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Gravity in one dimension: A dynamical and statistical study
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Computer experiments performed on a one-dimensional self-gravitating system are discussed

from a dynamical and a statistical point of view. Statistically, the time-averaged position and velo-

city densities are shown to approach their respective microcanonical ensemble averages for four,
five, and six particles. The relaxation time is much longer than previously expected. For three par-
ticles the system does not relax to the microcanonical distribution. We have explored the surface of
sections for the %=3 case and have correlated the statistical properties with explicit dynamical
features. We show that this dynamical method is consistent with the statistical interpretation. The
mechanism which generates the chaotic behavior for the X=3 case is multiple encounters.

INTRODUCTION

=4m.Gm g 5(x —x;(t)),

where 5(x) is the Dirac delta function, p is the mass densi-

ty, and 6 is the gravitational constant. Then

N

A(x, t)=2nGm g S(x —x;(t)),

where S (x) is defined as

—1, x~0
S(x)= .0, x =0

1, x&0.
(4)

The field acting on the ith particle is proportional to the
difference between the number of particles on the right
and the number on the left:

A (x;, t)=2mGm (N 2i +1) . —
Each particle experiences a uniform gravitational field
and follows a parabolic trajectory until a crossing occurs,
where there is a discontinuity in the field.

The Hamiltonian for this system is given by
N N

H(x,p)= $p;/2m+2m. Gm $ ~xj. —x;
~

. (6)

This paper concerns a dynamical system in one dimen-
sion. The particular system which we consider is that of
mass points moving on a line in one dimension under the
influence of their mutual gravitational attraction. The
particles in one dimension do not interact with the usual
I/r force like mass points in three dimensions. Instead,
the particles are equivalent to sheets of mass in three di-
mensions. These sheets are of infinite extent in the y and z
directions and move in the x direction parallel to their
nornial. The gravitational acceleration A (x, t) is obtained
from Poisson's equation,

BA (x, t) =4m.Gp(x, t)

N is the number of particles. The particles have equal
mass m and when they meet they freely pass through each
other. x;, p;, and v; are the position, momentum, and
velocity of the ith particle, respectively.

Except for properties which explicitly depend on order-
ing and labeling, this system is indistinguishable from a
one-dimensional model in which particles undergo elastic
collisions due to a hard-core potential in addition to the
gravitational potential. From this perspective the system
is seen as an ordered system with the field experienced by
each particle a function only of the ordering and not of
the position. The word "'encounter" will be used rather
than "collision" to describe the crossing of two particles
because it more accurately conveys the idea that the in-
teraction is not a simple binary event. Every particle con-
tinually interacts with every other particle through the
long-range force. There is no discontinuity in the velocity,
but there is a discontinuity in the acceleration at an en-
counter.

Although not the focus of this paper, this model has as-
trophysical relevance. Hohl and Feix' have conjectured
that the velocities of stars normal to the galactic plane are
decoupled from the rotational velocity components in a
disk galaxy. Therefore, the stars will oscillate perpendicu-
lar to the galactic plane with a period independent of the
galactic rotational period. This model describes the
motion of stars perpendicular to the galactic plane if edge
effects are neglected.

Much of the work done on the one-dimensional self-
gravitating system has been motivated by astronomical
considerations. Since the 1960s astronomers have carried
out numerical experiments with this model to investigate
questions about Vlasov Theory and Lynden-Bell's violent
relaxation. '

In this paper we are interested in the physics of the
model from both a dynamical and a statistical point of
view. The statistical properties were first studied by Hohl
and co-workers. ' Hohl reports a relaxation time
which is N r, . N is the number of particles and 2m~ is
the average period of oscillation of a particle in the sys-
tem. Hohl bases this estimate on two different kinds of
computer experiments: Hohl and Broaddus' observed that
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the time required for the residual noise in the kinetic ener-

gy time correlation function to be reduced to a small frac-
tion of the correlation function at short lag times was of
this order. In another numerical experiment Hohl found
that the time necessary for the time-averaged density to
reach an apparent equilibrium was also of the order of
N ~, .

These two methods represent two different measures of
relaxation. That they yield the same relaxation time is
both compelling and surprising. It is surprising because
there is no a priori reason why time scales which are de-
fined in dynamically different ways should be the same.
Thus, Hohl and co-workers describe a self-consistent pic-
ture of a dynamical system which equilibrates in N r, .
This is the only published estimate of the thermalization
time. It has been quoted as recently as 1980.

Although the question of ergodicity is never explicitly
considered in Hohl's work, it is an implicit component of
his picture. According to the ergodic hypothesis, the
time-averaged velocity and position densities approach the
predictions of the microcanonical ensemble. Hohl com-
puted time-averaged position and velocity densities. The
question of whether or not they agreed with the nucro-
canonical ensemble was not investigated. He did not con-
sider whether these averages represented the long-time
limit. No systematic tests for convergence were reported.

Later, the microcanonical position and velocity distri-
butions were obtained analytically by Rybicki as a func-
tion of N. Hohl and other investigators never discussed
the question of relaxation in the context of the ergodic hy-
pothesis; thus, the need for the development of the micro-
canonical ensemble was not recognized by them.

The divergence of neighboring trajectories for the one-
dimensional self-gravitating system has been studied by
Froeschle and Schiedecker' and Benettin, Froeschle, and
Scheidecker. " They developed a clever technique for uni-

formly sampling the microcanonical ensemble. They ob-
serve that trajectories can be grouped into two broad
categories, having either a coarse-grained rapid or slow
divergence. By invoking K-system criteria they infer that
the rapidly diverging trajectories are ergodic.

Their important work is an essential departure from
that of Hohl and others because it treats the system in the
context of nonlinear dynamics. They conclude that the
fraction of phase space which contains ergodic orbits is an
increasing function of X. In contrast to the hard spheres
of Sinai, which are completely ergodic for small N, it is
well known via the Kolmagorov-Arnold-Moser (KAM)
theorem' that continuous systems with only a few degrees
of freedom have regions of stability and, hence, are not er-
godic. It is of some concern to statistical physicists that
systems with continuous paths in phase space are general-
ly not ergodic. In this context the work of Froeschle and
Scheidecker is significant. It is the only system which has
quantitatively demonstrated the approach to ergodicity
with increasing degrees of freedom.

The conclusions which Froeschle and Scheidecker have
reached contradict Hohl's picture. As pointed out earlier,
Hohl's results are consistent with a system which is ergod-
ic for N )3. This result is similar to Sinai s hard spheres.
In contrast, Froeschle and Scheidecker indicate that re-

gions of stability (slow divergence) and chaos (rapid diver-
gence) coexist for N )3. It is their interpretation that the
chaotic regions produce ergodic behavior and the stable
regions do not. They do not give any direct evidence that
the chaotic regions represent ergodic behavior.

Each of these investigators have used fundamentally
different inethods. Froeschle and Scheidecker have stud-
ied the dynamical properties of trajectories. Hohl has ex-
amined the development of the position and velocity dis-
tributions as a function of time. The latter approach ap-
peals directly to the ergodic hypothesis and is statistical in
nature. It is the purpose of this paper to resolve the con-
flicting views of this model. We will systematically ex-
tend the statistical methods introduced by Hohl and ex-
plore how they can be harmonized with the dynamical
methods of Froeschle and Scheidecker.

Some preliminary results have been reported concerning
the X w, relaxation time hypothesized by Hohl. We'
found that a 100-particle system did not approach equili-
brium in the predicted time. In that paper it was conclud-
ed that either the system does not relax (i.e., is not ergod-
ic) or it relaxes on a time scale much larger than N r, .
We show here that the one-dimensional self-gravitating
system is ergodic for large N. Froeschle and Scheidecker
have demonstrated that it also has the exponential diver-
gence expected of K systems.

NUMERICAL EXPERIMENT

Because long-range forces do not easily lend themselves
to traditional statistical techniques, and because ergodicity
is a notoriously difficult analytical problem, this model is
an ideal candidate for a numerical experiment. The pro-
gramming approach is conceptually simple. The
minimum encounter time between two adjacent particles is
computed by solving the quadratic equation in time. All
of the calculations are done in double precision, to four-
teen and one-half significant figures, on a Xerox Sigma 9
computer. An inevitable error is propagated through any
program based upon the calculation of minimum en-
counter time. This error propagation occurs in the so-
called "exact" programs such as those used by Hohl' and
by Froeschle and Scheidecker. '

For errors in the fourth significant figure the dynamics
are practically unaffected. However, the system will even-
tually generate a spurious encounter between two particles.
Because of the accumulated error, an encounter will occur
which would not occur in a computer with infinite pre-
cision. At this point the system is evolving on a different
path in phase space. The test for this sort of problem is to
time reverse the system and determine how accurately the
original conditions are reproduced. If the error in the par-
ticle positions has grown so large that the ordering of the
encounters is no longer that obtained with infinite pre-
cision calculations, the system will not be time reversible.
That is, the original ordering of the numbered particles
will not be reproduced.

Small-N systems (N =3 to 10) can be followed for
several thousand encounters before the inevitable error
propagation causes the system to experience a spurious en-
counter which causes the relative ordering of particles in
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configuration space to be changed, compared to a calcula-
tion of infinite precision. Because of the error propaga-
tion the system inay be pictured as drifting from orbit to
orbit on the energy surface. Thus, there is an averaging
effect over the ensemble due to error propagation in the
computer. As a result of this extra averaging the system
may appear more ergodic than it really is. The time scales
which we will demonstrate here are the minimum relaxa-
tion time scales. In considering the general dynamical
properties, the tendency of the computer to wander from
orbit to orbit is not a severe problem since all orbits on the
hypersurface are allowable. Only near the boundary of
stable and chaotic orbits does this drift become important.
However, we have never observed an orbit to cross from a
stable region to a chaotic region or vice versa.

DYNAMICAL TESTS OF ERGODICITY

It is necessary to explicitly demonstrate what is meant
by stable and chaotic regions, and to know how this
behavior might be observed experimentally. We consider
the three-particle case, the smallest case that is physically
interesting since %=2 is trivially integrable. There are
six dimensions to this space. From the conservation of
energy and momentum, and by fixing the center of mass,
we can restrict the phase motion to a three-dimensional
manifold. This configuration is equivalent to a conserva-
tive dynamical system with two degrees of freedom.

Such a system can in turn be reduced to a plane area-
preserving mapping by the introduction of the widely used
Poincare surface of section. ' The area-preserving proper-
ty of a plane mapped into itself is the counterpart of a
Hamiltonian dynamical system. The surface of section
which we consider is the cut defined by the surface
(X2 —X3)=0, the crossing of particles 2 and 3. X& and
Vi then are the coordinates of the surface of section.
Hereafter, we will abbreviate surface of section as SS.

The trajectory of the system on the three-dimensional
phase surface will repeatedly intersect the cut made by the
two-dimensional SS as the system evolves. For a chaotic
orbit we expect the pattern of intersections to fill the area
defined by the three-dimensional energy hypersurface on
the SS in a seemingly random way. However, if there is
another integral of the motion, the dimensionality of the
available region in phase space is reduced to a two-
dimensional surface embedded in the three-dimensional
space.

Froeschle and Scheidecker, ' referred to hereafter as FS,
have made a surface of section for the X =3 case. They
were the first to note that chaotic and integrable regions
coexist for this model. They also make the general com-
ment that the %=3 case ".. . exhibits the usual features
of dynamical systems with two degrees of freedom. " We
will explore these features explicitly and discuss their im-
plications. FS randomly sample the microcanonical en-
semble in order to determine the fraction of chaotic orbits.
In addition, we will describe the dynamical characteristics
of the chaotic orbits.

In a mapping, an important role is played by stable
fixed points, or points which are mapped back into them-
selves. Such an orbit will have a symmetrical oscillating

behavior in the following sense: Since Xz ——X3 at the SS
and the center of momentum is constrained to zero, the
greatest symmetry is obtained whenever V2 ———V3 and,
hence, V~

——0. Therefore, we expect the fixed point to lie
somewhere on the line VI ——0 on the SS. We have found a
fixed point by iterating the ratio of kinetic to potential en-
ergy along this line. The SS which results from perturb-
ing the initial conditions of the stable point slightly (and
then renormalizing to the energy surface) is shown as the
oval in the center of Fig. 1. The elliptical point is marked
at the center. Larger perturbations yield the increasingly
distorted ellipses (the cardioid shaped curves) shown in
Fig. 1. The time sequence of the intersections at the SS
reveals that these orbits are quasiperiodic. The point of
intersection falls on the cardioid in a regular manner.
After several hundred intersections the initial point has
completed a cycle around the closed curve.

The surface of sections generated by most randomly
selected initial conditions are similar in shape. They all
look like this basic cardioid shape but they have different
sizes. The initial conditions which generate the cardioid
have the slow (linear) divergence that comprise 96% of
the X=3 orbits reported by FS. Thus, nondivergent or-
bits lie on smooth surfaces in phase space as revealed by
the closed regular one-dimensional curves in the SS.
These integrable orbits are stable and quasiperiodic.

In contrast, orbits which are chaotic should be area-
filling on the SS since there is no integral of the motion to
restrict the dimensionality of the region in which the
phase point may be found. The SS which is obtained for
nearly all of the randomly chosen chaotic orbits is the
"batwing" shown in Fig. 1. We say "nearly all" because
we have found another, separate, chaotic region for one of
the divergent orbits. We will return to this point shortly.
At first glance it appears that the batwing is not a two-
dimensional surface, but a simple one-dimensional curve.
However, if we magnify a portion of the central tip of the
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FIG. 1. Surface of section (position and velocity of particle 1

when particles 2 and 3 are colliding} for a 3-particle system.
The stable point, three stable orbits, a chaotic orbit (batwing)
and the stable outer boundary are shown.
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FIG. 2. Magnification of the central tip of the batwing in Fig. 1, showing the random filling of the region by one orbit.

right edge of the batwing, we see (Fig. 2) that it is indeed a
two-dimensional surface. Any other portion of the bat-
wing, when magnified, will show a narrow band which
fills in a stochastic manner. Note that all of the points in
Fig. 2 are made by one orbit. Upon magnification, the
stable curves do not show such characteristics but are re-
stricted to one-dimensional closed curves.

We have produced chaotic orbits in the following way:
The initial conditions are set such that there is a near tri-
ple encounter, x&-xz-x3. An exact triple encounter is
an extremely divergent orbit which fills the whole phase
space in less than 100 encounters. Orbits generated with a
near triple encounter produce the batwing. If we make in-
creasingly larger perturbations from the exact triple en-

counter, we still obtain chaotic orbits, but with progres-
sively weaker divergence. Such orbits require several hun-
dred to several thousand encounters to diverge and fill the
available phase space. All of these orbits have a surface of
section like the batwing. Eventually, the perturbation will
be made so large that the orbit is no longer divergent. In
this instance the stable SS is again a one-dimensional line
which closely borders either the inner or outer boundary
of the stochastic boundary.

The chaotic orbits for the N =3 case are those orbits
which experience a near triple encounter, x&-xz-x3,
while stable orbits have no such occurrences. We have ob-
served similar conditions for encounters between the parti-
cles in divergent orbits for X =4, 5, and 6. We conjecture
that a general class of close encounters are responsible for
the chaotic properties of this model for all X. Such en-
counters are not just localized in space. This was the case
for N =3. For systems larger than %=3 pairs of en-
counters which are separated by a small time interval are
associated with the chaotic behavior as well. In practice,
we define these encounters as any for which the time be-
tween encounters is small,

2M~
AV

(7)

where bA, AV, and ~ is the difference in the accelera-
tion, velocity, and position of the adjacent particles used
to determine the encounter. As N increases there is an in-
crease in the percentage of the encounters which are close
encounters. 9% of the X =4, 17% of the N =5, and 41%
of the X =6 encounters were close encounters in the orbits
used for the relaxation experiment. The dependence on N
is made more obvious by recalling that the acceleration
depends only on the ordering [Eq. (5)], so bA is always
2m. The total mass is scaled to unity, so m = I/N. The
close encounters are then

(0.025 .bX

As FS have correctly noted there are chaotic and stable
regions which are intermingled. An elliptic point is sur-
rounded by a stable region which is surrounded by a
chaotic region which, in turn, is bounded by a stable re-
gion. This picture is reminiscent of that described by
Kolmogorov-Arnol'd-Moser (KAM) systems. KAM sys-
tems also have small stable regions embedded within the
chaotic region, with the whole stable-chaotic hierarchy
again reproduced in miniature.

This structure is reproduced in the 3-particle system.
Note the small oval in the center of the chaotic region of
Fig. 2. Inside the oval is a stable region. Most initial con-
ditions which represent points inside the oval are stable
orbits. We thus see a stable orbit lying in the middle of
the chaotic region.

With one exception, all of the chaotic orbits which we
have constructed using a near triple encounter or which
have been found by picking orbits at random have pro-
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duced the batwing surface of section. Approximately 15
chaotic orbits have been studied. The one exception was
found randomly. By this we mean that the initial condi-
tions were picked randomly, the energy was normalized,
and then the divergence characteristics were checked to
find the chaotic orbits. The SS of this exception is shown
in Fig. 3. Again, all of the points were made by one orbit.

It has been conjectured ".. . that there is only one sto-
chastic region. . .we cannot exclude the possibility that
there exist very small stochastic regions which are separat-
ed from the large one."" However, for systems with two
degrees of freedom, like our N =3 case, the chaotic re-
gions are isolated from each other by stable surfaces. In
contrast, chaotic regions in higher dimensions are linked
by Arnol'd diffusion and, hence, are not isolated. There-
fore, Fig. 3 represents a truly separate chaotic region from
the usual batwing shown in Fig. 1. We have not been able
to characterize the dynamical properties which distinguish
these two chaotic regions from each other at this time.

The outer boundary of the SS is defined by generating
initial conditions such that nearly all of the system energy
is in the potential energy of particle 1. It is a stable (slow-
ly diverging) orbit. This is the outer boundary shown in
Fig. 1.

We have explored the SS in a systematic manner, from
the central elliptic point out to the boundary which is de-
fined by conservation of energy. This has been accom-
plished by relating various parts of the SS to particular
dynamical features of the initial conditions.

The one-dimensional self-gravitating system does not
satisfy the requirements for a KAM system because the
force is not sufficiently smooth. Unlike the KAM sys-
tems, the energy cannot be varied to change the size of the
stochastic regions. ' For this model all of the dynamical
features scale with the energy. ' Nevertheless, this system
has many of the characteristics of a KAM system. This
feature may indicate tht the KAM theorem is applicable

to a more general class of Hamiltonians than those for
which it was proven.

The results which were discussed in Ref. 13 on the
N =100 system raise questions about whether this system
is ergodic. In order to understand why the N =100 sys-
tern does not seem to relax to the state predicted by micro-
canonical ensemble theory, we examine small-N systems.
Since the relaxation time is thought to be an increasing
function of N, by looking at smaller-sized systems it is
feasible to run for many relaxation times. Of course this
assumes that the system is ergodic and that the time aver-
age of a dynamical variable will eventually converge to the
microcanonical ensemble average.

STATISTICAL TESTS OF ERGODICITY

A series of experiments was designed to answer the
question, "Does the system time average ever approach
the ensemble average? If so, on what time scale?" If one
does see an approach to the ensemble average, the time
scale of this relaxation would represent the minimum time
for a physical system to relax. It is a minimum because
the effects of machine averaging would be added to the
natural dynamical averaging. Using the criterion that the
time average equals the ensemble average, we can obtain a
lower bound on the thermalization time if the system is
erg odic.

The positions and velocities were sampled and time-
averaged density histograms for 4-, 5-, and 6-particle sys-
tems were constructed. In each case an arbitrary initial
configuration was normalized to the chosen energy, and
the system was allowed to evolve under the system
dynamics. In constructing the time average, the position
and velocities were sampled at a mean frequency of ten
times per encounter. The time average for the density was
made into a discrete 50-point histogram. The logarithm
of the variance of this time average from the ensemble
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FIG. 6. Log&o(variance) [Eq. (9)] from the microcanonical en-
semble average velocity density for an N =6 chaotic orbit. The
time unit is 21.1N 'T, .

average is shown as a function of time in Figs. 4—6. This
variance is computed by first numerically integrating the
Rybicki microcanonical density over the same grid pattern
used for the histogram. Then

50

logic(variance) =logio g (IF; IIt;)— (9)

where I~; is the Rybicki density integrated over the ith in-
terval, and IE; is the normalized experimental density in-
tegrated over the same interval.

In this way the approach to equilibrium as a function of
time in Figs. 4—6, for N =4, 5, and 6 is deinonstrated.
The time unit shown is II000 of the natural time units ob-
tained for the normalization 2irG =1 and M=1. The
time unit shown is related to r„ the characteristic time, as
follows: It equals 960~, for N =6, 860', for E =5, and
760~, for X =4. It required approximately 50 hours of

CPU time for each of these experiments.
Two immediate conclusions can be drawn from these

data: the time-averaged density is approaching the ensem-
ble average, but the relaxation time is many orders of
magnitudes longer than the N ~, relaxation time hy-
pothesized by Hohl. For comparison purposes a fit of the
time-averaged velocity density histogram with the Rybicki
density is shown in Figs. 7 and 8. These averages were
made over the time interval shown in Fig. 6 (but they were
actually terminated near the minimum in the variance to
show the best fit which was obtained). Only the velocity
data are shown because similar results are obtained from
the position data.

Each of the systems exhibit the same initial short period
oscillations in the variance. As the time average acquires
statistical significance, it takes a longer time for new con-
figurations to add weight to the average, and the oscilla-
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FIG. 7. N=4 velocity density histogram obtained from a
time average over the interval in Fig. 4, compared to the micro-
canonical ensemble average.
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CONCLUSION
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FIG. 8. %=6 velocity density histogram obtained from a
time average over the interval in Fig. 6, compared to the micro-
canonical ensemble average.

tions in the variance acquire a longer period. It is some-
what surprising that all of the systems exhibit such large
long-term oscillations. In each case the ensemble average
appears to have significance as the distribution towards
which the system time average is converging.

It is worth noting that the X =4 case did not achieve
the degree of convergence that the N =6 case did, even
though there were more encounters. The %=4 data of
Fig. 4 represents 1.67 million encounters, X =5 in Fig. 5
has 1.15 million encounters, and N =6 has 1.05 million
encounters. If the relaxation time increases with X, one
would then expect the %=4 to relax sooner. The fact
that it took longer and that it did not converge to the mi-
crocanonical ensemble as well as X =6 is evidence to su-

port the claim' that there are finite stochastic and integr-
able regions in the X=4 phase space. To this extent the
Froeschle and Scheidecker dynamical results and our sta-
tistical results are consistent.

Rybicki has noted that Hohl's' results for the time-
averaged density histogram for N =3 are quite different
than the microcanonical ensemble average. That would
imply an integral of the motion. He says "it would be in-

teresting to repeat the X=3 experiment with other initial
conditions to see how strict these integrals may be." We
have performed many such experiments and find that the
microcanonical ensemble average is not obtained for any
of the orbits, even for divergent orbits. Furthermore, the
time averages quickly converge to some function not
characterized by the microcanonical average. This is to be
expected since the chaotic portion of the %=3 phase
space is very small. ' The divergent orbits may sample
the small stochastic bands, but they are excluded from the
larger stable regions. Even though there is no integral of
the motion for a divergent orbit, integrals for the stable
orbits which bound the chaotic region prevent the phase
point from sampling the whole phase space. Thus, even
the chaotic orbits cannot have time-averaged densities
which approach the ensemble average in any time limit
for 1V =3.

A direct measure of relaxation, the time-averaged posi-
tion and velocity density, has been used to attempt to
determine the time required for the one-dimensional self-
gravitating model to relax. We first used Hohl and
Broaddus's estimate of N ~, for a numerical experiment
for 100 particles. Not only did the system not relax, there
was no evidence that it was moving toward the equilibri-
um state defined by the microcanonical ensemble on that
time scale. It would be expected to relax to the micro-
canonical ensemble-averaged density only if the system
were ergodic and there were no other isolating integrals,
except for the energy. Because of the limitations on com-
puter time our efforts were redirected towards the small-X
cases in order to study relaxation and the question of ergo-
dicity.

Hohl' reported time-averaged position and velocity
densities for small-X cases that roughly approximate the
isothermal distribution within a few X ~, time units.
However, he did not demonstrate any long-term stability
in the density, which would be expected of equilibrium.
We find that the small-N time-averaged densities oscillate
about the exact microcanonical densities. Only after
thousands of X ~, time units do the cumulatively aver-
aged densities stabilize around the microcanonical densi-
ties.

We have explored the surface of section for the % =3
case and have correlated the statistical properties of the
orbits with dynamical features. A second stochastic re-
gion has been found which is distinct from the first. The
peculiar condition which produces chaotic behavior is a
near-multiple encounter.

There is consistency between the statistical and dynami-
cal interpretations of this model. The time-averaged den-
sities for X =5 and 6 converged better to the densities
predicted by the ensemble average than the X =4 case did.
The X =3 case did not converge. To this extent, our re-
sults are consistent with the Froeschle and Scheidecker'
observation that as the size of the chaotic regions increase
(with increasing X), the system appears more nearly er-
godic. The X =4 case may be regarded as somewhat of
an anomaly because it did approach the ensemble average
even though only 86% of the phase space is chaotic. This
might be explained by the fortuitous distribution of the
stable zones throughout the phase space in such a way
that the omission of the stable regions did not strongly af-
fect the average.

We have shown that the divergent orbits have explicit
ergodic properties: The time-averaged density approaches
the ensemble averaged density. These divergent orbits jie
in the chaotic region of phase space. The stable regions
are associated with the nondivergent orbits. The inter-
mediate class of orbits reported by FS which have first
slow, then rapid divergence are points which lie in the
chaotic region near a stable boundary. Thus, there is a
correspondence between the exponential divergence, the
statistical time average, and the chaotic regions of phase
space.
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