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Theory of fluctuations in colloidal suspensions undergoing steady shear flow
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The static structure factor for colloidal suspensions in systems undergoing steady shear flow is
calculated using response theory in the linear regime and using a fluctuating-diffusion equation in

the nonlinear regime. In the second case, the intermediate-scattering function is also obtained. The

theories give the structure factor for both high and low wave vectors. In the linear regime, both

methods agree, although in certain wave-vector regions, the nonlinear terms cannot be ignored.
When the theory is compared to that proposed using the "Stokes" assumption, some qualitative
disagreements are found. The results are discussed in light of the experiments of Clark and Acker-
son [Phys. Rev. Lett. 44, 1005 {1980)]and a possible experiment for determining the intermediate-

scattering function is discussed.

I. INTRODUCTION

The behavior of systems out of equilibrium has histori-
cally been one of the main areas of interest of statistical
mechanics. Lately, a number of theories which describe
fluctuations about nonequilibrium states have been
developed, using a variety of techniques. ' ' These in-
clude the following: response theory, kinetic
theory, z'"'9' and fluctuating hydrodynam-
ics. " ' ' '7 By and large, the results are in agree-
ment. Most of the studies have dealt with simple fluid
systems, ' although superfluids, ' the gas-liquid inter-
face, ' and nematic liquid crystals' have also been exam-
ined.

Experimentally, the measurement of fluctuations in
simple fluids in heat-conducting steady states was carried
out by Beysens et al. ,

' and quantiative agreement with
the theoretical predictions was obtained after the latter
were modified to account for finite size effects. To date,
no experiments have been performed on simple fluids
under shear or on the other systems mentioned above.
Qualitatively, effects similar to those obtained for heat-
conducting systems were predicted for molecular systems
undergoing steady shear, ' ' although a number of com-
plications make the corresponding experiment much more
difficult.

Perhaps the first light scattering measurements of fluc-
tuations in nonequilibrium systems were made by Clark
and Ackerson, ' who examined aqueous colloidal suspen-
sions of polystyrene spheres of 0.109- or 0.234-pm diam
under a variety of steady-state shear flows. It is well
known that these systems mimic many of the properties of
single-phase molecular systems, e.g., they can form fluid
or solid phases. Moreover, they are much more
readily studied owing to the large light scattering cross
section of the spheres and the fact that ko. & 1 can be ob-
served using light (cT denotes some characteristic interpar-
ticle distance). They interpreted their results using the
"Stokes assumption" of Ashurst and Hoover. This as-
sumes that the distortion causing the shear is analogous to
that induced in an elastic continuum under shear, and was

proposed in order to describe the behavior of simple fluids
under high rates of shear.

In this paper, the scattering of light from colloidal
suspensions undergoing simple shear is examined. It is as-
sumed that the scattering arises solely from the colloid
particles and that the densities are such that multiple
scattering can be ignored. Elastic scattering measures the
diagonal nonequilibrium structure factor, i.e.,

S-„—:N '(N-„N -„)„, ,

where N- is the Fourier transform of the colloid particle
k

number density at wave vector k, N is the number of col-
loid particles in the system, and ( )„,denotes an aver-
age over the nonequilibrium ensemble. It is the calcula-
tion of this nonequilibrium correlation function which is
reported in this work.

The various microscopic theories of fluctuations in
molecular systems have mainly been concerned with the
low wave vector or hydrodynamic regime. One exception
to this was Ref. 3(b) where the static fluctuations in gases
under shear and temperature gradients for k's larger than
the inverse mean free path was examined. The main
difference between this and the hydrodynamic regime was
the nature of the dynamics necessary for calculating the
correlations; no static correlations were considered. For
the colloidal suspensions considered recently, the single-
particle dynamics is roughly described by a diffusive
model, albeit in the presence of strong static correlations
which arise from the large, poorly screened Coulomb in-
teraction between the colloid particles. The main source
of dynamic interaction between the velocities of the vari-
ous particles will be hydrodynamic in nature. Such in-
teractions are extremely important in concentrated suspen-
sions or in polymeric systems. However, the strength of
the hydrodynamic interactions all scale as the actual col-
loid packing fraction, P= 4rrpR /3, where R—and p are the
colloid radius and number density, respectively. For the
systems under consideration / =10, thereby making hy-
drodynamic interactions negligible.

In the next section the result obtained via linear-
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response theory for correlation functions out of equilibri-
um is used to obtain an equilibrium time correlation func-
tion expression for the structure factor in systems under-
going steady shear. Formally, this expression is identical
to that obtained in Refs. 1—4. However, the nature of the
dynamics is now totally different, as are the equilibrium
static correlations. Two dynamical approximations are
made, namely, diffusive and exponential relaxation. In
the latter case, the result of the Stokes assumption used by
Clark and Ackerson in interpreting their experiments is
recaptured. The other ingredient is the equilibrium static
structure factor. Unlike the case of simple fluids, this
cannot be taken as a constant, due to the strong Coulomb
interaction between the particles. A number of theories
have been proposed to calculate the structure factor. The
most sophisticated of these works adopt a "primitive"
model for the colloid-colloid interactions, i.e., a screened
Coulomb interaction, and then use integral equation or
Monte Carlo methods to calculate the static structure
factor. Alternate approaches have been considered by
Ackerson, "who proposed a harmonic interaction model
and by Medina-Noyala, ' ' who used the mean spherical
model for ionic mixtures.

Once the equilibrium static correlation function has
been specified, the connection between the k-dependent
diffusion constant and S~ in equilibrium is used to com-
pute the nonequilibrium state structure factor. When

compared with those of the Stokes assumption, similar re-

sults are obtained, with two exceptions. First, the Stokes
assumption predicts a larger coupling to the shear flow at
high k and, in fact, actually shows an increase in the
structure seen in S~. Second, the diffusive relaxation
model shows some evidence for nonlinear behavior in the
case of 0.234-pm-diam particles.

In Sec. III, a phenomenological fluctuating convective
diffusive equation is used to calculate the static and

dynamic structure factors in systems undergoing linear

shear for arbitratry values of the shear rate. Related equa-

tions have been proposed in the study of binary mixtures

under shear near the critical point and in some theories
of the non-Newtonian viscosity. Here the system is non-

critical, but still has relevant k dependence in the equili-

brium static structure factor (which is nothing like the
Ornstein-Zernike correlation function). Moreover, as will

be discussed in Sec. II, the diffusion constant has k depen-

dence which cannot be ignored.
While the fluctuating diffusion equation is a

phenomenological approach, it has the advantage of yield-

ing simple expressions for the nonequilibrium correlation
functions. Moreover, the expression reduces exactly to
that obtained by the diffusive relaxation model in Sec. II,
as should happen if the approach is to be believed. In ad-

dition, it is easy to derive expressions for the quadratic
shear rate correction to the static structures factor, as well

as the asymptotic behavior for infinite shear rate. As is
shown in this section, convection results in a nonexponen-

tial relaxation at sufficiently high shear rates. Unfor-

tunately, this same convection complicates the experiment
needed to measure the intermediate-scattering function. A
possible experimental configuration is suggested which

overcomes these problems. The case which gave the larg-

—D k2]
N-„(t) =e " N-„(0), (3)

where Dt, is a generalized diffusion constant (e.g. , as
would be measured from the width of the central peak in
an equilibrium inelastic scattering experiment).

Equation (3) allows Eq. (2) to be rewritten as

S =St, — (N-N -rr ):VV(r) .(o) PN
k 2D k2 k —k

k
(4)

The equilibrium equal-time average can be readily com-
puted by noting that

where rj and pj denote the position and momentum of
the jth particle, respectively (note that the sum includes
both colloid and fluid particles). Inserting Eq. (5) into the
average on the right-hand side of Eq. (4), using stationari-
ty to move the time derivative to the factors of colloid
density and evaluating the resulting average, yields

(0) ww —+

( ) 1 ~~a kk:V'v
ak 2a„

(6)

where k denotes a unit vector in the k direction. In ob-
taining this last result the equilibrium system was taken to
be isotropic. Note that though the expression explicitly
contains a factor of 1/k, no divergence is present since the
derivative of the static structure factor vanishes as k when
k —+0.

At first sight, it might seem that the diffusion constant
would be k independent and could be set equal to its k =0
value (i.e., the macroscopic diffusion constant) in the light

est nonlinear effects in Sec. II is reexamined and a large
change in the structure factor in the vicinity of the first
maximum is found. Section IV contains a summary and

discussion of the main points of this work.

II. LINEAR RESPONSE: DIFFUSION
AND STOKES ASSUMPTION

In Refs. 1—4, linear-response theory for systems under-

going shear was used to show that

=S„' ' pN —'
J dt(N-„(t)N -„(t)rr):&v(r),

(2)

where S~ ' is the equilibrium structure factor, P= 1/k~ T,
( ) denotes an equilibrium average, Vz is the volume

integral of the stress tensor, and v(r) is the fluid velocity
field at position r. Equation (2) is valid to linear order in

velocity gradients and assumes that V v =0. Even
without knowing the precise form of the time correlation
function appearing in the integrand in Eq. (2), it is clear
that as k~0 its decay time will become infinite, since the
total number of colloid particles is a constant of the
motion. Moreover, it is reasonable that the collective col-
loid particle motion will, to a large extent, be diffusive in
nature. Thus it is assumed, at least for the purposes of
computing the slowest decaying part of the time correla-
tion function in Eq. (2), that
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and

k~~=(0, ky, k, ) .

The upper (lower) sign in Eq, (13) should be used when
cook» is positive (negative). The correlation function is
easily obtained using Eqs. (12) and (13). The result is

N '(,N(k, co)N (k ', co'))

=(2m) 5(a) —co )5(kii —lt ii)

—(k»+ k
II )Dk S„-'

'

&&
f" dk„

cook max(k„, k„')/~ k coo) (~ok )

i co(k„—k„' )

booky

1

/a)oky
/

JF„

&& fk ..,i ~k., ~

"k)'")+"~~)D-k + f dk'"'+" ~~)D-.
,

(14)

It is more convenient to carry out the analysis of Eq. (14) in the time domain. (Note that for typical diffusion time
scales, scattering experiments use an autocorrelator and thus measure the time correlation function directly. ) Inverting
the time Fourier transform in Eq. (14) gives

N (N (t)N (0)) (2n') 5(k~~ k ~~)5(k»+a)okyt k»)F(k t) (15)

where the intermediate-scattering function is defined by

(k„+k ii
)2D„- S„-' '

F(k;t) =— dk„
Oy ~ x' x+ Oy ~ y Gooky

X exp f „„dk)(k)+kii)D-
cooky

(16)

The fact that Dk and Sk ' depend only on the magnitude of k implies that F(k, t) is even under k~ —k simultaneously
changing t to t. Note, that —while Eq. (14) would still be valid if Dk were allowed to be frequency dependent, the
Fourier transform could not be inverted as easily; thus Eq. (16) is restricted to frequency-independent diffusion process-
es.

The role of the shear flow in distorting the correlation can be seen more clearly by rewriting Eq. (16) as

k +cook t

F(k, t)=exp —f (k)+k~~)D(k), k~~) S(k„+kycoot, k)~), cook &0, t &0
X COoky

k„
=exp — „(k)+k~~)D(k), k~~) S(k», k~~), cook@ &0, t (0 .

(17a)

(17b)

The behavior for moky &0 can be obtained by letting
(k, t)—+( —k, t) in Eqs. (17)—. The exponential prefactors
in Eq. (17) describe the loss of correlation due to dif-
fusion. [In fact, as coo—+0, they become equal to
exp( Dkk

~

t
~

) as expec—ted. ) Equation (17a) is exactly
what the Onsager regression hypothesis would predict for
the time correlation function, although it must be stressed
that the static structure factor is very different from that

given by the local equilibrium assumption. For long
times, the decay given by Eqs. (17a) and (17b) will not be
exponential. Consider Eq. (17a). By neglecting the k
dependence Of Dk, the exponential becomeS

expI Dk t[1+k ky—coot+(cookout) i3])
which, in the long-time or high-shear-rate limits, is dom-
inated by the s' factor in the exponent.
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The factor of 5(k„+tppkYt —k„' ) is caused by the distor-
tion of the correlation by the colloid particles moving
along the shear streamlines and unfortunately complicates
the analysis of the dynamic scattering experiment; in the
limit of high shear rate, the details of the incident beam
profile cannot be ignored. Consider the autocorrelated
scattered intensity at inomentum transfers k, I(k, t), as
measured in a heterodyne experiment. By assuming
geometric optics for the incident beam and quasielastic

scattering, I( k, t) can be written as

X (N(r), t)N(rq, 0) ), (18)

where the incident electric field is Re[E(r)e '"' ] (k;„,
is the incident wave vector) and the asterisk denotes com-
plex conjugation. By introducing Fourier transforms and
the intermediate-scattering function, Eq. (18) can be
rewritten as

dk'
I(k, t) ~ J 3

E(k —k ')
(2~)'

XE*(k—k ' —eicopk& t)F(k ', t), (19)

Using Eq. (20) in (19) gives

(k droot j2)2—

&& I dhke '" 'F(k„——,'k~e)pt+b, k, k~~.,t),

where

E(k)= f dre'"'"E(r)

and e& is the unit vector in the x direction. Clearly, the
more the incident beam is like a plane wave, the more- the
observed time dependence will be governed by the details

of E(k). Let d be a typical incident beam dimension in
the x direction. The width of the dispersion in the in-
cident beam can be estimated by dhk=2m. In addition,
F(k, t) is expected to decay on the (D,k )

' time scale.
Hence, the condition that the observed time decay be
given by F and not the details of E is topk~d/(D, k ) & 1.
For the conditions of Fig. 2 (i.e., D, =1.8&(10 cm /sec
and k=4X10 cm '), a typical beam dimension of 0.01
cm implies that ~o& 10 sec

Some experimental aspects of the high shear limit can
be seen by modeling the incident beam by a plane wave in
the y and z directions and having a Gaussian profile in the
x direction, i.e.,

From Eq. (16), it follows that F(k„—,'k—~copt,k(~, t) is an
even function of t. Thus in the high shear limit, at least
for a Gaussian profile, the time correlation has a Gaussian
decay, essentially determined by the incident beam.

A way in which the experimental problems associated
with 5(k„+e)pk~t —k„') might be overcome is by using a
two-beam experiment. That is, heterodyne two-scattered
beams into separate detectors and cross correlate the out-
puts. Such a configuration would result in the measure-
ment of F(k;t) for t= —(k„—k„' }/( e)pk~), where k„and
k' are the x components of the momentum transfers in
the two scattered beams. Of course, the two scattering
directions must still be chosen to give the same momen-
tum transfers in the y and z d][rections. Some further dis-
cussion of the two-beam scattering experiment is found in
Ref. 16, although there, the nature of the system's correla-
tions gave a result which rapidly decreased as k —k,' was
increased. This is not the case here. Two-beam measure-
ments on colloidal suspensions have been performed re-
cently in Ref. 20(b).

From the preceding discussion, it is clear that the quan-
tity most amendable to theoretical and experimental
analysis is the static structure factor. A number of gen-
eral properties of S-„can be deduced from Eq. (16)
without knowing the precise details of S),

' or D), . First,
should S), ' be independent of k for the wave vectors of in-
terest, then all the integrals can be carried out, with the re-
sult that S-=S'p' for all e)p. Second, in the limit of van-

k

ishing shear rate,

(p) topkick), (}S)'," (tpp&y )' () k„BS)(')
Sg ~Sk + —+

2kD), dk 4D), Qk„D„k3 (lk

+O(e)()) .

The linear terIn is exactly what was obtained using linear-
response theory [cf. Eqs. (6) and (8)]. The quadratic term
is new. Clearly it cannot be ignored near the extrema of
S~ ' or for certain scattering directions. For example, the
linear term vanishes when k„=O and

(o)
(o) moky ~~k 3Sg=S), + — k +O(top) .

2Dkk
(24)

X [S' )(k„,kii )—1]+O(cop ) .

Finally, in the limit of infinite shear rate (ignoring the
possibility of turbulence), Eq. (16) becomes

S =1— 2

/e)pky f

X J„„„dk„(k„+k ((
)D(k„,k)) }

which, in the limit of large 1, can be approximated by

—(k dcoot/2) +

I(k, t) cce ~ ' F(k„—, kyp)pt, k(~, t) —. (22)

(25)

The fact that S), '~1 as k —+ ao was used in obtaining this
last result. This is totally different behavior from either
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of the linear predictions [i.e., Eqs. (8) and (10)]. Equation
(25) implies that in the limit of very high shear, any struc-
ture in St, disappears. Of course, the shear rate might be
so large that Eq. (11) breaks down. This result should not
be too surprising in light of the fact that shear flows were
used by Clark and Ackerson " to prevent colloidal
suspensions from ordering. Note that the ranges of validi-
ty of the asymptotic expansions given in Eqs. (23)—(25)
depend on k, since the expansion parameter in Eqs. (23)
and (25) is roughly cog(k Dt, ). This implies, providin
D~ has not become too large due to the smallness of SP,

that the low-wave-vector regimes will exhibit larger non-
linear effects than high ones. Since the degree of non-
linearity is wave vector dependent, different experiments
could lead to different conclusions concerning the lineari-
ty of the phenomena, i.e., the results will depend on pre-
cisely which wave vectors are being observed. For the sys-
tem considered in Fig. 2, a shear rate of 15 sec ' implies
that a transition from linear to nonlinear behavior occurs
at k=3X10 cm ', i.e., right in the vicinity of the first
Deybe-Scherrer peak.

Using Eqs. (7) and (16),S- can be written as
k

S =
&
„dk&(k&+k II

)exp
k k ~ k„k coo/~ k coo~ky

2D ( '+ki~)
dx

~

k co
~

~" "y~o~~~y~o~ S~o~(x,k )

The static structure factor is plotted in Fig. 5 for the same
conditions as Fig. 2. The result is quite different. The dip
preceding the first maximum has completely disappeared.
On the other hand, the maximum values attained by S-

k
are now less than the equilibrium maximum and the peaks
are somewhat broader. This should not be too surprising
since [cf. Eq. (23)) it is clear that the linear theory will al-
ways break down in the vicinity of the extrema of S-. In

addition, note that the linear theory is becoming more ac-
curate at high k's.

IV. SUMMARY AND CONCLUSIONS

In this work, a detailed theory for the dynamic and
static correlations in colloidal systems undergoing shear

1.0

0.5

0.0
0,0 0.2 0.4 0.6 0.8 1.0

(10 cm )

FIG. 5. Same as Fig. 2 but now using the nonlinear form for
the static structure factor given by Eq. |,'26).

flow has been presented. This yielded theoretical predic-
tions for the high- and low-wave-vector correlation func-
tions which complement those obtained in Ref. 3(b). The
colloidal systems exhibit strong static correlations and rel-
atively simple dynamics. While this is clearly one aspect
of the situation in molecular liquids, it is obvious that the
high-k dynamics is also going to be modified in some non-
trivial way, although the recent works of de Schepper and
Cohen on the high-k equilibrium dynamic structure fac-
tor of low-density liquids indicates that collective modes
still play a key role.

As was discussed in the preceding section, the linear
theory will not be valid over all wave vectors; it breaks
down at low wave vectors or near the extrema of Sl, . Note
that k is still large enough such that wall effects should be
negligible. In addition, the behavior at high rates of shear
resulted in a loss of correlation, asymptotically yielding
the ideal gas result. Finally note that the nonlinear terms
do not have the simple angular dependence predicted by-+
the factor of kk: V v, cf. Eq. (8) and this can be used to fa-
cilitate their detection.

As well as causing some interesting nonlinear effects in
the static structure factor, there are nonlinear effects in
the intermediate-scattering function as well; notably, the
decay of F(k;t) becomes nonexponential at high shear
rate and a time-dependent factor of 5(k„+cook„t k„') ap-—
pears. It is this last factor which complicates the mea-
surement of the intermediate-scattering function, although
the two-beam configuration described in the preceding
section should circumvent the problem. It should be
noted that the nonexponential time dependence implies
that a shear-dependent diffusion coefficient not be defined
for this problem, as it could in the case of the non-
Newtonian viscosity calculations cited in the Introduction.

Finally, it must be stressed that the theory need not
have any adjustable parameters. The only input is the
forms of the equilibrium structure factor and diffusion
constant. Clearly what is needed is a detailed measure-
ment of Sk in and out of equilibrium and an equilibrium
measurement of Dk. These must be performed above the
colloid freezing temperature.
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Note added in proof. Some recent work of Hanley
et al. based on the nonequilibrium molecular dynamics
study of soft sphere fluids under shear by Hess and Han-
ley indicate some interesting features in the Debye-
Scherrer ring patterns (specifically "spiral nebulea"). The
nonlinear theory presented in Sec. III is currently being
applied to this case and the results will be reported in the
near future.
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