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We examine the onset of bound (i.e., localized) states in a high-temperature plasma consisting of
electrons and ions. The onset of localization or ionization is related to the Mott and Anderson tran-
sitions of condensed-matter physics and to the breakdown of the Saha equation. We consider
several models and develop a physically reasonable model of a plasma based on density-functional
theory (DFT) where the mean ionic charge Z interpolates from the fully ionized limit to the atomic
limit. This DFT model provides structure factors and Kohn-Sham eigenstates which are then used
to calculate the self-energy of the one-electron Green function, thus transcending the local-density
approximation and the well-known limitations of DFT, especially with regard to the excitation spec-
trum. The self-energy contains contributions from electron-electron and electron-ion density fluc-
tuation effects, screening effects, and the renormalization of the propagators. The calculation yields
shifted energy levels, widths, and level populations. The level widths are shown to be closely related
to the electrical conductivity of Ziman-type formulations. The one-particle formalism used makes
contact with the multiple-scattering theories of disordered materials, liquid metals, etc., and is a
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necessary first step to a future calculation of two-particle propagators and related properties.

I. INTRODUCTION

In a previous paper' (referred to as DP) we discussed
how density-functional theory? (DFT) could be applied to
the study of a system of ions and electrons in thermo-
dynamic equilibrium at arbitrary temperatures and pres-
sures. The method was illustrated by an application to
hydrogen plasma over a range of physical situations where
the strong coupling plasma parameter I" varied from
about 0.2 to 10 while the ion-sphere radius r; varied from
1to2au.;r; and I are given by

1/3

3 , T=Z2/(kyTri)

4mp

r=

(1.1)

where kzT=1/B is the thermal energy in atomic units
and p is the mean density of the ions with an effective
charge Z. The plasma is ionized in the strongly coupled
regime, but a weak ls-symmetry bound state begins to ap-
pear and deepens as the density is lowered and the tem-
perature is increased. Then the ions _can no longer be
treated as having an effective charge Z =2, as was done
in the numerical work presented in DP. A consistent
theory of Z is needed for this purpose and in related con-
texts.>

The main objectives of this paper are (i) to set up a
physically realistic model for estimating the mean ionic
charge Z, (i) to set up a formal scheme which goes
beyond DFT in that energy levels can be calculated with
some confidence, and (iii) to use such a scheme for study-
ing the onset and nature of localized states in a plasma as

29

the density and temperature are varied.

The need for (ii) stems from the fact that the energy
levels of DFT, obtained from the Kohn-Sham equation,
cannot be rigorously identified with the one-particle states
of the physical system. Further, the local density approxi-
mation (LDA) for the exchange-correlation potential* used
in DFT calculations has to be transcended and the effects
of dynamic correlations incorporated if the true levels,
level widths, and level populations are to be determined.
This is particularly important in the question of the onset
of localization where the shallow 1s state is expected to be
strongly influenced by the density fluctuations in the sys-
tem. If the level width 7, obtained from the self-energy
=5, is small compared to the eigenvalue |€;;| we have a
well-formed state. To simplify matters we shall confine
the present study to a system having a single bound state.

The calculation of the energy levels which goes beyond
DFT to approximate the true single-particle spectrum has
to proceed via the Green-function technique. The Kohn-
Sham eigenstates (DFT basis) will provide a representation
for the one-particle Green function. Such a calculation is
also a necessary step towards a future calculation of the
two-particle Green function which determines the line
spectrum (line shifts, widths) rather than the level spec-
trum of an atom in a plasma. Most of the necessary
theory in the plasma context has already been discussed in
Refs. 5 and 6.

The other interesting aspect of the onset of these local-
ized states is its conceptual relation to the Mott’ and An-
derson transitions”® which have been studied in the theory
of solids, where the onset is posed in terms of the metal-
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29 HYDROGEN PLASMAS BEYOND DENSITY-FUNCTIONAL THEORY: ...

insulator transition. Localization is believed to involve
the effects of screening (Mott), disorder (Anderson), or
both. In a plasma there is certainly no long-range order
(unless the ions are assumed to be frozen forming a lattice)
and hence the statistical effects of the ion distribution as
well as screening effects contribute to the onset of local-
ized states. However, there is no “metal-insulator” transi-
tion (but there can be localization) for the conditions of
temperature and pressure prevailing in a high-temperature
plasma.

The weak 1s state obtained from the DFT calculation is
not simply a bound state of the central ion alone, but is a
bound state of the central ion inclusive of the ion distribu-
tion within the correlation sphere. Thus the weak local-
ized electron is in an orbital spanning a cluster of ions
when it emerges from the fully delocalized continuum.
Then, as the localization increases, it becomes more and
more concentrated into the region of a single ion-sphere
volume around the central ion. At that stage the electron
may be completely associated with the central ion, with
practically no overlap with the field-ion distribution.
Thus localization proceeds from the fully extended state
to the fully atomic state via a weak bound state where the
electron is effectively spread over a number of ionic
centers in the correlation sphere.

The plan of the paper is as follows. In Sec. I we brief-
ly review the DFT scheme and introduce a definition of
the effective nuclear charge Z somewhat different from
DP (in DP it was assumed that Z =Z in the calculations).
This is used to calculate the onset of the localized state for
a typical range of r; and T, using DFT with the local den-
sity approximation as in DP. In Sec. III we discuss how
the eigenstates of the Kohn-Sham equation could be used
as a basis set (for second quantization, etc.) for a many-
body perturbation calculation of the self-energy of the lo-
calized level, while at the same time correcting the limita-
tions in the Kohn-Sham one-electron energies. The result-
ing expressions for the self-energy contain contributions
from dynamic density fluctuations in the electron and ion
systems. The summations over / quantum states which
enter into the self-energy equations bring in the contribu-
tions from density fluctuations which break the spherical
symmetry inherent in DFT which is a time-independent
model. Most of the details of the simplified representa-
tions used for obtaining a computationally convenient
form are relegated to the Appendix. Finally in Sec. IV we
discuss the results for hydrogen plasma for a representa-
tive range of r;, and T using a jellium model, a fully-
J
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ionized-plasma model similar to that used in DP, a mean-
ion-plasma model, and then the generalization inclusive of
dynamic correlations.

II. THE DENSITY-FUNCTIONAL EQUATIONS

In this section we review the DFT equations used in DP
for the convenience of the reader, and with specific atten-
tion to the question of extending their validity in obtain-
ing the one-electron excitation spectrum. We consider a
reference ion at the origin, and a large sphere of radius R
around it, such that R is larger than the characteristic
lengths (e.g., correlation lengths) of the system. Thus, for
example, the ion-pair distribution function g;(r) is essen-
tially unity for r > R. This implies that the equilibrium
one-particle distributions are those of a system with no
long-range order. If the density distributions of electrons
and ions around the central ion are denoted by n(r) and
p(r), we have

(2.1
(2.2)

n(r)=gp(r)in ,

p(r)=gy(r)p ,
and
where 77 and p are the mean-electron and -ion densities,
while Z is the mean ionic charge which has to be deter-
mined self-consistently, as described later. Also, g (7) is
the ion-electron pair distribution function such that
8ie(r)—1forr >R.

Density-functional theory states that the equilibrium
grand canonical potential Q[n, p] is a unique functional
of the density distributions n, p and is a minimum for the
exact distributions. This variational property is shown to
lead to an effective one-particle Schridinger equation
(Kohn-Sham equation) for the electrons, and another ef-
fective one-particle Gibbs-Boltzmann equation for the
ions. The two equations have the form (see DP)

[—3V+ V501 =¢€,6(r) ,

[—VES(r) /g T]

2.4

p(r)=pexp ) 2.5

where VXS and VXS are effective one-particle Kohn-Sham
potentials. These equations are to be solved self-
consistently since VX5(r) and V*5(r) involve the electron
and ion distributions.

The grand canonical potential is given as

(2.6)

Zg L(f_)l’_(r_d rar'+ [ Fllpldt—p; [ p(ndr .
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Here T[n, p] is the kinetic energy functional of the nonin-
teracting system, having the exact interacting densities
n,p. p. and p; are electron and ion chemical potentials.
The potential ), contains an electron exchange-
correlation term Fg.. This is evaluated in the local density
approximation (LDA), using the exchange-correlation po-
tential for a ﬁnite-tem?erature electron gas, evaluated us-
ing many-body theory,* so as to include the first-order ex-
change, “all-order” ring sum, and approximations to the
other second-order graphs. We shall correct for the
shortcomings of LDA using many-body perturbation
theory in calculating the true energy levels of the system.

The ion grand canonical potential term ; contains the
ion-ion correlation contribution F.. This is evaluated
from the formalism of hypernetted chain (HNC) theory,
while F' which appears in Q,; was considered to be negli-
gible. The treatment of ion correlations using HNC
theory is known to be very satisfactory for plasmas with I"
even up to =~ 15 and hence no change will be made in this
respect. However, the correlation effects arising from the
ion-electron interaction are found to be important in re-
gard to the onset of localized states.

In order to maintain electroneutrality, the actual func-
tional minimized in DP is

An, pl=Q[n, p]—2 [Z-fp(r)dr— fn(r)dr] , (2.7)
where A is a Lagrange multiplier. Equations (2.4) and
(2.5) result from equating the functional derivatives of @
with respect to n and p, respectively, to zero. The effec-
tive potentials which go into Egs. (2.4) and (2.5) appear as
the functional derivatives:

Ve=%(ﬂe+ﬂe,~), V,.=8—i~(a,.+ae,-) . 2.8)
They can be simplified to give the forms
Ve(r)=— [%'}'Vp(r) +V§c(r)+¢e( Z_’r)_ﬂe ’
(2.9)

I’}(r)zl—[%+lﬁ,(r) +Vci(r)+¢i(Z—,r)—u,- R

where V,(7) is the Poisson potential due to the net charge
distribution Zp(r)—n(r). The potentials ¢.( Z,r),$;( Z,r)
contain functional derivatives of the type 8Z/8n and
8Z /8p. We shall discuss them later, in the context of a
model for the definition of Z. Defining the potential out-
side the correlations sphere (» >R ) to be zero we can in-
troduce the modified potentials and modified chemical
potentials by

VeS(r)=V,(r)—V,(R),
VES(r)=V;(r)—Vi(R) ,
fe=—He—Vi(R)—¢.(Z,R)—A,
Bi=pi— VAR —¢(Z,R)+Z .

(2.10)

These potentials appear directly in the effective one-
particle equations (2.4) and (2.5).
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Nature of the localized state and the effective charge Z

The Kohn-Sham equation, Eq. (2.4), has to be solved
self-consistently, satisfying the requirements of the finite
temperature Friedel sum rule,’ etc., as discussed in DP.
The set of Kohn-Sham eigenstates ¢, are fully delocalized
(denoted by ¢p) for high-I' plasmas. However, as the
density is decreased and the temperature increased, local-
ized states ¢; =¢,, v=n,l,m, with €, <0 begin to appear.
The electron distribution in such 1s-like states is shown in
relation to the ion profile and the correlation sphere, in
Fig. 1. The number of electrons localized in such a state
is given by

ny =2f,=2/[1+ exple,—Q.)B]

and involves the modified chemical potential fi,. A num-
ber of aspects of these localized levels are worthy of com-
ment.

(i) The localized orbital is essentially a bound state of
the inhomogeneous ion distribution inside the correlation
sphere and not an atomic state of the central ion by itself,
unless | ¢, |? lies entirely in the central region where g;;(r)
is negligible. The normalized electron-density profile is
seen to be insensitive to changes in the ion-density profile
(see Fig. 1).

(ii) The transition from a proper atomic state of the
central ion ¢, to a fully delocalized state ¢p occurs
through a continuous series of localized states ¢;, which
extends over many ion centers. ¢; may also be thought of
as representing an electron tunneling from one atomic
center to another. These states are capable of supporting a
hopping conductivity mode and are analogous to the lo-
calized states present in the band tails of disordered sys-

(2.11)
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FIG. 1. The electron distribution |¢(r)|? of the weak 1s
state normalized to unity at the origin is shown in relation to the
ion distribution (normalized to unity at large r), for different
values of r; and T /Er. See the caption to Table I for definitions
of r; and Ep.
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tems and studied in the theory of the Mott-Anderson tran-
sition.

(iii) If the average number of bound electrons per ion is
fiy, then Z=2Z —m,. It is only in the atomic limit when
¢, —¢, that we can set i, =n;. In the intermediate case
the definition of 7, involves some model for an “atom” in
a plasma.!® Since there is no real “boundary” between the
“atom” and the plasma, it is really a convenient auxiliary
concept allowing some possibilities of choice. The prob-
lem is equivalent to allocating an effective atomic radius
R to each ion immersed in the plasma and arises in vari-
ous guises in the statistical mechanics of plasmas. In the
following we adopt a mean-ion-plasma (MIP) model such
that the nuclear charge Z is fully compensated by the field
charges contained inside the mean-ion radius R. If 7 s
the average free-electron density in the plasma and if ny is
the number of free electrons per ion, we have

np=4rRm =R /re, (2.12)

where 7y is the free-electron sphere radius. Then, if there
is only a single localized state ¢,;, we define the number
of bound electrons per ion to be

R
np=2 f() 4ar? | ¢ls(r) l ZfISdr ’

where f; is the Fermi factor defined in (2.11). The effec-
tive ionic radius R is fixed by the condition

(2.13)

Z=my+n; . (2.14)
Hence the effective ionic charge is given by
Z=7Z—m . (2.15)

These equations determine a mean ionic charge Z and a
mean-ion radius R self-consistently, from the DFT equa-
tions. Typical results for R and Z in the MIP model are
given in Table I. A convenient feature of this definition
of Z and R is their relatively weak dependence on the dis-
tributions n(r) and p(r). It is also noteworthy that the po-
tentials ¢;( Z,r),¢.(Z,r) drop out of the theory if the
MIP definition of Z is adopted. Thus, since

_ z "n_ W 8Z[n(r)p(r)] , ,
¢i(r)= f [r' +V,(r') k]p(r) 8p(r) dr',

(2.16)

_rlz n_ W OZ[n(r),p(r)] .,
pe(= [ =+ Vp(r) = |plr) 2T =

they become independent of r. Hence, since the potentials
are normalized to zero outside the correlation sphere, they
do not appear in the effective potentials used in the DFT
equations.

III. EXTENSION BEYOND DENSITY-FUNCTIONAL
THEORY

Although DFT is in principle exact in regard to the cal-
culation of the pair distributions and other thermodynam-
ic properties, it has three major limitations. These are (i)
the use of a local density approximation for the
exchange-correlation potentials, (ii) the lack of a formal
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TABLE 1. The effective charge Z and the mean radius R, in
the mean-ion-plasma (MIP) model. r,=(3/47)'? a.u. Thus,
for example, ;=3 corresponds to 7~5.96x 10? electrons/cm>.
Er=1.8416/r; au. T/Er=1 at ry=3 corresponds to 16.70 eV.

rs T/Er R Z

1 2.0 0.9994 0.998
2.5 0.9931 0.979
3.0 0.9911 0.974

2 1.0 1.791 0.718
1.5 1.799 0.728
2.0 1.833 0.770
3.0 1.887 0.840
4.0 1.919 0.884

3 0.5 2.032 0.311
1.0 2.130 0.358
1.5 2.325 0.466
2.0 2.490 0.572
3.0 2.693 0.724
4.0 2.797 0.810

basis for identifying the Kohn-Sham eigenfunctions and
eigenvalues with suitable physical eigenstates of the sys-
tem, and (iii) the lack of a technique, within DFT, for the
calculation of lifetime effects.

In this context it should be noted that any method
which uses, for example, Slater exchange and correlation
or any other local density approximation, becomes im-
mediately open to the first two limitations. Further, a
theory of one-particle states which goes beyond the
Hartree-Fock model must necessarily involve a quasiparti-
cle description which involves finite lifetime effects. Such
states are characterized by a Green function rather than
by a wave function. Hence (ii) and (iii) are intimately con-
nected with each other.

Some authors have attempted to go beyond the LDA
using density-gradient expansions. Such methods are not
easily justifiable and in any case do not lead to a proper
theory of the excitation spectrum.

In order to transcend these limitations of DFT we need
to use many-body theory. The DFT one-particle states ¢,
and eigenvalues €2 can be used as a basis set for second
quantization, retaining the accurate density profiles
p(r),n(r) already evaluated in DFT-LDA, as essential in-
gredients of the zeroth-order description. Within this ap-
proach we account for the density fluctuations
8p(r),8n(r), about the mean density profiles p(r),n(r) by
perturbation theory on the one-particle Green functions
defined on the basis ¢,,.

We introduce Heisenberg operators a,,,aI associated
with the basis ¢, and obeying Fermi commutation rules.
The system Hamiltonian is

H=H+H,
with
v (3.1)
Hi=Ve+Veit+Vi .
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- The bar over the symbols in this equation implies that the
contributions in DFT corresponding to the Hartree-Fock
field as well as the terms which were already included in
the exchange-correlation potential V,. are excluded in Hj.

The full ion-electron potential is

V== 3Z/|T—Ry| == FZV,e'T7p,,
a —
q

(3.2)
where (setting the volume factor to unity) we have,

4
Vq=;§(1—aq,o) ,
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Here p, is the ion-density fluctuation and may be treat-
ed as a classical quantity, or as a quantum-mechanical
operator using the operators bk,b,I, where K is an ion-
momentum state. Hence (3.2) can be written in terms of
the Fermi operators a,,a,, as
S ZV, (w07

-
q,vpVy

— T
Vei - l \f) >anvlav2

=— 3 (1| Vilg)|2)psala, . (3.3)

This term describes the coupling of the ion-density fluc-
tuation p, with the electron-density fluctuation associated
with the electronic transition v,—v;.

The full electron-electron interaction is given by

iq-T —iqd T
=3 3 Velvile ™ v |e ZIVa>ai,aIZav3av4

=1 3 (12| V..(¢9)|34)alalasa, .

Equation (3.1) contains ¥; which arises from the ion-ion
interaction term Vj;. Since this was treated using the
HNC scheme it is not limited by a local density approxi-
mation, unlike in the case of the electron-electron interac-
tions. Further, in most situations it is sufficient to consid-
er V; as contributing to the static screening of the interac-
tion lines in the diagrams (see below).

We need to pass from V,; and V,, (and similarly V;) to
the forms V,;,V,, which do not contain the contributions
already included in DFT. The simplest procedure is to
note that DFT contains (i) all the Hartree-type mean-field
contributions, as well as exchange contributions contained
in V,., and (ii) correlation contributions ¥V, which have
been included in constructing V,.. These are essentially
the ring sum contributions. Hence we work with the full
potentials V,; and V,,, but reject all Hartree-Fock-type di-
agrams [Figs. 2(a)—2(e)] because of (i). The correlation
contribution ¥, used in Kohn-Sham theory is small and
real, since V,(r,n(r)) is a real local potential. Thus it can
be corrected for by subtracting (¢, | V,(r,n(r)) | ¢,) from
the energy shift, calculated from the self-energy and given
by ReZ,(w). This is evaluated with the full electron-
electron interaction given in Eq. (3.4). Hence the one-
particle Green function can be written as

1

Gw)= o
and

G (0)=G% /[1-3 (0)G%w)] 3.5)
with

Sf0)=3,—(d,| Vr,n(r) | d,) .

(3.4)

(a) (b) (c) (d)

(k)

FIG. 2. The contributions to the electron self-energy. Wavy
line: electron-electron interaction; dashed line: electron-ion in-
teraction; thin lines: electron propagator G thick lines: ion
propagators. Diagrams (a)—(d) are Hartree-Fock-type diagrams
arising from the electron subsystem. These and the correspond-
ing Hartree terms from the ions are already included in the DFT
calculation. Second-order diagrams (f)—(i). The DFT correla-
tion potential V, is used in static models to mimic the contribu-
tion from the screened form of (f). In the dynamic correlation
model CIP, (f) and (g) are replaced by (k) and (1). The ion-
density fluctuation loop in (1) is further reduced to (m) by a static
approximation. (k), (1), and (m) contain the renormalized propa-
gator and the screened interactions.
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This substraction procedure makes the results of the cal-
culation somewhat independent of the form of the ex-
change correlation used in the DFT calculation.

Since the Hartree-Fock-type terms have been already in-
cluded in €%, the leading-order contributions to 2,(w) are
from the second-order diagrams shown in Figs. 2(f)—2(i)
The contributions from diagrams other than 2(f) and 2(g)
are assumed to be small except close to zero temperature
and hence will be neglected in this study. Hence we write,
in second order

>P(0)=32 +3; , (3.6)
where the two terms correspond to Figs. 2(f) and 2(g). In
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Ref. 5 it was shown how these second-order terms [Eq.
(3.14) of Ref. 5 is essentially the same as Eq. (3.11) of this
paper] could be calculated from the Heisenberg equations
of motion of the retarded antlcommutator propagator
G, (w+ie) ((a,,,a }). Alternatively, =*(w) can be
calculated by straightforward use of the rules of diagram-
matic perturbation theory at finite temperatures,!! or
those of multiple-scattering techniques, coherent-potential
approximations, etc., used in the theory of disordered ma-
terials.'>!3 The result can be extended to include summa-
tions of polarization loops to give the forms inclusive of
screening. This is denoted by the tilde on V. and V,,.
Thus

|
(vvy | Polgvy' ) | ¢ alaqrala, ) — 7 (7, —71,)
Spaer= 3 Lnllelgm) [Teted Rl (3.72)
_q’,i/,vl,vz W—€y+€1—€
| (v| Zielq) | v') | 2[{b LD epq> A (pp—Pp, )]
Zyel@)= O F.-F : (3.7b)
q.v.k w—E€y s T4g

Here v, and v, have been replaced by 1 and 2 for brevity.
The screening of the potential has to be introduced so as

to avoid double counting of diagrams and the forms used

will be discussed later. In (3.7b) p= (bt oo is the

number of ions having the kinetic energy E T{_k2/2M

the ion mass being M.

Equations (3.7) contain the unrenormalized energles e,
€}, and €. However, it is known from similar work in re-
lated fields that renormalization of at least the internal
propagator G, (w) is necessary, as indicated by the double
line for G,, in Figs. 2(k) and 2(I). Hence we rewrite the
denominators of (3.7) as

o—[)+3Z/(0)]+€) —€,
(3.8)

w—[e?;+2,/(w)]+Ei>—E?+a, .

The renormalization of the energy difference e?,l -—-6?,2 is

not considered in view of further approximations which
will be carried out (see below) in order to obtain a numeri-
cally tractable form of the polarization loops. The renor-
malization of the denominator now introduces the added
numerical problem that 3, has to be determined self-
consistently.

Once the self-energy is determined the level population
can be calculated from the spectral function via

2 r+e ImG, (@)
2f,=—— —I_—T-e—a’/? 1)

ke —
For infinitely sharp lines ImG, () reduces to a 8 function
and (3.9) gives the usual Fermi distribution. If the level-
shape function ImG,(®) could be characterized by a
width ¢ defining a Lorentzian profile, Eq. (3.9) may be
easily evaluated without having to calculate G, (@) for a
large number of values of w.

(3.9

A. Tractable form of the self-energy

Let us first consider the second-order ion-density fluc-
tuation contribution 2(,,?3,-(&)). We shall first of all assume
that the dynamic ion-polarization effects can be neglected
as shown by the static approximation of Figs. 2(I) and
2(m). Here the ion-polarization loop is replaced by a
point. Equation (3.8) is replaced by

| <V| f;ie(q) | V') | X PqP; >static
=2(e%)

2i0)=3 , (3.10)

PR% w— GV

where

( Pq P; ) static=PS(q)

is the static structure factor of the ion subsystem. This is
related to the ion-pair distribution function g;(7) by

S(g)=1+p [ [ga(r)—1le'T Tar

and hence is known from the DFT calculation. ; Note that
Eq (3.10) is equivalent to the self-energy expression used
in the theory of disordered materials'? and liquid metals.'*

Let us now consider the more complicated problem of
evaluating the electron contribution to the self-energy
given by (3.7). In the case of electron density fluctuations
we are not entitled to make a static approximation of the
sort made for the ions. Owing to the high velocity of the
electrons coupled with their quantum nature we need
to evaluate the quantities dynamically.

To begin with we replace (alazagal) by its Hartree-
Fock form:

(alasala,y—(ala;(1—alay))
—7, (1-7,) .

Then, neglecting screening for the moment, the second-
order form of Eq. (3.7) becomes
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S2@)= 3 VZ|{v[TT|v) |23
R 1,2

where @, =w— €% — 32 (e2).
Now we assume that the complete basis set {¢,} can be

|<V1|e_ia.?[1’2>12[ﬁl(l—ﬁ2)—ﬁy(ﬁ1—}72)]
~ 0 0 (3.11)
0y +€—€
I
<VV1'Vee |"2V')ocp
QT |, —ig-T
_y ST e )

replaced by the complete set of plane-wave states, at least
as far as the evaluation of the polarization insertion is
concerned. This is justifiable since the major contribution
to the polarizability arises from the positive energy elec-
tron states. Then Eq. (3.11) becomes

SR (0)= 3 V2 (v]e T T|y)|?

q,v
nk(l—n_. —>)__v'(_—k_ﬁ" )
k+ k+7d
XE q +4 .
T (()V'—]*—é‘—»—é'i>_+'ir

(3.12)

The k integration in (3.12) can now be carried out analyti-
cally to give the result

=2 (0)= 3 V2| (vl TT )2
q.v
x[(1—7, L@, —a,L@,)], (3.13)
where
Aa(l—FT— _)
LP(0)= 3 ———", (3.14)
¥ Ote v,y
Ao _(1—7)
LP(w)=F —F—p". (3.15)
¥ Oter T4y

Note that
_r oy r(2)
La’(“’)_La’ (@) LT]’ (w)

is the Lindhard function at finite temperatures.!> Their
classical limits can be expressed in terms of the Dawson
function as in Ref. 6. It is interesting to note that the pos-
itive and negative frequency components of the Lindhard
function couple to the hole (i.e., 1—7,/) and particle (i.e.,
fi,;) densities of the fluctuating state v'.

Further simplification of (3.10) and (3.13) depends on
developing numerically convenient representations for the
matrix elements and for the Lindhard functions. This is
carried out in the Appendix.

B. Approximation to the screened potential

Equations (3.7) and (3.10) contain the screened interac-
tions V,(q) and V. (q) which have yet to be specified.
The unscreened form of the matrix element in (3.7) can be
written as
-?l v:)(vl Ie-—-i'q’-_r’
where ¥V, is the bare Coulomb potential. For a one-
component plasma, (OCP, electron-gas) it is easy to show
that the screened form in the context of Eq. (3.7) is

<W1|Veelv2v')=Vq(Vlei?{ |V2> s

elg,0—€%)

where €(q,0) is the dynamic screening function. In the
two-component case we can include the effect of the ion
background (taken in the static approximation) by replac-
ing ¥, by V,, thus
4
g*+A;
where the volume factor has been suppressed and A; is the
static screening vector for the ions. Under the conditions
studied here A; is well approximated by the Debye-Hiickel

value. We will approximate the electron screening also by
a static approximation and write

[ <1 | Vee | vav') |

V,= (3.17)

=V, 74 | (v [T [ )y [e =TT ) |2,
» _ (3.18)
where ¥, is given by (3.17) and V' is given by
= 41
V= . (3.19)
q q2+kg

Here A? is the total screening factor due to electrons and
ions. This is determined by fitting to the pair distribution
obtained from the DFT calculation. Note that these equa-
tions ensure that electron-polarization loops are not dou-
ble counted [see Figs. 2(k)—2(m)].

The screened ion-electron matrix element appearing in
(3.8) can be written (within the same type of static approx-
imation) as

~e ~ i

[ (V]| Viel@) | V') | 2=V, V5 | (v]efTT|v) |2, (3.20)

where

~e
Vo= 247 2
'
contains the effective electron screening factor, while Vfl
is defined as in (3.19).

The use of static screening in these expressions is some-
what of a limitation which can, however, be largely justi-
fied for the type of temperatures and densities used here,
within the representation for the finite-temperature
Lindhard-type functions used in these calculations (see the
Appendix).

Note that the kind of “dielectric catastrophe” en-
visaged'® in the metal-insulator transition does not occur
in the plasma since the onset of localization does not af-
fect the large majority of the electrons in extended states.
Hence no special Lorentz-type corrections are necessary in
the screening factors.

Thus the screened forms of the equations used for com-
puting the self-energy are
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S w)= 3, 24” 5 ——21‘1—2 [{(v]e' T T vy | LY @) —7, L (@)], (3.21)
3.v 9 +Ai g +A; d 4
. = Z‘ iqT ’ 2—S
S p)= S 4rZ  AnZ | {v]e |[v') |°pS(g) ’ (3.22)

L8N PN o——Zy(e)

with @=w—e,~w—€%. The summation over the inter-
mediate state index v’ runs over all bound states (n,/,m)
and over the continuum (k,/,m) states (see the Appendix).

IV. DISCUSSION OF THE RESULTS
FOR HYDROGEN PLASMA MODELS

In this section we shall discuss the results for the onset
of the ls-symmetry bound state as a function of tempera-
ture (T) and density (r;) for four models of a hydrogen
plasma. These are (i) the finite-temperature jellium model
where the ion distribution surrounding the central ion is
replaced by a rigid uniform neutralizing background,'” (ii)
the fully-ionized-plasma (FIP) model where the effective
charge of the field ions Z is assumed to be the nuclear
charge Z, (iii) the mean-atomic-plasma (MIP) model
where Z=(R /rf)’, as defined by Egs. (2.12)—(2.15) (this
model reduces to the ionic model in the strong coupling
limit and gives the isolated atom model in the weak cou-
pling limit), and (iv) generalization of the mean-ion-
plasma model to include dynamic correlations in the elec-
tron and ion subsystems. This will be called the
correlated-ion-plasma (CIP) model. Here Z is defined as
in MIP and is the model suitable for the calculation of
one-electron energies, level shifts, and level widths of elec-
tron states in plasmas.

The problem of the onset of localization in a plasma is
more usually approached from the atomic limit where it is
posed as the problem of temperature and pressure ioniza-
tion of an atomic electron.'®!® In the simplest approach,
via the Saha equation, the interactions are neglected or es-
timated by elementary theories which provide prescrip-
tions for avoiding divergencies. The partition function of
an atom diverges unless its extent (i.e., for example, the
range of its potential) is limited by introducing a charac-
teristic length (or a maximum quantum number) which ef-
fectively defines a screened potential. The equilibrium
constant K of the Saha equation for the degree of ioniza-
tion can be calculated from the partition function. At
least in the simple theories, K is zero until the onset of lo-
calization when it jumps discontinuously to a finite value.
Note that in the more detailed treatment given here the lo-
calization proceeds though intermediate stages where the
electron tunnels (hops) over many centers (Fig. 1) and
hence there would be no discontinuous parameter.

Returning to the simple static screened potential

Vir)=e M/r, 4.1)

where A=3a/1/r, a.u., a=[4/(97)]'? in Thomas-Fermi
theory (T=0) and A=(3/7r})'? in Debye-Hiickel
theory, at least one bound state exists unless?%?!

A>1. 4.2)

I

Much of the early work on plasma ionization of bound
states started off from this property of the Coulomb field.
The early work on the Mott transition also used (4.1) and
Mott gave the condition’

ry>1.55 at T=0 (4.3)

for the onset of extended states in a crystalline lattice of
hydrogen atoms. More recent discussions?? are usually
based on the Hubbard model?®> and show that even the
short-range part of the Coulomb interaction is sufficient
to produce localization. Attempts have been made to
describe plasmas?* and liquid metals?® using a Hubbard
model for the electron subsystem and a lattice gas model
for the ion subsystem. Such models are too crude to af-
ford a realistic description of plasma processes but could
be useful in some limiting situations. In addition to the
above screening transition (or Mott transition), localiza-
tion can also be produced through lack of long-range or-
der® (in the ion subsystem). This effect is usually dis-
cussed in terms of the Anderson transition. In a plasma,
the finite probability of finding other ions inside a mean
ionic radius R in MIP takes account of “positional” disor-
der.

In view of the above discussion we may note that (i) the
jellium models are limited to Mott-type localization gen-
erated by electron-screening and (ii) models which contain
a responding ion-distribution incorporate localization aris-
ing from screening and some Anderson-type mechanisms.
Finally, the introduction of dynamic density fluctuation
effects via self-energy corrections enables one to transcend
the one-electron DFT-type limitations in the analysis.
The existence of finite damping implies that there is no
such thing as complete localization.

A. Jellium model

In the jellium model the DFT equations are solved self-
consistently for a single proton and a responding system
of electrons, but with the field ions replaced by a uniform
nonresponding background which ensures charge neutrali-
ty. The potential V,(r) felt by an electron involves
—Z/r,—Vy(r), Vi.(r) as in (2.9), and depends on the den-
sity and temperature (r; and T').

In Debye-Hiickel type models the screening parameter
attempts to account for the effect of »; and T simultane-
ously. The replacement of V,(r) by the Debye-Hiickel
model may be valid in the classical limit, (T/Er) >>1, but
would be far less satisfactory than the finite-temperature
Thomas-Fermi or Hartree-Fock models.?® These latter
models depend on r{ and T separately and their predic-
tions would lie between the Debye-Hiickel model and the
DFT model.
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Results for €, obtained for the finite-temperature
DFT-jellium model are shown in Fig. 3 (see also Table II).
We have also shown, in two cases (r,=1,r,=4), the
curves corresponding to the Debye-Hiickel potential.

B. Two-component plasma models

Here we consider the fully-ionized-plasma (FIP) model,
where the field-ions are assumed to be fully ionized, i.e.,
Z =2Z, and the mean-ion-plasma model, Z = (R /r{)®. The
latter reduces to the FIP model in the high-density, low-T'
limit and to the isolated atom case for the weak coupling
limit.

DFT results for €;; obtained for the FIP model, Z=2Z
are given in Table II and displayed in Fig. 4. In Fig. 4 we
have also displayed the DFT results from the MIP model
for the cases r,=1, 2, and 3. It is seen that MIP lies close
to the FIP model for, say, r,=1 (high density), while it
moves away from the FIP model for r,=3. We believe
that the MIP provides a correct, consistent model for de-
fining an atom immersed in a plasma. The eigenvalues €;
for the MIP model are given in Table II.

C. Correlated-ion-plasma model

The mean-ion-plasma model is still a DFT model and
hence the single-particle energy levels and level properties
have to be calculated from the one-particle Green func-
tion, as in Eqs. (3.5)—(3.8). The self-energy calculation
generates the shifted and broadened single-particle levels
and the level populations in a scheme equivalent to a self-
consistent treatment of density-fluctuation correlations by
time-dependent perturbation theory on the screened in-
teraction potentials. The actual calculations for this
correlated-ion-plasma (CIP) model were carried out using
Egs. (3.21) and (3.22) together with the representations for
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FIG. 3. The 1s symmetry eigenvalue €;; (a.u.) in the jellium
model. Results for »,=1 and 4 for the Debye-static screened
model are also given as dashed lines.

the Lindhard-type functions and the matrix elements
given in the Appendix.

Table II provides a comparison of the ls energy predict-
ed by the four models. The jellium model, FIP, and MIP
provide no information on level widths, unlike CIP. In
CIP the level populations are calculated from Eq. (3.9) us-
ing the width y evaluated from ImZ, assuming a
Lorentzian level profile.

Comparison of the results for r;=3 for the different

TABLE II. Comparison of the results of the 1s state obtained by four models of the hydrogen plasma (see Sec. IV). The energies
€15 are in atomic units. . is the correlation part of the exchange-correlation potential ¥, used in the DFT calculation. 2f; is the
level population for the 1s level which spreads over many ion centers (see Fig. 1). In the CIP model dynamic correlations are includ-
ed and the level energy €,, level width ¥, and the level population are calculated from the one-particle Green function (see Table

IID).
Jellium model FIP model MIP model CIP model

rs T/EF —udFt il el il T al el €5 100X v1s Sis

3 0.5 0.0625 —0.019 0.8414 —0.0092 0.8288 —0.0196 0.8427 +0.0275 20.29 0.5615
1.0 0.0917 —0.059 0.5660 —0.0365 0.5392 —0.0528 0.5589 —0.0045 3.80 0.4917
1.5 0.1299 —0.102 0.3973 —0.0690 0.3720 —0.0858 0.3848 —0.0350 1.05 0.3474
2.0 0.1363 —0.140 0.2913 —0.0986 0.2710 —0.1134 0.2782 —0.0606 0.39 0.2537
3.0 0.1374 —0.196 0.1734 —0.1440 0.1615 —0.1545 0.1639 —0.1066 0.09 0.1536
4.0 0.1329 —0.1751 0.1075 —0.1829 0.1084 —0.1458 0.03 0.1042

2 1.0 0.1469 —0.037 0.5146 —0.0059 0.4978 —0.0124 0.5014 +0.0422 5.23 0.4683
1.5 0.1693 —0.073 0.3445 —0.0258 0.3293 —0.0348 0.3321 —0.0141 2.10 0.3266
2.0 0.1779 —0.105 0.2466 —0.0476 0.2352 —0.0567 0.2370 —0.1008 0.67 0.2465
3.0 0.1785 —0.154 0.1455 —0.0853 0.1395 —0.0938 0.1401 —0.2089 0.16 0.1509
4.0 0.1714 —0.189 0.0973 —0.1149 0.0938 —0.1208 0.0941 —0.2591 0.05 0.1007

1 2.0 0.2792 —0.036 0.2278 +0.0000 0.2260 —0.0000 0.2260 —0.4571 0.61 0.2486
2.5 0.2814 —0.0038 0.1692 —0.0043 0.1692 —0.5522 0.31 0.1872
3.0 0.2830 —0.080 0.1338 —0.0122 0.0889 —0.0131 0.1324 —0.6265 0.17 0.1459
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FIG. 4. The 1s symmetry eigenvalue €,; for the FIP (Z=1,
solid curves) and MIP (Z=R3/r}, dashed curves) models (see
Table II). For r,=1 the curves for FIP and MIP are indistin-
guishable. MIP for r; =4 and 5 are not shown.

models shows that the introduction of a responding ion
profile weakens the bound state. Thus €, is shifted up-
wards (red shift) so that €' < €)F < €flF < €fi*. The de-
stabilization arising from the dynamic correlations is suf-
ficiently strong to destroy the weak 1s levels at
ry=3,T/Tr=0.5 and r,=2,T/Tr=1.0 predicted by the
static models. However, at higher temperatures
(T >2,ry=2) and densities the dynamic correlations are
found to deepen the level, giving a blue-level shift. From
Table III we see that both 2% and 2% make significant
contributions to the level shift.

The high-density (r,=1) data presented in Tables II

1387

and III also imply a strong stabilization (i.e., deepening) of
the level due to correlation effects as the temperature in-
creases. The trend in the value of the static correlation
potential u. of DFT is also in keeping with this. Howev-
er, from Table III we see that the electron-ion contribu-
tion =% has become suspiciously large. This has at least
two implications, (i) the DFT calculation for such systems
should have not only Vi, Vg, but also the electron-ion
correlation potential Vg;, (i) the approximations made in
arriving at Eq. (3.22) for ={(w) have to be reviewed.
Thus, for example, a weakly localized electron may be
considered as an electron very close to the k =0 extended
state. For such an electron the motion of the ions may be
far from negligible and the use of the static form (3.22)
may be invalid. In fact, a calculation =f; in the high-
temperature limit (when the Lindhard functions LL®
can be written in terms of the Dawson function) suggests
that if

|€1s|,ST

then a dynamical description of ion-electron correlations
becomes necessary. Such a description can be obtained if
3%(w) is evaluated in a manner parallel to the evaluation
of =%(w). We believe that this, together with the in-
clusion of V; in the DFT calculation will reduce
ReZ{i(w) for ry=1 given in Table III to magnitudes com-
parable to or less than ={;(w). This could still imply a
blue shift of the levels for these densities and tempera-
tures.

The level width calculated for =,(w) contains electron-
electron and electron-ion contributions. If we examine the
electron-ion contribution, Eq. (3.10), we see that if we set
v=K,”=K—q and ignore the renormalization of the
denominator, then

Nw,k)=ImZ; ,(w)

= [ "] *S(@)8lw—ep_ ) . 4.4)

TABLE III. Details of the calculation of the self-energy which enters into the one-particle Green function G (). Here €} is the
zeroth-order energy provided by the MIP-DFT calculation. =% and X are the electron-electron and electron-ion contributions to the

self-energy, and 7 is the level width (atomic units).

rs T/Ts —ul*T €% Rez® Rex* €15 Im3%X 100 Im3%x 100 ¥ X 100
3 0.5 0.0625 —0.0196 —0.0034 —0.0119 +0.0275 —0.290 —20.00 20.29
1.0 0.0917 —0.0528 ~0.0115 —0.0319 —0.0045 —0.310 —3.49 3.80
1.5 0.1299 —0.0858 —0.0223 —0.0419 —0.0350 —0.130 —0.92 1.05
2.0 0.1363 —0.1134 —0.0331 —0.0471 —0.0606 —0.053 —0.33 0.39
3.0 0.1374 —0.1545 —0.0514 —0.0524 —0.1066 —0.014 —0.077 0.09
4.0 0.1329 —0.1829 —0.0630 —0.0544 —0.1458 —0.005 —0.027 0.03
2 1.0 0.1469 —0.0124 —0.0545 —0.0378 +0.0422 —2.290 —2.93 5.23
1.5 0.1693 —0.0348 —0.0836 —0.0649 —0.0141 —1.120 —0.98 2.10
2.0 0.1779 —0.0567 —0.1246 —0.0975 —0.1008 —0.230 —0.44 0.67
3.0 0.1785 —0.0928 —0.1718 —0.1228 —0.2089 —0.052 —0.11 0.16
4.0 0.1714 —0.1208 —0.1856 —0.1241 —0.2591 —0.016 —0.036 0.05
1 2.0 0.2792 —0.0000 —0.5009 —0.2354 —0.4571 —0.300 —0.31 0.61
2.5 0.2814 —0.0043 —0.5495 —0.2799 —0.5522 —0.150 —0.16 0.31
3.0 0.2830 —0.0131 —0.5866 —0.3099 —0.6265 —0.083 —0.089 0.17
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This is just a measure of the scattering of electrons by the
screened ion centers in the Born approximation. If I(6) is
the scattering cross section due to a single ion, the Bhatia-
Krishnan?’-Ziman?® theory shows that the scattering due
to two atoms at a distance T from each other is given by

I1(0) | {1+ exp[i(K—K )71} | 2. 4.5)

Averaging over all r, the scattered intensity becomes
I(0)S(q) where g=|K—k'|=2ksin(6/2) and S(g) is
the structure factor. If the scattering leads to a mean free
path L =7v for the electron, where 7 is the electron life-
time and v the electron velocity, then the conductivity o is
given by (note e=fi=m=1)

o=nrT,

1/T7v=2mp fo_ﬂl(e)(l— cos0)S(q)sin6déo ,

(4.6)

and 1/7 is just the quantity given by (4.4) which specifies
a k-dependent mean life 7(k).

When v is a weak bound state the electron is still very
far from the atomic limit (see Fig. 1) and hence still
suffers scattering from the ion distribution. Thus the con-
tribution to ¥ in Tables II and III arising from X;, may be
interpreted as a contribution to the electrical conductivity
arising from these weakly localized states. In this sense,
the mobility “edge” for these electrons may be defined by
requiring ImZ3;, to drop to zero. However, owing to the
statistical nature of the ion distribution, it is likely that
the concept of a minimum conductivity’ will not be
relevant to plasmas.
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APPENDIX: SOME PRACTICAL ASPECTS
OF THE CALCULATIONS

In this appendix we give details on the numerical ap-
proximations used in evaluating the self-energy, 2,(o).

1. Rational approximation for the real part
of the Lindhard functions

These functions are defined in (3.14) and (3.15). In the
following, we shall work mainly on L%)((o) since, for a

complex frequency @ =w +i7, one has

=y 7 (= (2) (=
L,@=LY@)-L2@)

=L%)((T))+L%)(—6) . (A1)

Starting from the definition of L%’(E), (3.14), using the
identity
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1 e?

1+e® 14eb -

11 1
14+e® 14eb [1—e2-b’

integrating over k,

then replacing K by k— =4,
0 q), one finds easily

kK= EII + El with l_{” parallel t

w 1 1
2m°BgL ) (3) = d —
mhL g @=[_ 5 B+y
1+E_.(p,
1 +—+(y_q_)_ , (A2)
1+E_(y,q)
o 1 1+E, (y,q)
27*BgL . (&)= d , (A3)
ﬂ'ﬁq q(w f—oo ya_)+y 1+E_(y;q)
where
1 2
— 2 Y . 9
= —_ +
E.(y,q)=exp 23 _q+2 +7,
n=Pu .

In the numerical applications we have done, the imaginary
part of @ is everywhere small, so that one gets immediate-

ly
1+E, (w,q)
1+E_(0,q) ’

ImL%)(6)=ImLa.(5)/(1—e'B“’) )

27Bq ImLa(6)= —In
(A4)

(A4) is exact in the limit 7=Im&—0.
With the appropriate change of variable, the real part of
L (@) is rewritten

ReL (@)= (2m""Bq) [ H(VB/2x ;)

+H(VB/2x_)1, (A5)
xy=+2_ 4, (A6)
q 2
- © g2 1
HX)=7""2 [ In(14+e™"*N———dt. (A7)

The integral in H(X) is to be taken in principal part. The
behavior of H at small and large X can be determined by
elementary means, and one finds

H(X)~Q27B)**noX+ -+ as X—0

(A8)

1
1+£___+...

HOO~ 3 rp) i | 1+5

} aSX——->w,

where 7 is the density of the uniform électron gas,
‘/i 3/2
n=——pB"°""I )
> B 12(n

and with o and 0 defined in terms of standard Fermi
functions by
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11_1p(n)
2 11/2(7])
_ 2 I3(n)
3 1)
The high-temperature limits of o and 6 are 1, and the

low-T limits are 0=3/(21) and 6=27/5. Looking for a
rational approximation of H, we write

g=

ReLa.((T))=\/B/2_nTU[F( VB/2x ) +F(VB/2x_)] (A9)

with
1+aXx?
1+(2—6a)oX%+2a0X*

(A10) is compatible with (A8) for any value of the param-
eter a. Now, for T— o, F(x) must be a representation of
the Dawson function

Dx)=2¢=*" [ e"dt .

F(X)=2X (A10)

In order to recover the exact high-T limit of the ring con-
tribution to the grand potential of the electron gas (2, (see
Ref. 11, p. 277), one must have

== [ e Diy)ay

a condition which determines ¢ when D is replaced by F.
The high-T value a =1.14 is obtained in that way. The
following compares the simple form (A10) at high T
(6 =0=1) to the Dawson function:

x F(x) D(x)
0.1 0.201 0.199
0.2 0.403 0.390
0.3 0.604 0.565
0.4 0.791 0.720
0.5 0.947 0.849
0.6 1.054 0.950
0.8 1.114 1.064
1.0 1.034 1.076
1.2 0.910 1.015
1.4 0.791 0.913
1.6 0.691 0.800
1.8 0.610 0.694
2.0 0.544 0.603
2.5 0.426 0.446
5.0 0.204 0.204

The maximum deviation is 14%. (A7) provides results
which are much more accurate than any kind of
“plasmon-pole”-type approximation. At T=0,
ReLa.(co=0) is of the form

-9

L
2k

kr

b

where kp is the Fermi momentum (2uz=k?). This implies
that the parameter @ must be proportional to 7! at low
T. We write
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a=1.14

’

1
1 —_
po—+( —p)‘9

satisfying the high- and low-T limits, and try to optimize
p in order to get the best fit of LT;’(O)' In fact, the sensi-
tivity to p is small: for instance, at q=2kp, 17'2La>/kp
varies from —0.334 for p =1 to —0.355 for p=0 (com-
pare with the exact value of —0.500). Finally, for the
sake of simplicity, we have chosen p=1,a=1.140 for any
temperature. The behavior of the approximate Li’(w) at
T =0 is physically correct, although the weak logarithmic
singularity of the exact function is not reproduced and the
accuracy is poorer than for high T.

Now we derive a corresponding approximation for
L %’(5) which, in analogy with (A5)—(A7), can be written

ReL %’(6)=(Zﬂ'3/zﬁq)‘I[M_(\/B/2x+ )

+M¥Y(VB/2x_,y)], (A11)

y=qV2B, (A12)

MEp) =2 [* In(14e=+m—L 2
(x,p)=1m f_wln( +e )/ T (wydt,
(A13)

FEt,y)={1—exp[+(ty+y2/4)]}"". (A14)

In (A13) the functions M * differ with respect to function
H in (A7) owing to the extra factor f*(,y). Note that the
sum of f+ and £~ is just unity. A detailed calculation of
M* would be very complicated, so we decided to use a
crude approximation which consists in neglecting the ¢
dependence of f*. Thus (A13) becomes

M*(x,y)=f*(y)H(x)

and then, with F as an approximate form of H,

ReL %’(a)=¢_ﬁ/‘2l’1—:’— { f~WF(VB/2x )

+[1—f~(WIF(VB/2x _)}- (A15)

The most simple form which can be obtained for f~(y) is
a constant (independent of g) which is found from the ex-
act behavior of L,;”(E) at ¢ =0. This gives

—y_ 1+0o
fro=—".

(A16)
Better approximations can be found, but (A16) already
gives the following properties [within the approximation
for H(x)]:

(i) Relation (A1) holds, so that (A15) and (A9) are com-
patible.

(ii) (A15) is exact at high temperature (f ~=1).

(iii) The asymptotic form for large g, Lél)(6)= —2n/q?
is correct.

This simple approximation (A15) and (A16) has been used
in the calculations presented in Tables II and III.
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2. Numerical estimate of the matrix elements
The matrix element of a plane wave e 9T petween the
1s bound state | v) and a free state |v') is needed to com-
pute the self-energy, as defined in (3.10) and (3.13). The
full calculation of the matrix element, for any value of q,
in a wide range of free-state energies (and a large number
of angular momenta) would be very time consuming. So
we have derived the following interpolation procedure.

Assume that the 1s bound state is well described by a
normalized exponential

3

|v)=de~®, 4=
o

and the continuum state by a plane wave orthogonalized -

to |v)

- —
1

v)=1%)= K'F_pe—or)

1 (e
vQ
with Q the volume of the system (2— ), and b such
that (k | v)=0:
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4
b= 28a 2y2 °
(k“+a’)
(Note that the overlap does not change the normalization
for 1— 0 and « finite.) The matrix element is now

1
(| K+d|2+a??
_ 16a*

(k24 a?)(g*+4a?)?

>
i T

a’.

(v]e |K)=8nda

. (A17)

With (A17), averaging over the angles on the squared ma-
trix element is straightforward. This analytic formula has
been used in the following manner: For a given free-state
energy E = k?, we calculated first the average square of
the exact matrix element for g =k (using the DFT wave
functions). Then we determined the value of a appropriate
to that energy E by fitting (A17) to the numerical result.
Finally, we used that a to compute the matrix element for
any desired value of {, and repeated the procedure for
every energy in the continuum.
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