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The dielectric function e(k,w) of an electron plasma in thermal equilibrium is calculated for all
degrees of plasma degeneracy. Previous results for degenerate and nondegenerate plasmas, based on
quantum-mechanical, classical, or semiclassical approaches, are contained in this analysis. Expres-
sions for the real and imaginary parts of €(k,w) are given for the cases of low and high frequencies
and long and short wavelengths. In particular, the roles of thermal and quantum effects on screen-
ing, collective plasma resonance, and single-particle behavior are discussed.

I. INTRODUCTION

Theoretical studies of the dielectric response of plasmas
are usually concentrated in the following two well-
separated domains of plasma physics. (a) Dense plasmas
at low temperatures, usually described with degenerate
electron-gas models and with the use of quantum-
mechanical methods. Such is the case of solid-state plas-
mas. (b) Dilute plasmas at high temperatures, where a
classical description of the plasma is normally used. This
description applies in a wide range of densities and tem-
peratures.! In particular, this includes the case of high-
temperature plasmas of interest for fusion research.

The purpose of this paper is to study the transition be-
tween these cases, through a calculation of the plasma
dielectric function for all degrees of plasma degeneracy.
Previous results from classical, semiclassical, and quan-
tum approximations will be contained in our analysis.
Here we sketch briefly the ideas that give rise to these
various approximations.

In the classical description the response of the system to
an external field is calculated using the Boltzmann-Vlasov
equation,” and it gives the following expression for the
dielectric function

K-v(3f /AE)
w— E-V-H'B

2
e(k,w)=1+4Z§ [ % , (1)

in terms of the wave vector K and frequency w. Here
f=f(¥) is the thermal (Maxwell-Boltzmann) distribution
of electron velocities V and E =+ muv? is the correspond-
kinetic energy. The normalization adopted here is
f(¥)d% =n, where n is the electron density.

This description is sometimes extended to the case of
degenerate or semidegenerate plasmas, using the so-called
semiclassical approximation.® This consists of using the
classical expression of Eq. (1), but introducing a
quantum-mechanical expression for the distribution func-
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tion f(V), namely, the Fermi-Dirac distribution. This ap-
proach allows for an extended description, which includes
the conditions (a) and (b) mentioned at the beginning, and
in many cases it gives quite satisfactory results.

A more general solution, however, is provided by a fully
consistent quantum-mechanical analysis, where the
response of the system is calculated with perturbation
theory (in the context of solid-state physics this approach
is referred to as the random-phase approximation or the
self-consistent field approach).* The analysis leads in this
case to the expression’

FEK+K)—FK")
ko)=1+
elk,o) ﬁw+za (o —E2)
2)

where ETT =#2q*/2m and f (K) is the Fermi-Dirac func-
tion [its relation to the normalized distribution f(¥V) in
Eq. (1) is thus f(K)=(27#%)3f(¥)/2m3, see also Eq. (3)].
All classical and semiclassical results are contained in this
formula, in correspondence with the long-wavelength (and
low-frequency) limit. This can be seen immediately by ap-
proximating Eq. (2) for k—0, with f E—{—E’)—f(ﬁ’)

=K'V f(K')=#k-V(3f /dE), and Ep +—Ep

gk-V_. E2. =#Kk-V. In this limit we retrieve Eq. (1) ex-

W‘

actly.

In consequence, the additional content of the quantum-
mechanical analysis pertains to the domain of short-range
phenomena. This is physically obvious since one expects
the quantum properties of the plasma to appear in the re-
gion of wavelengths shorter than the wavelengths of the
electrons in the plasma,® as the analysis will show in de-
tail.

Then, the applicability of either classical, semiclassical,
or quantum response functions for the plasma depends on
the plasma temperature (i.e., its degeneracy), and on the

1471 ©1984 The American Physical Society



1472

region of frequencies and wavelengths that is important
for the description of a particular phenomenon.

The transition from degenerate to nondegenerate plas-
mas in the range of high densities (n ~ 102—10*"e/cm’) is
a subject of much interest for current studies of inertial-
confinement fusion. The approach to those extreme con-
ditions is being tested using laser and ion beams. A reli-
able description of the plasma properties at all degrees of
degeneracy is therefore important for the studies of heat-
ing and confinement of dense plasmas.

In this work we obtain expressions for the dielectric
function of plasmas of all degeneracies, incorporating
both thermal and quantum effects. In Sec. II we develop
analytical expressions for the real and imaginary parts of
the dielectric function in terms of @ and k, and give ex-
pansions for low and high frequencies and for long and
short wavelengths. Some differences between quantum
and classical results are discussed. They are applied in
Sec. III to the calculation of the energy-loss function
Im[ —1/e(k,)], in the domains of low and high frequen-
cies of interest for particle-plasma interactions. Section
IV contains a summary of our results.

II. TEMPERATURE-DEPENDENT
DIELECTRIC FUNCTION

We develop in this section the dielectric function e(k,w)
for plasmas of all degeneracies, in terms of the wave num-
ber k and of the frequency w. The basic formulation of
Eq. (2) permits one to calculate the real and imaginary
parts of e(k,w)=¢€,(k,0)+iey(k,w). The temperature
dependence is incorporated in Eq. (2) through the Fermi-
Dirac function

FK)={1+exp[BE,—)]} 7", (3)

where B=1/kyT, E,=#°k*/2m, and p is the chemical
potential of the plasma with electron density #» and tem-
perature 7. In the absence of collisions we assume that
the damping constant approaches the value §—07. -

We measure the electron interaction relative to the elec-
tron kinetic energy at T=0 through the parameter!

top |
Er

1 Ts

2_ 3 _ -
7Tkp(l() 7 6.03 ’

X -

=76 (4)

where a, is Bohr’s radius, wp=(4mne?/m)'/? is the plas-
ma frequency, Ep =+ mv} is the Fermi energy in terms of
the velocity vg, and kp=mvgp/#=(372n)""? is the corre-
sponding wave number. It is also convenient to introduce
the one-electron radius r, (in a.u.), which is related to the
electron density n by (47 /3)nasri=1. The range of r,
values of interest for plasma research is shown in Fig. 1 of
Ref. 1.

The degeneracy of the plasma is measured through the
reduced temperature 6, or equivalently, the degeneracy pa-
rameter D, as

(5)

so that degenerate and nondegenerate plasmas correspond
to 0 << 1 and 6 >> 1, respectively.
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The chemical potential ;2 depends on =D ~! through
the expression

x 172

%D3/2:F1/2(77)= fow :‘;—;—_—;dx , (6)

where F,,(7n) is the Fermi integral of order 3 and
n=PBu=p/kpT.

In the following we discuss the calculation of the dielec-
tric function for all plasma degeneracies. Our results for
the functions €;(k,w) and e€,(k,w) are summarized in

Tables I and II, respectively. We begin now by analyzing
the behavior of €;(k,w).

A. Real part of e(k,w)

A closed analytical expression for €,(k,w) based on Eq.
(2) is not possible. Efforts have been made to find solu-
tions in terms of infinite series expansions.®*’ We proceed
in a somewhat different manner to develop approximate
expressions that contain some well-known results in vari-
ous limiting cases, as well as some other new ones.

The function €,(k,w) can be written in the form

2

X
el(k,a))=1+4—zo3“[g(u +2)—gu—2)], 7

which follows directly from Eq. (2), after some lengthy in-
tegrations, and where the function g (x) is given by

g(x)=—g(—x)= fow Dy);_al:+1 In
e

x +y
X =y

. (8)

Here we have introduced the usual reduced variables®
u=w/kvg, z=k/2kp . 9)
With regard to plasma degeneracy, Eq. (8) attains the

following limits:

1+x
1—x

g(x)=go(x)=x +3(1—x?)In

‘, 0«1

(10a)

g(x)=3DV2®(D'?%x), 6>>1 (10b)

where

52
eZ

1 ©
e(s)=—= [ dz—

is the “plasma dispersion function.”® This assures the re-
trieval of all previous results for the case of classical plas-
mas.

On the other hand, when Eq. (10a) is inserted in Eq. (7)
we recuperate the Lindhard dielectric function for a de-
generate plasma.’

At intermediate temperatures g (x) changes as indicated
with solid lines in Fig. 1. At 6=0 excitations out of the
Fermi sphere (through virtual processes) give rise to a pro-
nounced peak in g(x) for x=0.8. At high temperatures,
0> 1, the maximum of g(x) shifts to larger x values, be-
cause the electron velocities v, become v, ~8'/?v, and the
peak broadens correspondingly. The difference between

(11)
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WSwee————— plasma properties. This follows from cases (i) and (ii),
. i ] when they are applied to calculate the difference
g(x) 0:-0 ] Ag(u,z)=g(u +z)—g(u —z) in Eq. (7). Thus, for
] u,z << 1 we can use Eq. (12) and obtain
1.0 os - Ag (u,z)=[2xH,(D)— $x Hy(D)] | 3242 . (17)
i ‘ _ For large values of u and z we instead use Eq. (16) and
L JLER _ calculate Ag from the appropriate Taylor expansion:
i / 1 2zg'(u)++23%g"(u), z<<u (18a)
0.5 - /// 2//, — - Ag(u,Z)E 4 3 g
- ) 1 2g(z)+u’g"(2), u<<z. (18b)
S / // -
- /// / -
1 . . .
0 The formulas obtained from this analysis are collected
Y 0 —— 140 s 2' Lt in Table I. The first column of this table indicates various
J .0 30 ... ... .
x limiting conditions of interest. The second column con-
tains expressions for €,(k,w) that apply to all values of
FIG. 1. Function g(x) pertaining to the calculation of @=kzT /Ef.

€(k,»), Eq. (7). Solid lines give the values of g (x) as calculated
from Eq. (8) for reduced temperatures 0=k T /Er=0, 0.5, 1.0,
2.0, and 10. Dashed lines for 6=1 and 2 correspond to the clas-
sical approximation, g(x)=2D'2®(D!/%), in terms of the
plasma dispersion function of Eq. (11) (for 6= 10 the dashed and
solid lines coincide in this graph).

the solid lines representing Eq. (8) and the dashed curves
corresponding to the approximation for 6 >>1, Eq. (10b),
becomes negligible for 6 > 2.

Irrespective of the plasma degeneracy we can expand
g(x) as follows.

Case (i), x—0. By expanding the logarithm in Eq. (8)
for x <<y we obtain

g(x)=2xH,(D)—%+x3H,(D) , (12)
where the functions H;(D) are given by
1 0 A
H\(D)=——7F i ()= [, 7wy, (13)
o dy A A
HyD)= [ y—{[ﬂm—f(y)] , (14)
with the abbreviation, in analogy to Eq. (3),
Fo= 1 (15)

1+exp(Dy*—n) ’
and we denote by F,(7) the Fermi integral of order v.
The properties of these integrals are given in the Appen-
dix.

Case (ii), x— . Using a complementary expansion of
Eq. (8) for y <<x we get
2 Fipn)

8= T 3Dt

Fi ()
D172 1

(with [ odd) (16)

where in the first term we have used the fact that
Fy () =2D3"? (see Appendix).

We can now obtain expressions for €;(k,®) in various
limits of u and z that are of interest in the description of

Known formulas in the limits 6 <<1 and 6 >>1 can be
culled from the expressions given in the second column by
using the following limits: for 6 << 1,

H((D)=1, H,(D)=1, F,(n)=D"*'/(v+1); (19a)
for 6>>1,
H,(D)=+D, HyD)=+D?,

z_z_ F(V+1)D3/2
=3 TI(3/2) '

The results are also listed in Table I, columns 3 and 4, and
coincide with expressions given by Lindhard® (for degen-
erate plasmas, 6 << 1) and by Pines’ (nondegenerate plas-
mas, 0 >>1)— also see Ref. 10.

Thus, the equations in the second column of Table I,
denoted expressions (2,1)—(2,4) (with the first number in
parentheses giving the column of the expression and the
second the row) span the range of plasmas of arbitrary de-
generacies.

Specifically, expression (2,1) of Table I is pertinent to
the screening of a static impurity in the plasma and to the
slowing down of low-velocity particles. It can be written
(for X3 << 1) in the familiar form

2

ks
el(k,w)g 14 7(7,

(19b)
F,(n)

w—0 (20)
where k; is a temperature-dependent screening wave vec-
tor given by

k2=4kEX3H (D)= +k3z0'2F_, (1) . (21)

Using the limiting values of F_;,,(7) (see Appendix) we
find that k,—kr=V3wp/vp for 8 <<1 (Thomas-Fermi
approximation) and that k,—kp=(4wne?/kzT)"? for
6>>1 (Debye approximation), as indicated in Table I by
expressions (3,1) and (4,1). For a stationary or slowly
moving ion in the plasma, with effective charge Ze, the
screened field would be of the form (Ze/r)exrp(—ksr).
This corresponds to a screening length A, =k, that in-
creases with plasma temperature.

Expression (2,2) of Table I gives access to the long-
wavelength plasma resonance through the condition
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€(k,0)=0. For €,(k,w)<<1 the resonance frequency is
then given by the root of

w2 |
v~ +56°2F3 (kv /oo}

o=k |1+

+ 207Fs p(k*vp/op+ - | . (22)

When the perturbation of the plasma is due to a fast
charged particle this resonance leads to the excitation of
“wakes” in the plasma and gives place to collective energy
losses.

Finally, expression (2,3) of Table I pertains to the
dielectric behavior in the short-range limit (k >>kp and
#ik2>>2mw), whereas expression (2,4) of Table I applies
to the single-particle ridge, namely, o =#k?%/2m. Appli-
cations of these results will be considered in Sec. IIIL.

B. Imaginary part of e(k,w)

The imaginary part of the dielectric function, €,(k,w)
can be obtained by direct integration of Eq. (2) for 5—07,
with the following result:

17')(%
Ez(k,(l))= 823 0

2
In 1+exp[n—D(u —z)°]

,  (23)
1+exp[n—D(u +2)*]

and it agrees with previous calculations by Khanna and
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analysis in this paper. These cases are indicated in Table
II. Some of them can be found in the literature. We now
consider some examples.

(a) Small w, all §. We expand Eq. (23) in powers of
u =w/kvr, and in the first nonvanishing order we obtain
[see expression (2,3) in Table II]

X5 4Duz
823 [1+4exp(Dz2—7)]

&(k,w)=

_2m 2e2p
T (#ik)}

#K> -
1+exp SkaT—nH .

(24)

In the limit 0 >> 1, moreover, e"=4D3"2 /3712 << 1 (cf.
the Appendix), and Eq. (24) reduces to

#k?

2 372
ne-w exp | —
SkaT

mk3

2mm
kT

e6(k,0)=

>

(25)

The forms of Eqgs. (24) and (25) are central to the treat-
ment of low-velocity stopping power and energy strag-
gling in plasmas.

(b) Degenerate plasma (6<<1), all kw. For 0«1,
u=Er and thus e"=ef>>1. Equation (23) then be-
comes

0>>1.

2
‘ITX()

1+exp{D[1—(u —2)*1}

Glyde. This is an exact result, applicable to plasmas of elko)= 823 ln I+exp(D[1—(u+22]] |’ (26)
all degeneracies. It has limiting values which apply to
plasmas under various conditions, of much interest for the  so that
]
T X(z) fiw
L2 +5)2
8 77 Ey’ (utz)* <1 (27a)
. X3
lim e(k,0)= —f[l—(u -2, (u—21<1<(u+2)? (27b)
Do 8z
0, 1<(u—2z)?. (270

In this case we retrieve the dielectric function of a degen-
erate plasma.’

(c) Nondegenerate plasma (0>>1), all k,w. Here
e"=4D3?/37'2 <<1 (cf. the Appendix), and thus
exp[n—D(u+z)*] <<1. Hence we expand the logarithm
in Eq. (23) to obtain

2
&(k,0)= %O{exp[n—D (u —z)?]
—exp[n—D(u +2)*1}

2 172
o 0P 2am sinh
= ﬁk3 kBT ZkBT
Er
xp | —(u?+z?)
Xexp ksT (28)

The first form of this equation exhibits an important
property of €,(k,), in that it has a maximum when u =z,
i.e, when w=#k?%/2m. This defines the single-particle
ridge, which corresponds to the region of excitation of sin-
gle particles by the external field. This ridge was already
contained in the case of the low-temperature limit of Eq.
(27b). Moreover, we see from Eq. (28) that for high tem-
peratures the spectrum of excitations assumes the shape of
a broad Gaussian in the variable |u —z |, of width
~(kgT/Ep)""*>>1. Hence, the shape of this spectrum
mirrors the distribution of particle velocities in the plas-
ma.

In addition, we note that Eq. (28) reduces to the quan-
tum form of Eq. (25) in the limit of small frequencies, and
that it approaches the classical limit, #—0, as
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5 3/2 )
ek,0) =2 2mm exp _me
P mk? | keT 2k Tk?
) 2
« |1— (#ik) 1 | fiw 4o,
8kaT 24 kBT
6>1. (29

This illustrates how the classical result is obtained when
kpT is large compared with the values of Ep, #iw, and
#2k2/2m. These conditions (0 >>1 and #—0) define the
classical domain of the plasma response.

In Fig. 2 we show the results of €,(k,), for k=0.2 and
vp=1, as a function of the frequency w, for various re-
duced temperatures. We see that for low frequencies the
classical approximation [dashed lines, from Eq. (29) with
#i=0] gives values higher than the exact result [solid lines,
from Eq. (23)], and that it shifts to lower values at high
frequencies, as predicted by Eq. (29) (notice the different
signs of the two correction terms in order 7).

III. ENERGY-LOSS FUNCTION

The energy-loss function, defined as

_ 62(k,60) (30)
T elkw) |2

—1
elk,w)

S(k,0)=Im

is the crucial quantity which describes the spectrum of ex-
citations in the plasma in terms of the momentum transfer
#ik and of the energy transfer #iw. Thus, for instance, the
inelastic scattering of charged particles or photons in the
plasma is governed by a scattering rate R < N (w)S (k,w),
where N (w)=[exp(B#iw)—1]~" is the Planck function in-
dicating the equilibrium of excitations in the medium."*

For finite temperatures S(k,w) shows changes in the
spectrum that can be characterized as a thermal redistri-
bution of the oscillator strength, when compared to that in
a cold plasma. It can be evaluated exactly through Egs.
(7), (8), and (23), or with the use of some of the approxi-
mate results of Sec. IL

We now consider the domains of direct interest for ex-
periments of particle or light scattering in plasmas. (a)
First the domain of u <<1 (and all z values), which
comprises the low-frequency behavior of plasmas and is
characterized by the strong screening when k—0. In the
region of high frequencies, u >> 1, we can distinguish the
following domains: (b) the single-particle ridge, u =z >>1,
which is important for short-range excitations, and (c) the
plasma resonance [corresponding to the condition
e(k,w)=0], for long wavelengths and high frequencies,
z << 1 <<u, which corresponds to collective excitations.

We now use the results applicable to these three
domains, and calculate the energy-loss function through
Eq. (30).

(a) Low frequencies. Using the results for €;(k,0) and
&(k,w) given in Egs. (20) and (24) for u =w/kvp << 1 [cf.
Tables I and II, expressions (2,1) and (2,3) respectively] we
approximate

1477

w/w,
0.02 0.1 1
100 T T T T T T T T T T TTTT
r 8:0
- Ve= lau
3 ot
x -
w' C
1 S
0.01 0.1 1

w(a.u)

FIG. 2. Results for €,(k,w) as a function of the frequency o,
for reduced temperatures 6=0, 1, 2, and 10, for vp=1 a.u.
(n =2.28% 10% cm™3) and k /kr=0.2. Solid lines show the ex-
act results of Eq. (23), whereas the dashed lines give the classical
approximation for €,(k,w)—Eq. (29) with #%=0.

I —1 Ez(k,w)
m =
elk,w) k,w)
- 2m2e’kw 1+ex 2 2 _ -
= Rk P 8mkyT "

(31)

The screening constant k; depends on the plasma tempera-
ture as indicated by Eq. (21). However, using the analyti-
cal approximation for F_,,(n) given in the Appendix,
Eq. (A7), we can approximate

ki=kip/(14+ 5612 =k} /(14++D?)'/?, (32)

which gives the proper limits k;=kyg =\/§wp /vp for
kpT <<Ep, and k;=kp=wp(m /kgT)'"? for kgT >>Epg.
One can also write Eq. (32) in the form k. *=k1 +kp %,
as in the approximation of Brysk et al.!""!? Equation (31)
then yields the following limits.

(i) @ << 1. Here,
2m2e*kw
(k2 4+ k2p)?’

and S (k,w)=0 for k > 2kp.
(ii) 6 >>1. Here,

S(k,0)= for k <2kp (33)

3/2
exp

21
kaT

#k?

SkaT

nm2e%kw
(k2+kp)?

S(k,w)= . (34)

Equation (33) corresponds to absorption of small amounts
of energy fiw <<Er by a degenerate electron gas. Owing
to the exclusion principle only those electrons close to the
Fermi surface can participate. Thus the momentum
transfer %k can never be larger than 2#%kp.

This restriction is relaxed for high temperatures, as
shown by Eq. (34), where excitations with small » but
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large k values can occur—they involve electrons in the tail
of the Maxwell-Boltzmann distribution, and thus contri-
bute with exponentially decaying probability. Yet this is a
characteristic quantum effect, as indicated clearly by the
factor exp(—#%k?/8mkyT) which replaces the analogous
factor exp(—mw?/2kpTk?) arising in classical theories’
[cf. also expressions (4,2) and (4,3) of Table II].

(b) Single-particle ridge. Let us now look at the region
where u=z>>1, ie., fiw=#k?/2m, corresponding to
short-range excitations of individual electrons in the plas-
ma.

Using Table I we obtain, from expression (2,4),

€(k,w)=1+0(kp/k)*, (35)

and from expression (2,4) of Table II,
7TX(2) )
ez(k,co)gﬁeln{ l1+exp[n—D(u —2z)°]} << 1. (36)
Z

Equation (35) indicates that one can neglect screening ef-
fects in this region of high frequencies and short wave-
lengths. Then we set €;=1 and approximate

Sk,o)=ek,w)
(37)

k#
apk?

kT
Ep

1 —B(#iw—Ey)?
4E,

In

=

1+exp

where E; =#2k%/2m and ao=%*/me?* (Bohr radius). This
yields the following limits.
(i) 0 << 1. Here,

k2 (#iw — Ey )
Stho)=—— 1= | (38)
(ii) 8 >>1. Here,
Sk )~27'rne2 2mm 12 B(ﬁw—Ek)z (39)
V=T | ke T T 4E,

In all cases the locus of the ridge is given by the quan-
tum condition #w = Ey, =#°k%/2m, and the width is deter-
mined by the initial distribution of electron velocities.
This explains the parabolic profile at low temperatures,
Eq. (38), and the Gaussian shape for 8 >>1, Eq. (39).

The existence of the single-particle ridge is another
well-defined quantum feature, with no correspondence in
the classical or semiclassical treatments of the dielectric
function.

(c) Plasma resonance. As a last example we now turn
our attention to the collective resonance of the plasma. It
is given by the condition e(k,w)=0, which defines the
modes of collective motion of the electrons. Using the ap-
propriate long-wavelengths expansion of €,(k,»), expres-
sion (2,2) of Table I, and considering €,(k,w) << 1, we find
the frequency of the resonance w; given as in Eq. (22).
The solution of this equation constitutes a dispersion rela-
tion of the form
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2
k? k4 4
oh=od |1+ i | ]
wp p 2m wp
(40)
up to terms in k*. In particular, this gives the limits
2 4 4
2 2 3 2k 3 4 Kk #i
=op [1+50r—5+50r—5+ |5 | 5|, 0«1
Wk =0p +5”Fw129+7vo‘I;)+ 2m | wb <
(40"
2
2 2 3kBT k2 kBT k‘i
o =wp |1 - n
wp m wp
# 4
o, | 2| 9>1- (40")
2m wp

The terms in (v?) and (v*) in Eq. (40) correspond to
those in F3 (1) and Fs/(7) in Eq. (22), as follows from
Eq. (A2) in the Appendix. The last term in Eq. (40)
represents a contribution due to single-particle dispersion.
The ratio between the two terms in k* s
(#/2m)%w5 /{v*), which is of order (#iwp /Ef)*~1/vg for
0 << 1, and of order (#iwp /kyT)* << 1 for 8 >>1. Thus, for
dilute plasmas where 6 >>1 the single-particle term in or-
der k* can be neglected.

By neglecting both terms of order k* in Eq. (40) we ob-
tain o} =w>+(v2)k? with (v2>=%v}95/2F3/2(7]),
which is in agreement with the Bohm-Gross dispersion re-
lation in the corrected form given by Gouedard and
Deutsch.’

Moreover, introducing the approximation for Fj,(7)
obtained in the Appendix [Eq. (A8)] here, we can write

2112
ks T
5 , (@1

W) =2vi1+20H)2= | ZvE+9

which permits a fast calculation of {(v?) for all degenera-

cies ((v2)=2v} for 6<«<1 and (v?)=3kzT/m for

6>>1). The energy-loss function then becomes
€ wre ko)

(42)
2_ ol +otésk,or)

S(k,w)= =
e+é& (o
and its limits for low and high temperatures are as fol-
lows.
(i) @ << 1. Since €,(k,w)=0 over the region o > kvy (see
Table II) we obtain, here, a sharp plasma resonance

2
S (k)= 228

8w —owy) . (43)
Zwk

(i) 6>>1. In this case €,(k,w) is given by expression
(4,2) of Table I1, i.e.,
372

exp

27Tm
kT

m

nezw _ _co_
2T K2

s (44)

6&lk,w)=

This is now a fully classical result. The fact that
6(k,0) has a finite value for w=w; gives rise to the
damping of the plasma resonance: electrons in the tail of
the thermal distribution, with velocities close to the phase
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velocity of the plasma wave, v, ~wp/k, absorb energy
from the wave. Such is the phenomenon of “Landau
damping” as is known in the context of classical plas-
mas.>® Inspection of Eq. (44) shows that the damping be-
comes important for wavelengths shorter than the Debye
length; ie., k ~' < Ap=wp(m /kgT)/2

With increasing values of 6=k T /Ef the transition be-
tween the previous cases occurs as illustrated in Fig. 3,
where we show the “line-shape function” obtained from
S (k,w) in Eq. (42), normalized to one, with €,(k,») given
by [cf. Table II, expression (2,2)],

-1
ma)2

2m2e’nw _
2kpTk?

6(k,0)= )} 14exp ]

(45)

The resonance develops a width (damping) that in-
creases with temperature. By comparison with Fig. 2 we
see that the increasing damping of the plasma waves
occurs when the tail of the function €,(k,w) reaches the
resonance at oy =wp. The effect is specially important in
the classical domain and for kAp > 1.

In this particular case the transition from quantum to
classical behavior coincides with the transition from de-
generate to nondegenerate plasmas.

IV. SUMMARY

We have obtained expressions for the dielectric function
of quantum plasmas of arbitrary degeneracies which con-
nect previous results for degenerate and nondegenerate
systems. They incorporate thermal and quantum effects
on e(k,w), and include the results from classical and semi-
classical approximations as well as those of quantum cal-
culations for a degenerate plasma. This was illustrated
with a few examples: the low-frequency behavior with
reference to screening effects, the single-particle ridge, and
the plasma resonance.

ot
o
T

S(k,w) (Normalized)

0.4 0.6 0.8 1.0 1.2
w(a.u.)

FIG. 3. Thermal broadening of the plasma resonance as ob-
tained from the energy-loss function S(k,0) in Eq. (42), after
normalization to the peak values for the cases 6=0, 1, 2, and 10.
As in Fig. 2, these results correspond to vp=1 a.u. (wp=0.651
a.u.) and k /kp=0.2.
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For nondegenerate plasmas the quantum-mechanical re-
sults agree with the classical results provided that the
wavelengths and frequencies of interest are such that
#k?/2m <<kgT and #iw <<kpT. In particular, the
single-particle behavior for #w~#k%/2m cannot be
described by classical or semiclassical expressions.

An important application of these results is the calcula-
tion of energy-loss rates for protons, a particles, and other
ions in plasmas of various degrees of degeneracy. In-
clusion of quantum effects in the excitation of the plasma
is important here for a proper description of short-
wavelength phenomena, and to avoid divergent behaviors.
In a forthcoming paper the results of this work will be ap-
plied to the calculation of plasma stopping powers.
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APPENDIX

We summarize here some of the properties of the Fermi
integrals and give approximate expressions to calculate

F,(n) for the cases v=— 3 and <+ appearing in the text.
First we write F,(7) in the form
©  x"dx
FV(’T])= fO 1—_'_;;_—" . (A1)

The statistical average of powers of the electron velocities,
(v?), is then given by

o a
W)= [ Ry = 10 F ), (A2
where E =—+mv?, p(E)=2E'2/E}* is the density of
states, 0=kpT /Ep, and n=Bu=u/kpT.

The normalization of the distribution function,
[ fw)dP =n—with f(v)=2m>f(k)/2#), and F(K)
given by Eq. (3)—is equivalent to the condition (v°)=1,
which yields
3/2

(A3)

kT

This is the usual relation that gives the chemical potential
pw=nkpT in terms of D =Ep/kpT =1/6.

In the limiting cases 6 << 1 and 6 >>1 we obtain the fol-
lowing.

(i) kB T <<Ep. HCI'C,

(v+1) 1 E. "
F,(n)=-1 = , Ad
MWEWTD = v+ 1) | kpT (A4)
nN=Ep/kpT . (A4")

(11) kBT >>EF' Here,
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TABLE III. Numerical results for the functions F_,,,(17), Fi,,(n), and F3,(n), and values of
D =Er/kgT, for a range of ) values, —5<n<10. Limiting expressions of Egs. (A4)—(A5’) can be
used outside this range.
'T]=,u/kBT D=Ep/kBT F_1/2(17) Fl/z('f]) F3/2(7])
-5 4.31x107? 1.19 1072 5.96x 1073 8.95x 1073
—4 8.36x 1072 3.20x 1072 1.61x 1072 2.43x1072
-3 0.1617 8.53x 1072 4.34x1072 6.56x 1072
-2 0.3091 0.2192 0.1146 0.1758
—1 0.5747 0.5212 0.2905 0.4608
0 1.011 1.072 0.6780 1.153
1 1.637 1.820 1.396 2.662
2 2.415 2.595 2.502 5.537
3 3.289 3.285 3.977 10.35
4 4.216 3.874 5.771 17.63
5 5.170 4.383 7.838 27.80
6 6.140 4.834 10.14 41.26
7 7.120 5.242 12.66 58.34
8 8.104 5.617 15.38 79.35
9 - 9.092 5.967 18.28 104.6
10 10.08 6.297 21.34 134.3
Er | (i) For 6> 1
Fv(n)zl"(v—l—l)e”zﬂ:(—y‘/;l—)— e )  For 0>>1,
G F_ipm)=3D*", F;p(n=D*". (A6)
E. |7
n=In EL‘;____ . FT ]<O , (A5")  Rather obvious interpolations between these results are
T | KB given by the simple functions

where I'(x) denotes the gamma function.

In Table III we show numerical results for the functions
F,(7) in the cases of v=—=, 3, and 3, which are of in-
terest for the analysis give in the text.

Analytical approximations
From the limiting results of Egs. (A4) and (A5), for
v=—+ and <, we find the following.
(1) For 6«1,

F_1,(n)=2D"?, F;,(n)=3D%?. (A6)

4

F_,n)2z——7F—, A7
2= 46 1969172 (A7
1
F3/2(n)5—95—/2(—2%+92)”2, (A8)
and for completeness we recall the exact result,
Fip(n=3D">. (A9)

Equations (A7) and (A8) agree with the exact numerical
results for F_; ,(n) and F;,,(n), in Table III, with pre-
cisions better than 5% and 6%, respectively (maximum
errors occur at n=0 and n=1).
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