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We reconsider the problem of the adiabatic elimination of selected dynamical variables in the
description of nonlinear systems, with a special emphasis on the identification of suitable criteria for
the global validity of this procedure. The problem is analyzed in detail using as a guideline the
one-mode homogeneously broadened laser model, with an injected signal and an arbitrary popula-
tion difference for added flexibility. We propose five conditions for the global validity of' the adia-
batic limit, after consideration not only of the relative size of the time scales involved, but also of
the magnitude of all parameters, of the physical variables, and of their fluctuations. The adiabatic
elimination is formulated in the context of the dressed-mode description, leading to a genera1ization
of the procedure adopted in earlier studies of multimode absorptive bistability. In addition, we es-

tablish a rigorous link between the adiabatic-elimination procedure and the multiple-time-scale ap-
proach to dynamic systems. The scaling behavior of the variables, of the eigenvalues of the linear-
ized equations, and of the dressed-mode amplitudes and eigenvectors with respect to the smallness

parameter of the problem is studied in detail. The relevance of what we shall define as "normal"
and "anomalous" scaling in the text to the applicability of the adiabatic-elimination process is clari-

fied. We also develop an alternative adiabatic-elimination scheme for the special case where all the
rate constants of the system have the same order of magnitude, but another smallness parameter
can be identified. From our analysis, it should be clear that our main conclusions are model in-

dependent, and not at all restricted to the specific features of the dynamical system selected as a test
case for our discussion.

I. INTRODUCTION

As emphasized by Haken, ' the so-called adiabatic-
elimination process plays a fundamental role in under-
standing the origin of self-organization in open systems
far from thermal equilibrium. In addition, the elimina-
tion of the fast variables can lead to a considerable reduc-
tion in the complexity of a problem, sometimes to the
point that analytic solutions become accessible.

The adiabatic-elimination procedure described by Hak-
en in his study of the generalized Ginzburg-Landau equa-
tions for phase-transition-like phenomena in open sys-
tems is designed to cope with the behavior of a nearly
critical system, a situation where the control parameters
are adjusted in such a way that a stationary state is about
to become unstable. In this case, part of the system, the
so-called unstable modes, evolves through a very slow pro-
cess of damping or amplification (the unstable modes are
said to become soft); thus the remaining (stable) modes,
which still evolve at their normal rates, can be eliminated
adiabatically. The accuracy of this procedure is controlled
by the difference k —A,, between a control parameter k
and its critical value A,, and is, normally, adequate when

this difference is sufficiently small. In addition, this type
of adiabatic elimination has a "local character" in that it
allows the construction of solutions only when these are
suitably "close" to the stationary configuration that has
become unstable.

To be more precise, if the state of the system is speci-
fied by the element V of an n-dimensional vector space,
and if V„corresponds to the steady-state configuration
that becomes unstable, the distance

~

V —V„~ must be of
the order of some appropriate positive power of A, —A,
This limitation is common also to standard bifurcation
theory.

In practice, however, the adiabatic elimination is carried
out in a global sense, after assuming that the rate con-
stants which appear in the equations of motion of the sys-
tem of interest are sufficiently different from one another.
Sometimes, this requirement is supplemented by more re-
fined conditions in connection with specific problems, but
we are not aware of the existence of a systematic pro-
cedure that specifies the conditions under which the adia-
batic elimination is applicable in a global sense. This
problem is even more acute in the case of fully quantum-
statistical treatments.
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The aim of this paper is to attempt a definition of such
a procedure, and to lay the foundations (hopefully) for a
rigorous theory of the adiabatic elimination in a global
sense. In the process, we show that the adiabatic-
elimination conditions impose requirements not only on
the rate constants, but also on all physical parameters of
the system. Even more so the validity of the procedure
hinges on the order of magnitude of the vector V, i.e., of
the same variables that appear in the time-evolution equa-
tions. On the contrary, no conditions are imposed on the
size of the difference A, —A,, or on the distance

~

V —V„~ .
Thus, in this sense, the elimination is global.

We arrive at this result through (i) the identification of
a suitable smallness parameter, given by the ratio between
two rate constants and (ii) the selection of the appropriate
region in control parameter space where the adiabatic-
elimination process is possible on a global scale. The
latter step will be guided by consideration of the size of
the relevant physical parameters with respect to the small-
ness parameter. An important point in our procedure is a
particular type of scaling of the variables ("normal" scal-
ing). This has been used repeatedly in the past, but its role
with respect to the adiabatic elimination has not been clar-
ified to our knowledge. From our analysis, it will become
apparent that some of the conditions may not be satisfied
in specific instances, and that the adiabatic-elimination
procedure cannot be carried out, even if the rate constants
are sufficiently different from one another. For an impor-
tant class of problems of this type, a different scaling of
the variables ("anomalous" scaling) becomes necessary.

We also extend the usual adiabatic-elimination ideas to
cover the little-studied problem where all the rate con-
stants have the same order of magnitude. This situation
requires a separate study because our five conditions no
longer apply. Nevertheless, we show that an alternative
scheme can be set up, in some instances, which leads to an
adiabatic elimination of a new type. It is very unlikely
that this work will complete the discussion on the global
adiabatic elimination. For this reason, and in order to
avoid excessive use of general mathematical formalism in
our analysis, we focus our attention on a specific and
well-known model of a dynamical system: the one-mode
laser, which is equivalent to the Lorenz model of hydro-
dynamics. This system is sufficiently rich to lend itself to
a variety of considerations. We make it more flexible with
the inclusion of an external field (so that it can simulate
also a bistable system, or a laser with injected signal) and
of atomic and cavity detunings. It should be clear from
our discussion that the considerations of the following
sections are not limited to this model.

An interesting feature that emerges from our study con-
cerns the behavior of the instabilities. Usually, when the
rate constants in a nonlinear model are allowed to become
sufficiently different from one another, several instabili-
ties disappear. This is well known to occur in the laser
model. We show, however, that all the hard-mode insta-
bilities that persist in the adiabatic limit are accompanied
by anomalous scaling.

This research takes its premises from the work by some
of us on the dressed-mode theory of optical bistability.

In that case, it was possible to perform a global and
rigorous adiabatic elimination of the atomic variables and
to obtain a quasianalytical treatment of self-pulsing.
Some of the ideas developed in Ref. 5 will be generalized
in this work.

Even if consideration of the character and size of the
fluctuations of the variables is essential in deriving the
adiabatic-elimination conditions, the treatment here is
purely semiclassical. An application and extension of the
rigorous global adiabatic-elimination limit to a fully
quantum-statistical laser model will be worked out in a
separate paper.

II. THE ONE-MODE LASER MODEL
WITH INJECTED SIGNAL —NORMAL SCALING

This model was introduced and elaborated on in the
1960's by Haken, Lamb, and their respective collabora-
tors. Subsequently, it was generalized to include a
coherent external field by Bonifacio and Lugiato. We
consider a system of N identical two-level atoms with
transition frequency ai, interacting with a radiation field
mode of frequency co, . The atoms fill a resonant cavity of
length L and volume V with mirrors of transmittivity T.
An external cw coherent field of frequency co0 is injected
into the cavity. We label with a the expectation value of
the field annihilation operator for the cavity mode, with P
the expectation value of the complex macroscopic atomic
polarization, and with D the expectation value of one-half
the difference between the population of the lower and of
the upper levels. In the semiclassical, dipole, and
rotating-wave approximations, these variables obey the
time-evolution equations

da
dt

dp
dt

—l COpf

i ai, a—gP v(a —a—0e —),

= —i co~P+2gaD —y&P, (lb)

dD o.X
dt

g(aP'+a*P)—
y~~

D+—
2

(lc)

The variables a" and P' satisfy the complex-conjugate
equations of (la) and (lb), respectively; D is real by defini-
tion. The meaning of the symbols in Eqs. (1) is as follows:
g is the coupling constant

j. /2
2

where p is the modulus of the atomic dipole moment, ~ is
the cavity damping constant

cT
2L,

'

and a0, which is taken to be real and positive for definite-
ness, is a c-number proportional to the amplitude of the
coherent injected field. To be more precise, a and a
represent the average number of photons in the injected
and cavity fields, respectively. yz and y~~ are the trans-
verse and longitudinal atomic decay rates, which obey the
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with the result

a
dt

i (co —c—o }a—gP —a(a —ao) (Sa)

dp
dt

i (c—o, coo)P +—2') yiP, —

D O.N
dt

g(aP'—+a P) y~~
D—+

2
(Sc)

Equations (S} are not yet in a convenient form to attack
the problem of the adiabatic elimination because it is not
easy to assess the order of magnitude of the various pa-
rameters with respect to the natural smallness parameter
(the ratio between the small and large rate constants). The
situation becomes much more transparent if we introduce
the following scaled variables:

ax=~, y=

N y
2

ap

1/2 —].

P, oN
2

D,

(6a)

(6b)

where N, is the saturation photon number

inequality y~~&2yz, o. is the unsaturated inversion per
atom created by the pump; the range of cr is —1 & o & 1.
The usual laser model corresponds to the selection of pa-
rameters o &0 and ao ——0, while o.&0 and ao&0 corre-
spond to the laser with injected signal. The choice 0.= —1

(no pump action) and ao&0 leads to optically bistable ac-
tion.

In order to eliminate the explicit time dependence from
the coefficients of Eqs. (1) we set

of the variable which appears in the state equation [e.g. , a
in Eq. (9)]. The state equation could have been expressed
in terms of D, for example, with the same results:

(ao/N, )D
D+ + =O.

1 —2C( crN—/2) 'D
(9')

For a general nonlinear set of equations, the normal scal-

ing is the one that yields the simplest-looking steady-state
equations and that reduces the number of free parameters
to a minimum. Furthermore, the steady-state values of
the normalized variables can be expected to be of the order
of unity.

With the use of the normal scaling transformation (6),
Eqs. (S) take the form

X = —a[x(1+i9)—y —2Cp],
dt

dp = —yi[p(1+i', ) xd ], —

(1 la)

(1 lb)

dd
dt

= —yii[ —,(xp +x p)+d —1], (1 lc)

where 0 and 5 are the cavity and atomic detuning param-
eters, respectively, i.e.,

8= CO —COp
(12a)

CO~ —Np
(12b)

In the following discussion, for simplicity, we shall often
restrict ourselves to the case of perfect tuning 8=6=0;
under this condition, if the variables x and p are initially
real, they remain real throughout the entire time evolu-

tion. Thus, in resonance, Eqs. (11)become

4g2

dx = —Ir(x —y —2Cp ),
dt

dp = —yi(p —xd ),

(13a)

ap ——a— 2Ca

1+a /N,
(9)

where C, the cooperation parameter, is defined by

g No.

2K/ g

(10)

We note, although it is rather obvious, that the specific
form of the scaling relations (6) is not tied to the selection

We call this transformation the normal scaling because it
is the one which is suggested naturally by the steady-state
analysis of the system of equations (S). If we restrict our-
selves to the resonant case, co, =co, =coo, for simplicity,
the steady-state values of the atomic variables are given by

' 1/2

P=— (Sa)
2 yi 1+a /N,

D=- (Sb)
1+a /N,

while a is the solution of the following state equation:

(13b)

dd
dt

= —yii(xp+d —1) . (13c)

In this form, the equivalence of Eqs. (13) with the Lorenz
model ' is easy to assess.

III. ADIABATIC-ELIMINATION CONDITIONS

One of the main advantages of Eqs. (11) and (13) is that
all terms in each equation are proportional to the same
rate constant. This feature makes the identification of the
conditions for the adiabatic elimination more direct and
devoid of ambiguities. In this section we state three con-
ditions for the validity of the adiabatic-elimination pro-
cess; two additional requirements will be given in Sec. VII.
The first condition is obvious.

Condition 1. The rate constants can be divided into two
groups, such that all the constants within each set have
the same order of magnitude. By arbitrary selection of
one rate constant from each group, the ratio between the
smaller and the larger of the two rates is the smallness pa-



29 ADIABATIC ELIMINATION IN NONLINEAR DYNAMICAL SYSTEMS

rameter e of the adiabatic-elimination process (e« 1).
The second condition is suggested at once by the struc-

ture of Eqs. (11) and (13).
Condition 2. The quantities x, y, p, d, C, 0, and 6

remain finite in the limit e—+0. Condition 2 makes the
application of the adiabatic-elimination process straight-
forward. Consider, for example, Eqs. (13) in the case in
which the atomic variables are to be eliminated adiabati-
cally, i.e., &/Yi ——e and y~~/yi O—(—e ) Th. e longer-lived
process evolves over a time scale of the order of I~ '. By
setting r =et, Eqs. (13) become

dx = —x+y+2Cp,
d7
K dp = —P +Xd
pJ d7

K dd = —xp —d+1,

(14a)

(14b)

(14c)

and, in the limit e—+0, they reduce to the form

dx X= —x+y+2C
d7 1+x

(15a)

(gV N /yl )
N, =4N (16b)

('Y
~

~/'Yl. )(YJ/YL).
where (gVN )

' can be recognized as the cooperation
time in cooperative spontaneous emission. ' By using
condition 2, which requires C to be finite, we obtain in
each case the order of magnitude of the ratio gVN /yl
relative to the smallness parameter e. Using condition 3

P 2' d
21+x 1+x

A more rigorous procedure to perform the adiabatic elim-
ination will be described in Sec. IX. Now we consider the
parameters that appear in the original Eqs. (5) in order to
assess the order of magnitude of each quantity with
respect to the smallness parameter. Condition 2 is not
sufficient to accomplish this task. We must add the fol-
lowing.

Cond''tion 3. In the limit @~0, the fluctuations of all
the variables must not diverge. In fact, an intrinsic condi-
tion for the validity of the semiclassical equations is that
the fluctuations be small during the entire evolution;
hence, condition 3 is a minimal requirement.

As it turns out, the magnitude of the fluctuations of x,
p, and d is set by the same parameters that appear in the
scaling relations (6). More precisely, the fluctuations of x
are of the order of N, ', while those of p and d are of the
order of N '.' '" Hence, according to condition 3, we
must require that N,

' and/or N ' either remain finite or
vanish in the limit e~O.

We now apply conditions 2 and 3 to the different types
of adiabatic eliminations that are usually carried out with
the model equations (13). If we generally denote by YL
the "large" rate constant, we can write

(gV N /YL, )'
2C= (16a)

«O'L)(ri/YL) .
'

we can finally assess the order of magnitude of N
(a) Elimination of the atomic polarization and inver-

sion. In this case, we set yl =yi, x./yi ——e, and

y~~/ i O——(e ) .Conditions 2 and 3 require that
(g N/Yi) =O(e) and N '=O(e ), and this automati-
cally ensures that N, '=O(e)

(b) Elimination of the atomic polarization. Here we

select YL
-——yi, ~/yi ——e and y~~/yi ——O(e). In this case,

we obtain the requirements (gVN /yi) =O(e) and
'=O(e), and, as a result, N, =O(e).

(c) Elimination of the field and of the atomic polariza-
tion. Here we set YL ——yi, ~/yi ——O(e ), and y~~/yi
The orders of magnitude of the parameters are
(gVN/yq)=O(e ), N '=O(E), and, under these condi-
tions, N, '=O(E ). Note that condition 3 is essential in

this case.
(d) Elimination of the field. We select YL ——x, yi/i~'=e,

and Y~~/yi ——O(e ) and obtain the order of magnitude

(gv N /Ir) =O(e) and N '=O(e). In this case,
N,

' =O(e ) and, again, condition 3 is essential.
As we can see from the above examples, condition 3

does not assign the order of magnitude of N ' uniquely.

For example, in case (b) above, the choice N '=O(e )

would also be consistent with condition 3. We have select-
ed, instead, N '=O(e) because with this choice the fluc-
tuations of the eliminated variables are of order e, in line
with the results of cases (a), (c), and (d). Thus, the small-

ness of the fluctuations of these variables is automatically
guaranteed in the adiabatic limit.

IV. REMARKS

At this point we make the following remarks.
(i) The adiabatic limit, defined in Sec. III, does not im-

pose any special restrictions on the control parameters C
and y, apart from being finite. The same holds true for
the variables x, p, and d. Hence, the adiabatic elimination
is global.

(ii) Consider for definiteness case (a) of Sec. III. The
condition v/yi ——@~0can be satisfied equally well by let-
ting x approach zero, yi approach infinity, or by any oth-
er double limit that produces the same result. The con-
clusions of Sec. III remain valid regardless of the pro-
cedure adopted in carrying out the limit e~O.

(iii) In Sec. III, we assumed that the rate constants of
the problem can be divided into two groups, one contain-
ing only "small, " and the other "large" rate constants. It
is easy to see that our considerations can be immediately
generalized to the case in which the rate constants fall
naturally into more than two groups according to their or-
ders of magnitude. Thus, for example, if the rate con-
stants fall into three groups, the elimination can be per-
formed in two steps. First, one can eliminate the variables
corresponding to the group with the largest damping rates
and, next, the variables corresponding to the intermediate
group. In the case of our model, we have the following
three different possibilities.

Elimination of the polarization, followed by the atomic
inversion (~/Y~~ =Bi, Y~~IYi=tg): here, we obtain
(gV N /yi) =O(E,ez), N '=O(eq), and, consequently,
N, =O(eiez)
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Elimination of the polarization, followed by the field
he-, ~ .bt.i (~V W /y, )'

=O(e2), N '=O(eie2), and, consequently, X, =O(6p).
Elimination of the field, followed by the atomic

polarization (y ~ ~/yi ——ci, yi/« =e2): here, we obtain
(gV N /«) =O(ez), N, '=O(eie2), consequently,
=O(e ).

(iv) The cooperation parameter C can also be written in
the form"

where a is the unsaturated absorption coefficient per unit
length

g 2+
A

Hence, the case (a) studied in Sec. III includes, in particu-
lar, the limit uI. ~Q, T~G with C constant, which has
been discussed in the dressed-mode theory of optical bista-
bility. In this limit, the fields cT and ao diverge, while the
normalized variables x and y remain finite. Note that the
incident and transmitted fields EI ——(pliii+yiy~~T ) 'y

and Er (p/A+y——iy~~T ) 'x (see Ref. 9) remain finite in
this limit.

(v) With reference to the original variables a,P,D, we
see that in all the cases studied in Sec. III, the variables
that are not eliminated adiabatically diverge in the adia-
batic limit. This divergence occurs also in the th.rmo--
dynamic limit %~co, V~oo, N/V finite. Because, on
the other hand, the coupling constant g is proportional to
V '~, it follows at once that x,p, d remain finite in the
thermodynamic limit, so that in this limit, also, the nor-
mal scaling is the natural one to use.

We stress, however, that the adiabatic is different from
the thermodynamic limit, because the eliminated variables
(original variables) often remain finite. In fact, in the adi-
abatic limit, the smallness parameter is the ratio between
small and large rate constants, while in the thermodynam-
ic limit, the smallness parameter is X . It is true that in
many cases X is of the order e also in the adiabatic lim-
it, but gvX/yL is always finite in the thermodynamic
limit, while it is small in most cases under the adiabatic-
elimination conditions.

Of course, these considerations are not meant to negate
the physical relevance of the fact that X ' is indeed very
small for macroscopic systems; for example, this fact is at
the origin of the smallness of the fluctuations in all mac-
roscopic systems, quite independently of whether the adia-
batic process is valid or not. However, we stress that the
mathematicaI definition of the adiabatic limit, as given in
Sec. III, is different from and independent of the thermo-
dynamic limit.

(vi) In all cases examined in Sec. III, the ratio g/yI
vanishes in the adiabatic limit. This does not mean, how-
ever, that we are dealing with a weak-coupling theory.
This is only a consequence of our prescription that the
normalized variables x,p, d remain finite. In fact, if we
consider, for example, the case of the adiabatic elixnina-
tion of the atomic variables, the weak-coupling limit in

the sense of Van Hove' is defined by the conditions x~0,
g ~0, and t —+oc, with ~/g finite and v =set finite. This
limit must be carried out in Eqs. (5) where the coupling
constant g appears explicitly. In the resonant case

~, =m, =up, by keeping the variables a,I',D finite, we ob-
tain the linear equation

d g No.
a = —a+cKp+ — a

Kfy
(19)

This coincides with Eq. (15a) if we drop all the nonlinear
terms. On the other hand, if we perform the hmit while

keeping x finite, the coupling constant g remains incor-
porated within the definition of x itself. Hence, if we

analyze Eq. (15a) we easily see that the nonlinear term
(1+x )

' contains all powers of the coupling constant.
Thus, Eq. (15a) is representative of a strong-coupling
theory, in spite of the smallness of g/yI .

= —«(x i —2Cpi ), (20a)

= —yi[p i ( 1+i6„)—x i d j, (20b)

= —
y~~[ 2 (xiP i +x iPi )+d —11

dx2 = —«[xq(1 l8«) —2C—P2],
dt

dPz = —yi(pz —x2d»
dt

(21a)

(21b)

dt
= —y~~[-,'(x A+x2P2)+d —ll . (21c)

—CO6 C

y
(22)

and where x ),p),xq,pp are defined as

We now drop the resonance assumption co, =e, =cop
and consider first the case of a nonzero external field
(y&0). In this case, all the considerations of Sec. III
remain unchanged, with the exception of the additional re-
quirement that 6 and 8 remain finite in the adiabatic lim-
it. Thus from Eq. (12) we see that co, —coo must vanish
(diverge) when «vanishes (diverges). A similar correspon-
dence exists between co, —cop and yz.

The situation is different when the injected field is ab-
sent. In this case, the quantities m, —cup and N —cop are
no longer physically meaningful, and they inust be re-
placed by co, —c0,. The set of equations (1) with ao ——0
can be recast in two equivalent ways:
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2ga

O'yiyl
l

N
Vl

2 gJ

' 1/2 —1
I kl

e

' 1/2 —1

leo

iso t 2ga
e ', x2 ——

&yiyll

tNatt
e In terms of the deviations from the steady state,

x=x —xst ~

&P =P —Pss ~

5d =d —dst ~

Eqs. (13) can be cast into the following form:

The two sets of equations (20) and (21) offer two different
possibilities for carrying out the adiabatic limit. In the
first, we require that b,«remain finite, while in the
second case O„must remain finite. Note that, in all cases,
the adiabatic elimination can be carried out by neglecting
the time derivatives of the variables to be eliminated, just
as one would in the absence of oscillatory terms in the
equations. This procedure is different, but equivalent to
the methods proposed by Haken, ' which involves the use
of different tactics, depending on the presence, or absence,
of oscillatory terms in the equations for the variables that
are not to be eliminated. The method for carrying out the
adiabatic limit in the system modeled by Eqs. (2) has been
used in Ref. 5.

dq
dt

—~q+ 4NL ~

5d

W is the matrix

yllP

2' 9

3 j Vlxst

where q is the three-component vector

x

(26)

(28)

VI. EIGENVALUES OF THE LINEARIZED
PROBLEM

xst
Pss= z ~

d=
1+xst

2C
g =xst 1—

1+x„

1
21+x„

(24)

The formulation of the remaining adiabatic-elimination
conditions requires consideration of the eigenvalues of the
linear stability analysis. To this purpose, consider a sta-
tionary solution x„,p„,d„of Eqs. (13), with [see Eqs. (8)
and (9)]

0

y, Sx ()d

6x 5p

(29)

The stability of the stationary state is governed by the
eigenvalues A, of the matrix W, which obey the secular
equation

and where the vector pNL contains all the nonlinear terms

of the equations

x, —1

+ +y +yll + yi+yll +yiyll 1+x,t) —2C&yi- +ayiyll 1+x„+2C =0.
1+xst 1+x„

(30)

In Eq. (30) we have scaled the eigenvalues and the rate
constants to the largest rate yL (thus, for example,
A, =A, /yL, etc.). In the adiabatic limit, the eigenvalues can
be calculated immediately by perturbative expansions in
the smallness parameter; one only needs to set

X=X")+eX")+ (31)

substitute Eq. (31) into Eq. (30), and equate powers of e.
Thus, for case (a) of Sec. III, where yl ——yi and a=a/yi,
one finds, to order eo,

X',"=0,
(32)

4yllx ~&]

and, to order e,

x —1x 1 dg

(1+x,', )'
(33a)

~(i) 2C yll( —xst + 2, 3
(33b)

1+x„ l,z 3(2A, 2 3+1+yll}
Note that A, &" coincides exactly with the eigenvalue of Eq.
(15a} linearized around the stationary value x„. Equation
(15a), of course, is just the equation obtained after per-
forming the adiabatic elimination.

This example suggests the following definition of nor-
mal behavior of the eigenvalues: The eigenvalues behave
"normally" in the adiabatic limit when, first, they are ana-
lytic functions of e, and, second, can be subdivided into
two groups, such that the number of elements of the first
(second) group is equal to the number of variables to be
eliminated (not to be eliminated}. For the eigenvalues of
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the first group, the term A,
' ' in Eq. (31) is different from

zero. For the eigenvalues of the second group, A,
' ' van-

ishes, while A,
'" coincides with the corresponding eigen-

value of the linearized problem as obtained after perform-
ing the adiabatic elimination.

VII. ADIABATIC-ELIMINATION CONDITIONS
(CONTINUED)

We are now in a position to formulate two more condi-
tions for the validity of a global adiabatic elimination.

Condition 4. The eigenvalues of the linearized problem
must behave normally in the adiabatic-elimination limit,
according to the definition in Sec. VI.

Condition 5. For each eigenvalue of the set correspond-
ing to the variables to be eliminated, the real part of A,

' '

must be nonpositive.
We now comment on these new conditions, and discuss,

in particular, some counterexamples to illustrate their sig-
nificance. With regard to condition 4, consider first the
case of the usual laser (y =0) with the field and polariza-
tion variables to be eliminated adiabatically [yL ——yi,
Ir/yi O(e ), y~~/——yi ——e]. We linearize Eqs. (13) around
the nontrivial stationary solution x„=v'2C —1. Because
in this case

2C/(1+x„)=1
the eigenvalue equation (30) becomes

+A, (Ir+1+ y)~)+Ay(~(a+1+x„)+2ay~~x„=O . (34)

If we now look for eigenvalues of the type (31), we find
only one, with

(35)

The other two eigenvalues have the form

(36)

The linearized form of Eqs. (38) around the steady state
leads to the eigenvalue equations

+2eCA, +2e(2C —1)=0, (39)

where we have selected yL, ——K, y~~
——e; the solutions of Eq.

(39) are

A, , 2= e—C+i V 2e(2C 1—)

which are, again, of the type shown in Eq. (36). In this
case, also, the eigenvalues do not behave normally, and, in
fact, the adiabatic elimination of x cannot be performed.

The meaning of condition 4 should now be more
transparent: by performing the adiabatic elimination, one
eliminates as many eigenvalues as the eliminated variables.
This condition requires that the eliminated eigenvalues
should scale as the rate constants of the eliminated vari-
ables.

With regard to condition 5, we observe that, if one of
the eliminated eigenvalues happens to have a positive real
part (this may happen even with normal eigenvalues), the
adiabatic-elimination process wipes out one of the instabil-
ities.

Our next example illustrates this point. We are dealing
here with the laser with injected signal (C & 0, y&0) under
conditions such that K)&yz)~yI~, as in the experiments
of Brun and collaborators. ' The steady-state diagram
that results from Eq. (24) is given in Fig. 1. After adia-
batic elimination of the field variable, Eqs. (13) take the
form

with

~ (p) . 2K

K+1

' 1/2

(37)

In this case, the eigenvalues do not behave normally (ac-
cording to the definition of normal behavior introduced in
Sec. VI), and if we attempt to carry out the adiabatic elim-
ination by setting dx/dt=dp/dt=O in Eqs. (13a) and
(13b) with y =0, we obtain x =p =0, which is not correct.
Thus, the adiabatic limit cannot be carried out under these
conditions, even if y~

~

is sufficiently smaller than K and y J.
Two other examples, also for y =0, are worth discussing

in connection with conditions 4 and 5. Consider first the
case yi »a » y

~

~. After eliminating the polarization
variable from Eqs. (13) (with y =0), we obtain

V2)c)-S

= —ax(1 —2Cd ),
dt

dt
= —yii[d(1+x )—1] .

(38)
FIG. j.. Steady-state equation linking the input {y) and out-

put (x) field amplitudes. Dashed segment in the lower part of
the diagram corresponds to a set of unstable states. Main diago-
nal in the (y, x) plane refers to the behavior of an empty cavity.
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= —yi[ —yd+p(1 —2Cd) j,
dd
dt

= —p
i i
(yp +2Cp +d —1 ) .

(41)

y d +d 1 ~=yl lt .
(1—2Cd )

(42)

This is not the case, however. In fact, if we linearize Eqs.
(41), the eigenvalue equation takes the form (yl. ——yq)

T

2+X yll+
y +yll(l+x2t) y =0

Xst dXst
(43)

where the function y =y(x„) is defined by Eq. (24). Upon
solving this eigenvalue equation using the expansion an-

satz of Eq. (31), we find the two eigenvalues

Now, because y~~/yi
——a~0, one would expect that the

situation should be well described by the single equation
that results from (41) after adiabatic elimination of the
polarization, i.e.,

v=1, yz ——5, and yII=2, with the approximate solution
obtained from Eq. (15a) after elimination of the atomic
variables. The agreement is not very good, as expected. A
similar comparison for ~=1, y&

——10, and yII
——10 sho~s

instead much closer agreement (Fig. 3).
As an illustration of the contents of condition 5, we

compare in Fig. 4 the solutions of the exact equations (13)
and of the approximate equations (41) and (42). The pa-
rameters chosen for this study are C=5, y=2, ~=1,
yi ——0.05, and y~~=0. 005 and the initial state of the sys-
tem corresponds to a point in the vicinity of 8 of Fig. l.
The selection of the rate constants is such that the approx-
imate equations (41) are in close agreement with the exact
equations of motion. On the other hand, the adiabatic
elimination of the polarization from Eq. (41) turns point 8
from an unstable to a stable steady state. Thus, the solu-
tion of Eq. (42) is just a constant in complete disagreement
with the solution of the exact equation.

VIII. ADIABATIC ELIMINATION
IN THE DRESSED-MODE APPROACH

+F.jti +
&st

A,2= —e (1+x„) +A2 e +st 2 dg

dxst

&—3'II ~7x ~

(44)

An alternative procedure for the global adiabatic elim-
ination is one that exploits the mode variables introduced
in Ref. 2, and generalizes the method described in Ref. 5.
A valuable feature of this approach is that the eigenvalues
of the linearized problem appear explicitly in the equa-
tions. Following Haken, we introduce the eigenstates of
the linear operator W defined in Eq. (26):

On the other hand, if we linearize Eq. (42), the resulting
eigenvalue is just the coefficient of the linear term in e in
the expansion of A, z [Eq. (44)]. This is a consequence of
the elimination of A, i in the adiabatic process. Note that
in this case the eigenvalues scale normally. If we now
consider Fig. 1, we see that according to Eq. (42), the solu-
tion 8 is stable, while according to Eqs. (41) it is unstable.
The stability of the system is determined by the eigenvalue
A, ~ which happens to be positive at 8. This example shows
that the caveat of condition 5 is indeed necessary.

As an example of the above comments, we compare in
Fig. 2 an exact solution of Eqs. (13) for C=10, y=10,

g(&)
J

p(2)
J

g(3)
J

2
~j/3 II+ 1 —xst

G(ij )

2+A,j/yi
Pst G(gJ

where

Wd'j ——AjBj .

These are given explicitly by

(45)

(46)

FICx. 2. Output field (dotted line) according to Eqs. (13) and
corresponding to the parameters C=10, y =10, a=1, y& ——5,
and yII =2. Approximate solution obtained after adiabatic elim-
ination of the atomic variables is shown as the solid line.

FIG. 3. Output field (dotted line) according to Eqs. (13) and
corresponding to the parameters C=10, y =10, x=1, y& ——10,
and yII=10. The agreement with the approximate solution
(solid line) obtained after adiabatic elimination of the atomic
variables is much better than in Fig. 2.
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g, (&)=(&,q(&)) . (54)

Obviously, because d'J and q(t) are dimensionless vectors,
the dressed-mode amplitudes are also dimension-free. On
substituting Eq. (53) into Eq. (26) we obtain the following
coupled nonlinear equations for the dressed-mode vari-
ables.

I I

C

G(A,, ) =(1+A, /y, )(1+1,/y)) )+x,', (47)

and ~J denotes a set of three arbitrary constants. Con-
sider also the adjoint operator W

(48)

and its eigenvalue equation

Mt', =A,J*8, . (49)

The explicit form of the eigenvectors PJ of the adjoint
operator is

g (1)
J

@(&)
J

g (3)
J

1

—2C
( I+&J'/y)) )

G(&J')

K X

y)) G(AJ*)

(50)

Note that all the elements of BJ and PJ are written in
terms of dimensionless quantities. The following ortho-
gonality relation can be easily proved:

3

(P P ) y P(l)ey(l) 0
I=1

(51)

The normalization constant ~J. is chosen in such a way
that

J' J ~JJ (52)

Next, and still following the method of Ref. 2, we intro-
duce the following expansion for the fluctuation variables:

q(t)= gg, (t)d', , . (53)

FIQ. 4. Output field (curve a) according to Eqs. (13) is com-

pared with the solutions of Eq. (41) (curve b), and of Eq. (42)

(curve c). Parameters used in this figure are C =5, y =2, K=1,

y& ——0.05, and y~~
——0.005. A large initial spike of the two un-

stable solutions has been left out of the picture for clarity.

dt
=J(gJ + ( 8J, gNL ) . (55)

From the explicit form, Eq. (29), of the nonlinear vector

QNL, and the definition (53), we can easily derive the ex-

plicit form of the scalar product in Eq. (55):

(56)

Now we can turn our attention to the adiabatic-
elimination process, under the assumption that the eigen-
values behave normally. The constants MJ, which may
very well be explicit functions of e, must be chosen in

such a way that none of the components PJ ' (j,l = 1,2, 3)
diverge in the limit a~0, but also in such a way that for
each eigenvector PJ (j=1,2, 3) the three components WJ"
do not vanish simultaneously in the limit a~0. Because
we assume that the eigenvalues behave normally, there
will be n" eigenvalues that scale as the large decay rate

yI and n'"' eigenvalues that scale as the small decay rate

y, (y, /yL, =e).' It will be convenient to refer to the ele-
ments of the first set as the "eliminated eigenvalues, " and
similarly to the elements of the second set as the "non-
eliminated eigenvalues. "

As shown in Appendix A for a general nonlinear sys-
tem, the expansion of the elements WJ.

" and 6 J" in powers
ofe

p(l) y g(l)~
n=0

(57)

is characterized by the following properties. In the case of
eigenstates 6J corresponding to noneliminated eigen-
values, the components d'J 0 are different from zero for all(I)

values of l. In the case of eigenstates WJ corresponding to
eliminated eigenvalues, we have, instead, d'J'0 ——0 for all
the components that correspond to noneliminated vari-

ables. Likewise, the eigenstates 8J corresIionding to elim-

inated eigenvalues have components 6 Jo which are dif-(I

ferent from zero for all values of l, while the eigenstates

WJ corresponding to noneliminated eigenvalues are such
that 6 J o ——0 for all the components that correspond to
eliminated variables. This behavior of the eigenstates is
typical of all situations where the eigenvalues are normal.

As shown in Appendix A, the above properties of the
eigenstates lead to dressed-mode equations of the form

where the coefficients g~(t), the so-called "dressed-mode"
variables are defined by dt

' =y. l. ~J"k~+C'J(k)4z k)+«&)] (58a)
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dt
' =~L, [~g"0,+@,(ki 4 4)+«e) l (58b)

for the mode variables that correspond to noneliminated
eigenvalues, and

x(ti, r) =xo(t„r)+ex, (t„r)+ (62)

After inserting these expansions into Eqs. (61), and equat-
ing the coefficients of equal powers of e, we obtain the
following equations to order e:

for the modes gj, corresponding to the eliminated vari-
ables. The expressions A,

' ' and A,
'" have been defined by

Eq. (31); the nonlinear terms @J are of order e . If we
now introduce the scaled time variable ~=@,t, and carry
out the limit e—+0, while insisting that the mode variables

gJ remain finite, the relevant dressed-mode equations for
the noneliminated eigenvalues take the form

Bxo =0,
Bty

~Pp = —pp+xpdo,
Bt)

Mp
y—(((do 1—+xopo) .

Bt]

(63a)

(63b)

(63c)

(59a)

The equations for the eliminated variables, instead, reduce
to the algebraic system

The first immediate conclusion is that xp does not depend
explictly on ti, so that Eqs. (63b) and (63c) can be readily
solved. The result is

O=A, J 'gj+4J(gi, gq, g3) . (59b)
xo(r)

z +a+ (v )exp[ —A+(r)t i ]1+xo(r)
The required closed set of equations for the noneliminated
mode variables is obtained by solving Eq. (59b) for the
eliminated modes and substituting the result into Eq.
(59a).

Thus, we have generalized the global adiabatic-
elimination procedure in the dressed-mode formalism,
which in Ref. 5 was restricted to the case a « yi, y~ ~.

IX. MULTIPLE- TIME-SCALE APPROACH

+a (r)exp[ —A, (r)t, ],

do= 2 + b+(r)exp[ —k+(t)ti]
1+xo(r)

+b (r)exp[ A(7 )—t i ], , (64b)

w=Kt =6't) .

Equations (31) can now be written as follows:

(60)

In this section, we describe an adiabatic-elimination
procedure which is more rigorous and complete than the
one developed in Sec. II [Eqs. (14) and (15)]. Again, we
direct our discussion to the case of normal eigenvalues,
and for definiteness, consider the specific case of a/yi ——e
and y~~/yi=y~~ = W(e ). On the basis of the existence of
two mell-separated time scales, we introduce the two
scaled-time variables

where

& ( )=—, I
—1 —y~(+[(I —y)~) —4 o( )] I . (65)

Now, we consider a range of values of t such that t»&1
and y~~ti &~1. Accordingly, we keep only the first-order
terms in Eqs. (64) and drop from Eqs. (61) all terms in-
volving 3/Bt&, because over the chosen time range the
variables depend only on r. To first order in e, Eqs. (60)
produce the following system:

dxo = —(xo —y —2Cpo),
d'T

dx = —e(x —y —2Cp ),
dt&

dp = —p +xd
dt]

(61a)

(61b)

dPo = —(Pi +xodi +doxi ),
d'T

ddo = —Y~~(di+xopi+pox, ),

(67a)

(67b)

= —yii(xp+d —1) .
dt&

Now, if we let

x=x(ti, v.), p=p(ti, r), d=d(ti, r)

(61c) where in Eqs. (67) we have replaced 8/Br with d/dr.
Equation (66) coincides with Eq. (15a), which is thus
recouered. On the other hand, Eqs. (67) allow us to calcu-
late xi, pi, and d i by solving them together with Eq. (61a)
expanded to order e . This has the form

we can use a multiple-time-scale approach which is well
known in the literature' starting from the pioneering
work by Sandri. ' First of all, we observe that

d=a a+e
dtI Bt~ Bw

Next, we expand the system variables in powers of e as
shown below, for example, for the field variable:

dx ( = —(xi —2Cpi) .
dv

(67c)

In principle, this analysis can be continued to arbitrary or-
ders in e. It is important to observe that the initial condi-
tion to be used for Eq. (66) is just x(t =0), because, as we
have shown, xp does not depend on the short-time-scale
variable t j. This feature is related also to the fact that the
eigenstates corresponding to eliminated eigenvalues are
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characterized by WJ o ——0 for all the coxnponents corre-
sponding to the noneliminated variables (see Sec. VIII).

X. ANOMALOUS SCALING

so that Wz
' and 61 ' become 0(e ), while 6'I ' becomes

0(V e). In this case we require that in the adiabatic limit
e~O the new scaled population fluctuation 5d, and not
6d, remains finite. This implies that, in the adiabatic lim-
it, the fluctuation variable 5d, which is of the order I/e,
scales differently from the stationary value d„of the same
variable, which is instead of order e . For this reason,
whenever the eigenvalues do not behave normally, we call
the scaling anomalous.

We now turn our attention to the matter of hard-mode
instabilities. Often, when carrying out the adiabatic limit
in nonlinear models, several instabilities are seen to disap-
pear. For the case of the model selected in this study, we
have invariably found that the hard-mode instabilities that
survive the adiabatic limit are accompanied by anomalous
scaling.

Consider again, for example, Eqs. (13) with y=0, i.e.,
the single-mode model of the laser without injected signal.
From our analysis of the secular equation (34}, and as
shown for the first time in Ref. 18, the stationary state be-
comes unstable when K) f~+yll a

(K+y, +y~, )(K+y, )
xst )

(K y~~ y. )y—l— (69)

In fact, when Eq. (69) is satisfied, two complex-conjugate

We now turn our attention to the case in which the
eigenvalues do not behave normally, so that the adiabatic
elimination cannot be carried out along the lines described
above. As illustrated by the first example of Sec. VII
where we selected yI ——yl, K/yl ——0(e), and y~~/yl=e
[see Eqs. (34)—(37)], the eigenvalues need not be analytic
functions of e, although they may be analytic in v e. The
eigenvalues A, z and k3 corresponding to the "long" time
scale have real and imaginary parts that scale very dif-
ferently with respect to e because Rekz I——0(e) while
ImA z 3

——0 ( v e). Clearly, the oscillations imposed by
these eigenvalues are much faster than the damping mech-
anism.

We can verify at once that, in this case, the eigenstates
also do not behave normally. In fact, only the eigenstate
corresponding to the eigenvalue A,

&
behaves in a normal

way, because from Eqs. (31), (35a), and (46), and on select-
ing ~I——0(e ), its components have the following orders
of magnitude: 8I",WIz'=0(e ) and 6'I '=0(e), as ex-

pected of normal eigenvectors. On the other hand, in the

case of the eigenstates 6'z and PI, Eq. (36} and the selec-
tloI1 ~z=0(e ) lead fo Wz, Wz =0(e ), as lt Illllst, be,
but Wz

' ——0(1/e) instead of W~zz' ——0(e ). The same holds
true for the eigenvector 6'z. Consequently, in the limit
e~O the component 8 ' ' vanishes for all three eigen-
states. This result suggests that the fluctuation variable
should be rescaled in such a way that the anomaly disap-
pears. Hence we define

eigenvalues have a positive real part. Now we consider
the case in which yj~/yl e——and K/yI=K=O(e ). In this
limit the instability survives and the inequality (69) be-
comes

(K+ 1)
xst

K—1
(70)

In arriving at Eq. (69) we have assumed K& yl. In this
section, instead, we focus our attention on the situation in
which yl»K»y~~. This corresponds to the case of the
usual laser model [Eq. (38)] where, as we have seen, we
cannot eliminate the field variable despite the fact that
K »y~~. The model described by Eq. (38) does not possess
any hard-mode instabilities, but this is no longer true if we
add a saturable absorber inside the cavity. ' This new sys-
tem is described by a straightforward extension of Eqs.
(38):

= —Kx ( 1 —2Cd —2C,b, d,b, ), (71a)

dd
dt

= —y)([d(1+x )—1], (71b)

dt
= —

y~~ [d b (I+ax )—1],
where the symbols C,b„d,b„and y' ' have the same
meaning as C, d, and y~~, but refer to the absorber instead
of the amplifier. For this reason C,b, is negative. The pa-
rameter a is defined as the ratio between the saturation
photon numbers of the amplifier and of the absorber, i.e.,

(72)

We are using Eqs. (71) only to provide an example of
hard-mode instability. It should be noted that these equa-
tions are, in fact, rate equations obtained from the semi-
classical theory via an adiabatic-elimination procedure
which has forced the disappearance of a class of soft-
mode instabilities. This class of instabilities has been
studied previously, and a further analysis is to be pub-
lished soon.

In the steady state we have

1
dst Z ~ dabs st=1+x„' 1+ax„

where x„obeys the state equation
T

2C 2C~b
xst =0.1+x„1+ax„

(73a)

(73b)

If we linearize Eqs. (71) around a nonzero stationary solu-
tion we obtain the eigenvalue equation

As we have shown above, this case corresponds to
anomalous scaling, and the conditions Rek, z z & 0 (which
reduce to Rei, "'&0) coincide with the inequality (70) as
we can see from Eq. (37). The use of the anomalous scal-

ing (68) is essential if one wants to calculate the form of
the limit cycle that bifurcates from the stationary solution
when this becomes unstable.

XI. ANOMALOUS SCALING IN THE LASER
WITH SATURABLE ABSORBER
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&'+[y~~(1+x.'t)+y i~"(I+«.'t)f~'+ ylly iI ('+x t" '+'x t'

2 —abs 1 — 1+ 4x st r jl aCgbs 2 +r
l
lC1+ax„1+x„

+x st 1+ax st
2 2

+4rjlr jl
x t QCgbs

1+ax „1+x,t (74)

where A=A/K ylj=yll/'K, and yil"=yil"/K. If we
analyze Eq. (74) using the Routh-Hurwitz method, ' we
find two conditions for the stability of the chosen station-
ary solution. The first requires that the steady state lie
along a segment with positive slope of the function
x„=x„(C).The second takes the form

(1+x„)(1+«„) y i~

'
y~~

+yii(1+x.'t)+y ii"(I+«,'t) &0. (75)

When Eq. (75) is not satisfied, two complex-conjugate
eigenvalues of the secular equation acquire a positive real
part (hard-mode instability). Consider now the adiabatic
limit e 0, with e=y~~/ir and y~~ /y~~=@(e ). Equation
(74) yields two solutions with the general form displayed
by Eq. (36) and with

p =El 2/ +o(g3 2/)

(79a)

(79b)

(79c)

In linear stability analysis around the steady state leads to
Eq. (30) which, in the limit e~O takes the form

I

decay rates can be used as the smallness parameter. This
problem has been studied already in the context of absorp-
tive optical bistability, ' and will be applied here to the
case of the single-mode laser without injected signal. In
order to focus on the essential features of the argument,
we shall also assume perfect tuning. Thus we consider
Eqs. (13) with the restriction y =0.

The procedure to be described is appropriate when C is
uch larger than unity because, in this case, a convenient

smallness parameter is e=(2C) '. In the limit e~O, the
stationary solution of Eqs. (13) becomes

A, 2 3 = +2lXstE

abs
(&) rllC+

, rll

—1aC,b, F

(76a)

(76b)

~ +~ (++y~~+y~)+~y~l(++y~~

y
I
lyi(e

' —1)=0 (80)

The roots of Eq. (8) to the dominant order in e are given
by

and where

aC 1+ax„1+x„ (77)

X) ———2x.+0(e),
,'(y~~+—y, ~)+i(y~~y, /~)' +O(e' ') .

(81a)

(81b)

(78)

is positive at the instability threshold. Here again the
eigenvalues do not behave normally and anomalous scal-
ing arises. The stability condition Rek(" &0, as obtained
from Eq. (76b), implies

abs

C~ — aCb
r ll

a s

The imaginary part of the complex-conjugate roots
represents the Rabi frequency of the problem; their real
part shows that the stationary solutions (79) will be stable
if and only if ~&y~~+yz. On the basis of the scaling
properties of the stationary solutions (79) we seek time-

dependent solutions which scale in the same way with
respect to e, i.e.,

which coincides with Eq. (75) in the limit y~~
=a~0. The

simple expression given by Eq. (76a) for the oscillation
frequency at the instability threshold has never, to our
knowledge, been derived before.

x(t)=e '/'X(t),

p(t)=e' 'P(t),

d(t) =eD(t),

(82a)

(82c)

XII. AN ALTERNATIVE
ADIABATIC-ELIMINATION SCHEME

Up to this point we have analyzed adiabatic-elimination
schemes which are tailored to situations such that condi-
tions 1 through 5 are satisfied. We now consider a case in
which condition 1 fails to hold, i.e., when all the decay
rates have the same order of magnitude [in the example of
Eqs. (13) we assume that a —yj —y~~]. Clearly, this situa-
tion requires a different treatment because no ratio of the

where X(t), P(t), and D (t) are of order e for all time, and
which satisfy the coupled equations

X= —~(X P), —

P = yj(P XD), ——

~D = y~~(~D 1+X—P) . —

(83a)

(83b)

(83c)

A simpleminded, but incorrect way to solve Eqs. (83) to
dominant order in e is to set @=0with the result
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X=sc(X ' —X), (84a}

(84b)

This turns out to be wrong, as shown below by a more
careful analysis. In Sec. IX we have already discussed
how one can handle problems with two well-separated
time scales by means of a multiple-time-scale approach.
The same solution occurs here because from Eqs. (81) we
have

already produced by the naive approach of Eq. (84c), the
new feature is provided by the second term describing
high-frequency oscillations with an amplitude of order e
and frequency e '~ co(O, ti) (a slowly varying Rabi fre-
quency). The amplitude of these oscillations is given by
a(ti ) which decays over the long time scale ti .The oc-
currence of a slow damping for the fast oscillations seems
to be a characteristic of the limit considered in this section
and was also observed to appear in the study of optical
bistability reported in Ref. 22. This is in contrast with the
more common situation where our condition 1 holds and
where fast oscillations are quickly damped out.

ReA, =O(e ), ImA, =O(e '~
) . (85) ACKNOWLEDGMENTS

We then introduce the two new time variables suggested
by the scaling of the eigenvalues

dt2 e ——to(t i )dt i

and apply a multiple-time-scale perturbation expansion of
the form

Z(e, t) =Z(e, t„t, ) = g e"~'Z(n, t„t,),

This work was partially supported by the Italian Na-
tional Research Council (Consiglio Nazionale delle
Ricerche), by the Associate Euratom —Etat Beige, by the
U.S. Army Research Office, and by a grant from the
Martin-Marietta Research Laboratories.

APPENDIX A

Consider a nonlinear system of differential equations
for n variables a, (t), . . . , a„(t):

co(e, t) =co(e, ti) = g e" co(n, ti ),
n=0

(87b)

X(O, t, , t, )=X(O,ti), (88a)

where Z denotes either X or D. The technical details of
the analysis, which rests on the solvability condition, are
given in Appendix B. The resulting equations to dom-
inant order in e take the form

a;=y~f;(Ia—j), i=i, . . . , n
dt ' (A 1)

where y; are rate constants and f; are, typically, nonlinear
functions of the variables Io j =ai, . . . , a„. We assume
that the variables a; are linked to the original variables by
a normal scaling. Let a;" (i =1, . . . , n) represent a sta-
tionary solution of Eq. (A 1). We consider the n-

component vector

5a)
X(O,ti)= —a[X(O, ti) —X '(O, ti)],

D(O, ti, t2) =X (O, ti )(1+v/yi) —— X (O, ti )
Vl

+a(ti)e '+a'(ti)e

P(O, t„t,)=P(O, t, )=X '(O, t, ),

to (O, ti)=yiiyiX (O, ti) .

(88b}

(88d}

(89)

5a2
q=

a„

where 5a;=a; —a;" (i =1, . . . , n) Equat. ion (Al) can be

put into the general form of Eq. (26), where Wq contains
all the linear and 1it Ni all the nonlinear terms. We further
assume that the linear system dq/dt=Wq does not
decompose into separate (independent) subsystems. Con-
sider now the adiabatic limit e=y, /yL ~0 in which, for
definiteness, we ehminate adiabatically the variables
a +i, . . . , a„(1(m (n —1). The matrix elements

W;i (i,1 = 1, . . . , n ) of the operator W/yL are such that
W;t=0(e) for 1&i &m and W;t ——0(e ) for
m+1(i &n.

If we now consider the eigenvalue equation

As in the previous discussion of the multiple-time-scale
method, we are left with a single nonlinear differential
equation which determines, in closed form, the long-time
evolution of the field. The atomic polarization follows the
field adiabatically as indicated by Eq. (88d). The two
equations (88b) and (88d) are identical to Eqs. (84a) and
(84b), respectively. However, the equation for the atomic
inversion D contains two distinct contributions: the first
corresponds to an adiabatic following of the field and was

(A3)

for the case of the eliminated eigenvalues [in this case we
have 1t.j =O(e )] we see that Eq. (A3) for all values of
i =1, . . . , m requires that WJ' O(e) (i =——1, . . . , m ).

Qn the other hand, consider the matrix elements

W;t(i, l =l, . . . , n) of the operator W /yL, . These are
such that W;t ——0(e) for 1(1&m, and W;t=O(eo) for



ADIABATIC ELIMINATION IN NONLINEAR DYNAMICAL SYSTEMS 1451

m + 1 & l (n. Hence, if we consider the eigenvalue equa-
tion

i.e.,

X(0)=X(0,ti ) .
n

g W;&d'J —A, ~
d'J.

j=1
(A4) (ii) To order e,

for the case of a noneliminated eigenvalue, so that
AJ ——O(e), to order e we obtain the set of n linear homo-
geneous equations

co(0)X(0)X'( I)= —aX(0)X{0)—xX (0)+x',

X(0) (0)D"(0)+y~~y X (0)D(0)

(BS)

n
~1'P(&) 0

1=m+1
(A5)

for the n —m variables WJ 0 with l =m +1, . . . , n It.fol-
lows that, barring exceptional situations, the only possible
solution is WJ"0——0 for I =m + 1, . . . , n

Next, we consider the order of magnitude of the non-
linear term

which appears in Eq. (55). From Eq. (Al) we see that
g~'L scales as yL, . Consider first the case of the modes gz
that correspond to the nonelirninated eigenvalues

(j =1, . . . , m). For 1&i&m, we have PJ"——O(e ) and

P~L ——O(y, ), so that their product scales as y, . For
(m+1) &l &n we have 61'——O(e} and fz'L O(yL, ), a——nd
their product scales again as y, =eyL. In conclusion, we
find the structure of Eq. (58a).

consider now the case, j=m + 1, . . . , n, in which
=O(e ) for every 1. For 1 & I & m, we have

—() 0

g~L ——O(y, ), so that this term scales as y, =eyL and con-
tributes to order yLe in Eq. (58b). For m+1&i &n, we
have gg'i ——O (» ), so that these terms contribute to yL 4J
in Eq. (58b).

co (0}=y~~yiX (0)

so that the general solution of (B7) becomes

D (0)=a(t i )e '+a'(t, )e

(B8)

(B9)

in view of the reality of D(0}. The selection of co(0) cor-
responding to (B8) represents the only choice that will
converge to the results of the linear stability analysis in
the long-tine limit, when e(0) becomes equal to the ima-
ginary part of the root A, given by Eq. (8lb). A particular
solution of the inhomogeneous equation (B6) is

+1 [[X(0) f[[QJ X( 0)=0 . (B6)

Since X(0) is a function of ti only, we see from Eq. (B5)
that X(l) will diverge linearly with t2 unless the right-
hand side of that equation vanishes identically. Hence, in
order for X(1) to remain bounded, we must impose that

X(0)X(0)+xX (0)—v =0

which is precisely Eq. (88b). In order to solve Eq. (B6),
we first consider the homogeneous part of the equation

co (0)D"(0)+yl lyiX (0)D(0)=0 (B7)

Up to this point, co (0) is yet undetermined; we fix its
value by requiring that

APPENDIX 8 yiX (0)D (0)= —X(0)+yiX (0) . (B10)

In this appendix, we discuss the derivation of Eqs.
(86)—(88). Since from the structures of the eigenvalues we
expect the appearance of oscillatory behavior, a con-
venient strategy is to express P as a function of X and D,
with the help of Eq. (83c), and to eliminate the polariza-
tion from the remaining equations (83a) and (83b):

P =X ' — (D+yiiD),
y()X

The sum of Eqs. (B9) and (B10) yields the general solution
of Eq. (B6) and this is the result contained in Eq. (88c).

(iii) To order e'~,

co(0)X(0)X'(2)+X(l)X(0)+X(0)X(1)

+2aX(0)X(1)+ co(0)D'(0) =0,

(B1 1)

X+aX—aX-'+ (D+y~~D)=0,
yi)X

(B2) —y~~»X (0)[D"(1)+D(1)]

eXD+D[ —@X+@X(y~~+ yi)]

+ «7'IIX+~~ll» +1'11~iX +~II }'ll»

Using the expansion {87)and the differentation rule

(B3)

=F(r, )+A(r, )e '+A'(r~)e (B12)

where F and A are functions of a, X(0), and X(1). Again,
we require that X(2) be a bounded function, and this leads
to the result

+e '~ co(ti) " =f+e ' co(ti)f'—
dt Bt~ Bt2

we obtain the following equations.
(i) To order e

X'(0)=0,

X(1)= —X(1)[X-'(0)X(0)+2~], (B13)

iD'(0) .

At this point, it is easy to verify that 2 (ti) is a function
of ~ and X(0) only. Since the homogeneous part of Eq.
(B12) leads to oscillations of the form exp(+&r2)
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homogeneous terms proportional to A and A*, secular
terms will appear in the general solution D( 1). These sec-
ular terms will diverge in time (as tz) and, therefore, must

vanish identically. The condition 3 =0 yields the dif-
ferential equation (89) for a. This completes the full char-
acterization of X(0) and D(0).
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