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Shifts of spectral lines in a plasma
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The theory of spectral lines in a plasma with quasistatic ions is reconsidered. The ion microfield
distribution, generalized to include field gradients and higher-order derivatives, is introduced
without decoupling the ion and electron subsystems. It is shown that in a self-consistent treatment
of ion-electron correlations the calculations of line shifts requires a more complete theory than has
been used in the past. It is shown that level shifts due to a time average of the radiator-plasma in-
teraction are closely related to shifts due to ion field inhomogeneities at the radiator. These two
shifting mechanisms are not independent and the analysis indicates how to avoid overcounting. As
a result, the time average of the radiator-plasma interaction, usually associated with the so-called
plasma polarization shift, is formally different from the equivalent expression given by theories
which treat electron-ion correlations in an ad hoc fashion.

I. INTRODUCTION

The possibility that a plasma can cause a shift of spec-
tral lines has been a long-standing topic of controversy. '

The line shift is of fundamental interest since it involves
many-body aspic:ts of the line-shape theory due to initial
correlations between the radiator and the plasma. It is
also of practical interest because, for example, it may be
responsible for uncertainties in wavelength determinations
and it is a possible diagnostic tool in high compression
laser-fusion experiments.

One proposed shift mechanism, first introduced by Berg
et al. , is the level shifts due to a nonuniform charge dis-
tribution in the neighborhood of the radiator. These au-
thors suggested that a time average of the radiator-plasma
interaction can cause an excess negative charge in the vi-

cinity of the radiator. As a result, this net polarization of
the plasma partially screens the nuclear charge which
alters the level structure of the radiator and shows up as a
line shift. In addition, most current theories simplify the
difficult problem of predicting a line shape by assuming
the quasistatic approximation for the ions and a collision-
al formulation for the electrons. The static ion approxi-
mation implicitly contains a shift due to the ion field in-

homogeneity at the radiator. This second shifting mech-
anisrn is in a sense related to the level shifts above in that
both involve static perturbations in the potential seen by
the bound electrons. Since each mechanism is generally
treated independently, there exist the possibility of over-
counting some effects.

Also, the usual introduction of the ion microfield distri-
bution assumes a decoupling of the electron and ion sub-
systems so that electron-ion correlations are treated in an
ad hoc fashion. There are conceptual difficulties with
such procedures. For example, it is empirically observed
that the ion microfield distribution should be that for
shielded ions where the screening is due to electrons as a
result of electron-ion correlations. At the same time, it is
known that electron-electron correlations are important in
the description of electron-radiator collisions, but no ac-

count is taken of electron-ion correlations. Clearly the
ad hoc separation of electrons and ions into independent
subsystems is difficult to justify theoretically.

Recently a line broadening theory was proposed' which
retains the quasistatic ion approximation, but treats all
plasma interactions (ion-ion, ion-electron, electron-
electron) systematically. The approach demonstrated how
a self-consistent treatment of ion-electron correlations can
be maintained between the ion microfield and the electron
collision operator. The discussion in Ref. 10 was restrict-
ed to the dipole interaction between the radiator and plas-
ma. Here, the objective is to extend the formalism to a
full-Coulomb radiator-plasma interaction. It is then pos-
sible to investigate the line shift in a theory which treats
plasma correlations self-consistently. The result of the
formal analysis shows that the two mechanisms for static
line shifts mentioned above, which current theories treat
independently, are actually closely related. Moreover, as a
direct result of the self-consistent treatment of plasma
correlations, the shifts due to the time average of the
radiator-plasma interaction are formally different from
the equivalent expressions given by the usual theories.

It is important to note that the level shifts due to the
time average of the radiator-plasma interaction and ion
field inhomogeneity only include static plasma effects due
to initial correlations. In order to compare theoretical and
experimental shifts, the former must include fluctuations
of the time averaged quantities. These fluctuations can be
significant since they occur in a time scale much shorter
than radiator state lifetimes. Here, however, the discus-
sion is restricted to the static shifts only.

II. THEORY

I(to)=rr 'Re dt e'"'Tr(d pe ' 'd),
0

(2.1)

where L and p are the Liouville and equilibrium density
matrix operators for the radiator-plasma system, respec-

The line-shape function is determined from the dipole
autocorrelation function, "
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(2.2)

r, and r~ are the position operators for the bound elec-

tron and jth perturber of species cr, respectively, N and
Z e are the number and charge of perturbers belonging to
species o., and o denotes ion or electron. The pair interac-
tion can be expanded in Legendre polynomials, '

00 r
U (aj)= —Z e g l+1

Z
5io Pi(cos8) .

rj
(2.3)

In Eq. (2.3) r& (r)) is the smaller (larger) of r, =
~
r,

~

and rj ——
~ rj ~, 0 the angle between r, and rJ, and Pi the

Legendre polynomial of order l. The terms in the expan-
sion are now regrouped in the following manner:

U (a,j)=+0(J)+U i (aj )+U2 (a,j)
where

qo(j)=Z (Z —1)e'/r,

00 r
U i (a,j)= —Z~e g i i Pi(cos8),

r=1 rg

for all rj & 0 and

(2.4)

(2.5)

(2.6)

U2(a, j)=
0, rj &ra.
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(2.7)

It is important to note that the separation of v (a,j) in

tively. The trace is over states of the radiator and plasma.
In the following it is assumed that the ions are essentially
static over the radiator state lifetimes. Furthermore, it is
assumed that the momentum transfer to the radiator dur-
ing the time of radiation is negligible, and therefore, that
the Doppler broadening is independent of Stark broaden-
ing. In this situation I(co) refers only to Stark broadening
so that the operators and trace appearing in Eq. (2.1) are
independent of the center-of-mass coordinates of the radi-
ator. It is, therefore, convenient to place the origin of the
coordinate system at the radiator nucleus.

To proceed, consider the full-Coulomb radiator-plasma
interaction, V,», which is given by a sum of pairwise addi-
tive terms. For simplicity, only a two-component plasma
is considered and the radiator is assumed to be hydrogenic
with nuclear charge Ze, e the magnitude of the elementary
charge. Then,

N

V»=g g v (a j)
j=1

Eq. (2.4) is not into contributions from r )r, and r &.r, .
Instead, the different contributions to U (a,j) are such
that &po and U i are nonzero for all rJ )0 and vz is nonzero
for rJ &r, . The motivation here is twofold. Firstly, the
long-ranged monopole term yo only depends on perturber
coordinates and is included in the plasma Hamiltonian as
an external potential. In this way the polarization of the
plasma by po may be accounted for while keeping the rest
of the radiator-plasma interaction, v i and v 2, short
ranged. Secondly, the form of vi is such that it may be
written as the "product" of a radiator operator times an
operator which depends only on the perturber position,

vi(a, j)=M(a)N (j)
N

g Pk(a)kk(J)

(J)— g QQ „~ e„(J)+ ' ' ', (28)

where the ellipsis represents higher multipoles. Equation
(2.8) defines the expression M(a)N (j). For example,
pi(a) = d and p, 2(a) =Q/6 are the dipole and quadrupole
operators for the radiator, respectively, and yi (j)= e (j )
and pz(j) =BV (j) are the electric field and field gradient
tensor at the origin due to the jth perturber of species cr
The advantage in the product form of U i (a,j) in Eq. (2.8)
will become apparent later [see Eqs. (2.14) and (2.19)]. Fi-
nally, note that in line broadening theories that neglect
penetration of the radiator by the perturbers, the
radiator-plasma interaction is approximated by
Ipp +U i (a,j) and the l sum in Eq. (2.6) is usually truncated
keeping only the l =1 dipole interaction and sometimes
the I =2 quadrupole interaction.

Now, introduce an ion "configuration" distribution,
which generalizes the electric microfield distribution and
includes field gradients and all higher-order field deriva-
tives, by defining

p(%) =p5(%—N*)/W(%),

W(%) =Trp5(% —N'), (2.9)

5(e—N')= g 5(q„—N'„),
k=1

and 4 constant. The 4k's and @k's have a meaning simi-
lar to Pk in Eq. (2.8): for k =1 they denote the electric
field at the origin, for k =2 the field gradient tensor, and
so on. The function W(%) is the ion configuration distri-
bution and has the interpretation of a probability density
for N' to take the value of %. The form of N" is arbitrary
other than depending only on ion coordinates. ' Similarly,
p(%) is the equilibrium density matrix with the plasma
constrained to have N'=%. With these definitions, the
line-shape function may be expressed in the form'

I(co)= f d%' W('I')J(co, %'),

J(co,+)= m'ImTr, [d f—(a;%)[co L(a;4) B(%)—H(co;4')]—'d—I,
(2.10)

(2.11)
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where f(a;4') is the density matrix for the radiator

f(a;4)=Trzp(%), (2.12)

Tr, and Tr& denote traces over the radiator and plasma
degrees of freedom, respectively, and L (a;4) is the Liou-
ville operator for the radiator in the external potential
M(a)%. The operators 8(%) and H(co;4) determine the
width and shift of the line due to the radiator-plasma in-
teractions not included in L (a;4). The static shift opera-
tor 8(%') is given by

The results in Eqs. (2.10)—(2.17) are of the usual form
in line broadening theories making the quasistatic ion ap-
proxiination: J(co;4) represents broadening in the pres-
ence of ion configurations such that 4'=4, and 8'(4)
gives the probability density of these configurations. The
inotion of the electrons is accounted for in the definition
of H(co;4) H. owever, no approximations on the ion-
electron correlations are necessary. In fact, Eq. (2.10) is
simply an exact rewrite of Eq. (2.1).

III. THE STATIC LINE SHIFT

(2.13)

(2.14)

V, = g g v, (a,J) . (2.15)

The operator H(co;4) represents collisional effects that re-
quire finite times which contribute to the width and
dynamic shift of the line and is given by

H(co;%') =f '(a;4)

XTr~[LI(c")p(q')(co —QLQ) 'QLI(@*)],

(2.16)

where Q = 1 I', and P is t—he projection operator

(2.17)

for X arbitrary.
In obtaining Eqs. (2.10)—(2.17), use has been made of

the quasistatic ion approximation and the product form of
ui (a,j) in Eq. (2.8). The former implies that the modified
density matrix p(%) is stationary,

' 'p(+)=p(p), (2.18)

so that the kinetic energy of the ions plays no role and can
be integrated out. As a result, the 5 function on the defi-
nition (2.9) in combination with Eq. (2.8) allows the ion
fields characterizing the radiator-ion interaction v i(a, l) to
be written as

N;

g u'i(a, j)=M(a) g @'(j) —@' +M(a)% . (2.19)
N,

Ll(N )=Li(4 )+L2,
where L i (4& ) and Lq are the I.iouville operators associat-
ed with the interactions

Although the formal results for the line-shape function
in Eqs. (2.10) and (2.11) are exact [within the approxima-
tions already present in Eq. (2.1)], the expressions are for-
midable. For example, in usual line-shape theories the
width and shift operator may be evaluated in the binary
collision approximation since for typical experimental
plasma conditions it involves strong radiator-electron col-
lisions which are well separated in time. Here, however,
there are radiator-ion collisions present in H(co;4) and
these strong collisions overlap except at very low densities.
There is also the constraint 4*=% not present in usual
line-shape theories. Nevertheless, some general statements
regarding static line shifts are possible.

The total static shift (as a result of the instantaneous
force on the radiator at t =0 due to initial correlations) is
contained in L (a;4)+8(%'). The shift in L (a;0') is due
to the static ion field inhomogeneity at the radiator while
the shift in 8 (4) contains the level shifts given by a con-
strained plasma average of the radiator-plasma interaction
Ll(4"). Since 4& is arbitrary, the shift due to either
L (a;4) or 8 (4) is not unique and, in fact, it is possible to
transfer contributions from one term to the other by sim-

ply making different choices for 4*.
In addition, there is also a frequency-dependent shift

contained in H(co;ql). It is clear from Eq. (2.16) that
H(co;0') also depends on the choice of 4*, and conse-
quently different choices necessarily imply a correspond-
ing transfer of effects between W('P) and J(co,@). Again
it is emphasized that comparisons of static shifts to exper-
imentally observed line shifts may not be relevant since
the latter may contain significant contributions from fluc-
tuations which occur in a time scale much shorter than ra-
diator state lifetimes. Since a self-consistent treatment of
electron-ion correlations has been shown to be important
in the description of static shifts, it indicates the necessity
of including these same correlations in the discussion of
the collision operator. Unfortunately, due to the addition-
al complexity of the present formalism (specially the con-
straint @*=ql) such detail analysis has not been possible
at this time.

The last term in Eq. (2.19) depends only on radiator coor-
dinates and is conveniently combined with the Hamiltoni-
an for the radiator internal degrees of freedom to give the
Liouville operator L(a;9') appearing in Eq. (2.11). The
term with the square brackets [ ] is combined with
vi(a, j) to give the definition of Vi(@*)in Eq. (2.14).

IV. SAMPLE CALCULATION

The purpose of this section is to help clarify the formal
results above with a sample calculation of the static shift
operator 8(%'). To proceed, it is necessary to make a
choice of @*. Therefore, let
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for k = 1,2, 3, . . . , (4.1)

where Tr, denotes a partial trace over the electron subsys-
tem and p~ is the density matrix for the plasma and in-
cludes the monopole interaction $0. The average quanti-
ties defined in (4.1) are the conditional average over the
electron subsystem given an ion configuration. Note that
in this definition N' is completely independent of the ra-

diator internal states since the average is over p~ and not
p. The resulting g are given by a sum of ion Coulomb
terms plus a contribution from electron terms; the latter
vanish if electron-ion correlations are neglected.

Although the choice (4.1) involves hindsight and is
designed to emphasize a particular result [see Eq. (4.5)], it
is certainly valid and involves no approximations. The ar-
guments for justification of (4.1) are not only formal (4'
is arbitrary) but also physically reasonable. For example,
(4.1) has the empirical desirable feature that the distribu-
tion function, W(f), is for electron-screened ions. Fur-
thermore, for weakly coupled plasmas the electron screen-
ing is given by a Deybe theory and the g's in (4.1}
reduce' to the usual form of past calculations.

Substitution of Eq. (4.1) into (2.13) yields

N

~(@)X(a)=f i(a;'p) g Tr p(4)[1 (Tr—,pz) Tr,pz][ui(aj), X(a)]+f (a;% )Tri,p(%')[Vz, X(a)], (4.2)

wheie [ ~, ] denotes a commutator and X(a) is an

arbitrary operator in the radiator subspace. The two
terms on the right side of Eq. (4.2) are quite different.
The first involves a constrained plasma average of the
radiator-electron interaction, v ~, but no radiator-ion terms.
Because of the subtracted average over the electrons, this
first term describes shifts due to radiator-plasma initial
correlations. Note that the relevant initial correlations are
those due to Vi+ Vz and not $0 since the monopole term
is included in pp. The second term involves a constrained
average over the radiator-plasma interaction describing
penetration of the radiator by both electrons and ions and
it does not vanish with the neglect of initial correlations.

The result in Eq. (4.2) follows from (4.1) without ap-

p~papp ~ (4.3)

where p, is the density matrix for the isolated radiator.
Now, the average over Ui in Eq. (4.2) vanishes,

proximations. This calculation will make an approxima-
tion usually found in static shift theories. In particular,
all initial correlations between the radiator and plasma ex-
cept those due to the monopole interaction, Po, will be
neglected. No justification for this approximation is given
since the intent here is not to provide "improved" numeri-
cal results but to make contact with past static shift
theories. That is,

f '(a;4')Trzp( If)[1—(Tr,pz) 'Tr, pz] i(Uaj )~Trzpz(%)[1 —(Tr,pz) 'Tr, pz]vi(a, j)=0, (4.4)

where pz ( qI ) is defined similarly to p(%') but with
V~+ V2 ——0. Consequently,

fiB(% )X(a)~Trzpz(%')[ V2, X(a)]

and clearly 8(%) depends only on the net polarization of
the plasma inside the bound electron. It is important to
note that the polarization of the plasma in (4.5) is not only
due to the monopole interaction $0 but also to the con-
straint @*=%. For example, for neutral radiators and
weakly coupled plasmas it was shown in Ref. 10 that the
ion density is not uniform but instead the ions tend to stay
away from the radiator nucleus. Also note that even
though the density matrix for the plasma is spherically
symmetric about the origin the constrained density matrix
p~(%'} is not, and therefore, the 1+0 terms in the defini-
tion of V2 [see Eq. (2.7)] do not vanish.

It must be emphasized that the result in Eq. (4.5) is not
unique and depends on the particular choice (4.1) plus the
approximation (4.3). Nevertheless, this section clearly

k=1,2, 3, . . . (4.6)

so that @k is now given by the bare Coulomb ion fields
and field derivatives, it is easy to see that the result for
B(4) will be different from (4.5). Consequently, different

shows the importance of treating plasma correlations
self-consistently in line-shift theories. Firstly, it demon-
strates the effect of subtracting from the level shifts in
8(%) any contributions to the radiator-plasma interaction
already included in L(a;4). A comparison of the result
in Eq. (4.5) with the equivalent expression for the static
shift operator given by the usual theories, ' which treat
electron-ion correlations in ad hoc fashion, shows that the
two are formally different. The latter involves an electron
average over the radiator-electron interaction u ~ +u2 and
is independent of the ion configurations. Secondly, by
choosing something for @* other than (4.1), for example,
let
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choices for N' transfer contributions between l. (a;4) and
8 (%').

V. DISCUSSION

The present formalism shows that Stark broadening of
spectral lines may be formally expressed as a convolution
of static and dynamic broadening. In general, however, a
self-consistent treatment of plasma correlations does not
allow a clean separation into independent ion and electron
broadening so familiar in usual line-shape theories.

There are several new features that are associated with
this new formulation. Firstly, all averages occur over a
density matrix of the total system so that aH plasma in-
teractions can be incorporated in a systematic way.
Secondly, the introduction of the ion configuration distri-
bution changes the ensemble for the radiator and plasma
from an equilibrium canonical ensemble to the con-
strained ensemble, Eq. (2.9).

A third feature is the choice of 4". Because the latter
is arbitrary, it shows that the level shifts due to time aver-

ages of the radiator-plasma interaction and ion field inho-
mogeneities are very closely related and that, in fact, some
care is necessary in order to avoid overcounting. Al-
though the results in this paper are only formal, they sug-
gest that a self-consistent treatment of plasma correlations
requires a much more complete theory than has been used
in past calculations of static shifts. In particular, past cal-
culations of level shifts due to the time average of the
radiator-plasma interaction must be reconsidered.
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