&) = 1

A, —coii+AZi( i A)— ,

The same poles govern the motion of a particle moving
according to the equation of motion

x =toiix —I d~Z(t ~)x(~) . — (A4)
0

For this motion, on an inverted parabolic potential we ex-
pect the real part of some of the poles to be positive. The
imaginary part of the root with the largest positive real
part should vanish (otherwise the long-time inotion would
appear as oscillation between the two sides of the potential
barrier). Turning to the calculation of the right-hand side
(rhs) of Eq. (Al) we first assume that Eq. (A3) may be
written in the following form:

(A5)

where M„ is the multiplicity of the nth pole. The poles
are in a decreasing order of their real part:

using this in Eq. (A8) we get

p(t)~Bie +2e"'t ' Re(B3e'"')

and when we use Eq. (All) to evaluate Eqs. (1.17) and
(1.18) we find

(iLp+p)t M, —i BB(~o—~i)2

4(t) ~2to~B, e ' t ' Re — e'"'
0 1

6(t)~2totiBie t Re(Bi(gp gi) e

(A13)

Inserting the last results into Eqs. (1.15) and (1.16) we get

y(t) ~—[Ao+p —vD (t)],

a) g(t)~ —Ap[p vD(t)], —

where

B3(A,p —A, i)
Im e' '

Bi(kp —A, i)

X0) Rek, 1)Rei,2) (A6)

The function p(t) may be obtained by taking the inverse
Laplace transform of Eq. (A5)

Note that y(t) and cori(t) do not approach any limit since
D (t) oscillates.

We now use Eq. (A7) in Eqs. (1.15)—(1.18) where we
keep in the above expansion only leading terms at a long
enough time. The procedure described below indicates

Case 2:
In this case the leading terms of Eq. (AS) are

A of M& —1p(t)~B, e '+B,t ' e ' .

Using this for Eq. (1.17) and (1.18) we find

(A17)
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g B)B3(~p ~)) M) —) (ko+k))t
2

N(t) ~tot) t ' e
0 1

(A18)

(A19)

p ~ dJ E(J)/k~T
"~o e(J)

(84)

y(t)~ —(Ap+A, ) ),
t0 g (t)~—ApA )

(A2()) Pt)(x, v) =F2

(A21)

Inserting the last results into Eq. (1.15) and (1.16) we get I /2
m.kg T
2M+

v —
t
I ix nMz+ f dzexp

0 8

Case 3:
In this case only the first two terms of the rhs of Eq.

(AS) remain where

X exp[ E(x—, u)/ke Tj), (85)

p(t)~(B)t ' +B,t ' )e ' .

From Eqs. (1.17) and (1.18) we get
r

(A22)
MUE(x,v)= +V(x) .

2
(86)

COg Mo —2 RotC)(t)~ (M() —1)B)t ' e '
A0

(A23)
F2 and B are given in terms of A by Eqs. (3.17) and (3.18).
The required normalization factor will be calculated as a
sum of three terms

6(t) A,,'4 (t) . (A24) X =Xp +Ng+X' . (87)
By substituting Eqs. (A23) and (A24) into Eqs. (1.15) and
(1.16) we obtain

y(t) ~—2Ap,

to e(t)~ —Ap .—2 2

(A25)

(A26)

In all these cases [Eqs. (A14) and (A15) (A20) and
(A21), and (A25) and (A26)] we get

2
1

1/2
y(t)y(t)

2
(A27)+tv t) (t)

which is the desired result.

APPENDIX B

Here we calculate approximately the normalization fac-
tor

N= f dx f dvP(x, v) . (81)

M
Pw(J), J &J)

P(x, u) =
Pg(x, v), x )x)

where Pw(J) and Pz(x, u) are given by
—E(J)/k~ TA0e, J&J0

—E(J)/k~T p & dJ E(J)/k~T
e(J')

We use the expressions derived in Sec. III (non-Markovian
case) from which the Markovian counterparts may be
easily obtained by replacing a by a and e(J) by yJ/o)(J).
Thus,

Nw is the contribution from the J &J) region

Nw ——f dx f dvP(x, u)ri(E) —E(x,v)) (88)

Integrating the third term in this expression by parts it
can be shown to be equal to

dJ E(J)/AT J, E(J')jkoT-
~o e(J) ~o

Adding the second and third terms together we finally ob-
tain

[ol(E)=1 for E&0, ol(E)=0 for E&0]. Using Eq. (82)
this may also be written in the form (note that
dx dv ~1/MdJ dy)

J)
Nw f dJPw——(J) . (89)

Xz is the contribution from the barrier region
0 oo

Nz ——f dx f dv P~(x, v) . (810)

X' is the contribution from the region E & E1,x &x1

N'= f dx f duP(x, v)g(E(x, u) E, ) . (Bl—l)

This is the most problematic contribution since we do not
actually have an expression for P(x, v) in this region.

Evaluation of Nw. Inserting Eqs. (83) and (84) into
(89) we get

J)
Ng ——A8 dJ e

0

dJ E(J)/k~T & —E(J)/k~T
Jo e(J)

I & —E(J)/k~T /
& dJ E(J')/k~T

where

J0&J&J1
1 —E(J kB T

Nw AB f dJe —' +Ak~Tr,

where

(812)
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P{z)/k g 7TkB T
C(x)=E2e, +L (x)

M(a)'~

where

(814)

dJ E(J)(/ke T J, E—(J') Iks T7=
kET Jo e(J)

is the mean first passage time to reach J(, starting from
Jv (0 &Jo &J( ) given a reflecting barrier at J=0.

Evaluation of NE .First calculate the function
C(x)—:f du PE(x, u). Using Eqs. (85) and (86) it takes
the form

1/2
2+kB T

N'=F2
Ma

x v exp

for deep enough wells may be obtained using the observa-
tion that for low friction E, »kET [E(, the solution of
Eq. (3.19), is depicted in Fig. 2] and N' (as well as NE) is
negligible relative to Ns, while for large friction (where
E( is smaller and N may contribute significantly) the dis-
tribution in the x &x(, E &E( region (as well as in the
E &E( region) may be taken as the Boltzman distribution
from PE(x, u) for x —+ —oo [Eq. (2.14) with a replaced by
a]. This leads to

00 MvL(x)= f dvexp
00 B

aMz
X f dz exp

0 B
(815)

X Tt(E(x, u) E() .—

(821)

Using now Eqs. (87), (812), (819), (820), (821), and
(3.18) we obtain

= —
~

I
~ f dvexp

L (x) is calculated by first evaluating its derivative
r

dL (x) Mv

dx 2kB T

1/2

N =3kBTv+A a+1
a

e M (I ( +I2+I3 )

(822)

+exp
aM(u —

i
I ix)2

2kB T

(816)

with

I(—— (1+erf[ [(a+1)(EE E( )/kE T—]' I }
M

The v integral may be evaluated to give
' 1/2

dL (x) 2~kE T
I exp

M(a+1)
MaI x

2ks T(a+ 1)

(817)

—E{J)/k~ T
dJe

0

I2 f dx f—— du exp[ E(x,v)/kE —T]q[E(x,u)

—E(l

(823)

From (815) it follows that L (x=O)=0 [the integrand in
(815) is then an odd function of u]. Therefore, by in-
tegrating (817) we get

m.kB T
L (x)=—,erf

M(a)'~

m.kB T
erf

M(~) ~

2kE T(a+ 1)
1/2

MaI x
2ks T(a+ 1)

1/2

for x &0. (818)

Finally we use Eq. (3.11) to show that aI /(a + 1)=cos.
Equations (814) and (818) then give

~kB T —v{x}/k~T
C(x)=Fp, e

' 1/2
wkB T 0f dx exp[ —V(x)/ks T]
2M X)

1+erf

' 1/2
McoBx

2kET

Consider first I]. Denote

Z =erf[[(a+1)(EE—E()/kET]'"I
and note that

2w dJ J =M dx dv J x, v

(824)

(825}

(826)

2 2 '1/2
McoBx

1+erf
B

(819)

Therefore,

1+R 00

I1—— dx dv exP —F. x,v /kBT

for which NE is obtained as
0

NE ——f dx C(x) . (820)

Eualuation ofN'. As noted above the exact form of the
distribution P(x, v) is not known in the x &x(, E & E( re-
gion. However, an approximate expression for N' valid

Xri(E( —E(x,u)) . (827)

Next consider I3. We remind ourselves that the term
containing I3(NE) may contribute significantly to the to-
tal sum N only for large enough y (small E(', this is a
similar argument used before to evaluate N'). In the x in-
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tegral appearing in I3 the close neighborhood of x, contri-
butes dominantly and if

( —, )Mcozx &
E——q E—i »k~T

These two roots may be written in the forms

1/2 (C3)

we may replace the error function in I3 by unity. Hence,
1/2

2mk~ T 0I3- f dx exp[ —V(x)/k~ T] I2 ——
2 (C4)

0 00= f dx f dv exp[ E(x—,u)/k&T] . (828)
2

+CO g

The condition (3.6) is equivalent to the requirement

Note that since x1 is the lower limit in the x integration
the energy range in the latter integral is automatically lim-
ited to E(x,u) &E&. From Eqs. (828) and (824) we obtain

IQ +I3 f dx f "
du exp[ E(x, u—)lkg T]

I = lim I (t) .t~ oo

(C5)

If this limit exists then Eq. (3.4) admits a steady-state
solution which satisfies the equation

Xg(E(x, v) —E~ ) (829) AT d'I:
+au =0 (C6)

and also using (827) together with the transformation

fdxfdv= fdJfdq= f

+ ri(E E))—
(830)

Finally, we use Eq. (822) and the identity
1/2

2
+CO g

—2

1/2 (831)

(for an integrand which depends on E only), noting also
that for Ez g&k&T we can limit the E integration to
E(E~, we get

2w ~ dE Elks T 1+—8+ + M 0 N(E)' 2

with

2
COg

Q= —cog
(C7)

The existence of a limit is insured for I, (see Appendix
A). Note that 1"~ is also the root which in the Markovian
limit (co~ ~co&,y~y) becomes I of Eq. (2.9) and which
in this limit yields a~a. In contrast to the Markovian
case we could neither prove generally that
co~/(I ~ co~) &—0 nor that co~/(I q

—co&) &0. Thus, there
is no absolute insurance that only one of the roots ob-
tained here or that any of them corresponds to a physical-
ly relevant solution. The same problem exists in the for-
mations of Grote and Hynes and of Hanggi and Mojta-
bai. Here we follow these authors in choosing I 1 as the
only relevant root and in assuming that the corresponding
a is positive.

together with

C00
~K, NM

2&cog

2

X +co
2

1/2 APPENDIX D

Here we provide some details concerning the numerical
evaluation of the function e(J) given by [cf. Eq. (1.22)]

2
.exp( E~ /k~ T)—(832) ~(J)=2M X n'l&. (J) l'Re[Z. [~(J)]j (Dl)

to arrive at Eq. (3.20).

APPENDIX C

Define I (t) as the solution of the quadratic equation u =x =ico(J) g nx„(J)exp(in@&) (D2)

Taking the derivative of Eq. (1.23) with respect to time
[using dy/dt =co(J)] we get

cog co g ( t )
=y(t)+ I (t)

I (t) COg

namely,
r

co@ y (t)
a,'(t)

y(t)
2

2
1/2

+ co~(t)

(Cl) and hence,

v(0)v(t) = —co (J) g g nmx„(J)x (J)

)&exp[i(n +m)q&0

(C2) +inco(J)t],
(D3)
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where pp=q&(t=0) . Averaging (D3) over the initial
phases, using

2n

d(ppexp[i (n +m )yp] =2rr5„

we get

(v(0)v(t)) =re (J) g n ~x„(J)
~

exp[into(J)t] .
n= —oo

(D4)

This result was originally obtained by Grote and Hynes.
Since Z(t) is usually a rapidly decaying function of time,
this provides a convenient way to evaluate e(J). This is
done by solving for the isolated system trajectory for the
energy E(J) [using Eq. (1.7) without the Z and R terms],
evaluating (v(0)v(t)) as

co(J) f drv(r)v(t+r)
Comparing Eqs. (Dl) and (D4) we have

e(J)= J dt Z(t)( v(0) v(t)) .
rp (J)

(D5) (II) denotes integration over a period) and then perform-

ing the second integral in Eq. (D5) to obtain e(J).
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