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Anomalous relative diffusion (pair separation} in the inertial, as well as in the viscous, subranges

of fully developed turbulent flow is considered. Using the Lagrangian velocity-correlation function
in lowest-order continued-fraction approximation based on the Navier-Stokes equations and a
phenomenological closure assumption, we express the variance in terms of the static structure func-

tion. This closed form for the turbulent diffusivity unifies scaling concepts with fluid mechanics

and is free of fitting parameters. We obtain the following conclusions: Various regimes of variance

versus time t are identified, ~t initially, t' and exponential (viscous subrange), t +~ (inertial

subrange). Intermittency (well known to alter the scaling exponent) implies a fairly strong effect
upon the magnitude of the diffusion depending on the initial separation and on the Reynolds num-

ber; diffusion is delayed with increasing intermittency. Incompressibility is expected to lead to
differences in transverse versus parallel separation. Molecular diffusivity may show up even in the

universal regime as a permanent enhancement of diffusion due to different incubation times.

I. INTRODUCTION

The understanding of the way in which gaseous and
liquid wastes disperse in the atmosphere, oceans, lakes,
and rivers may be achieved by studying turbulent dif-
fusion. ' The subject of turbulent diffusion is thus of great
practical importance. On the other hand, this is a topic of
great theoretical interest; turbulent diffusion is an
"anomalous" diffusion process ' which is affected by the
fractal nature of turbulence; its understanding is related
to the very description of the dynamics and statistics of
the turbulent fluid itself. In addition it turns out that
turbulent diffusion is in part responsible for the genera-
tion of self-similar structures like clouds, which seem to
be fractals in their own right. ' Consequently turbulent
diffusion and its ramifications relate to a number of topics
of current theoretical interest.

Theoretically, turbulent diffusion is best understood in
the context of fully developed isotropic turbulence. Even
here problems abound. Single-particle diffusion is dom-
inated by large eddies which have no universal properties,
causing the diffusive process itself to be nonuniversal.
The situation is better for two particles or "relative" tur-
bulent diffusion. Here one is interested in interparticle
distances. These are not affected by large eddies which
convect pairs of particles together. They are not affected
by very small eddies either, since these are poor in energy.
Thus interparticle distances are mostly affected by eddies
of sizes comparable to them. If the interparticle distance
is within the inertial range, one can expect to find univer-
sal behavior.

Consider two particles which are released initially at
points r& and r2, respectively. Their interparticle distance

R, R=—r ~
—r2, will change in time due to the fact that the

(V(t).V(r)) = (V(t).V(t) )g((t ~) lttt ),
where tR is the typical decay time of velocity differences
across a length scale R. Substitution in Eq. (1.2) leads to
the asymptotic predictions

d(R')
dt

(V(t) V(t))t, «(tJt
(,V(t) V(t))ttt, t))tR

(1.4a)

(1 4b)

The lack of knowledge of g(x) prohibits estimates of the
turbulent diffusivities at all times. At this point one has

to estimate (V(t) V(t)) and ttt. As long as R is in the
inertial range, the estimate of (V(t).V(t)) is relatively

velocities at position r& and r2 are not the same. Denot-

ing the relative velocity by V(t) we have

R(t)=R(0)+ f V(r)dr. (l.1)

In isotropic turbulence (V(t) ) =0. Consequently

(R(t) ) = (R(0) ). The variance, however, is changing,
leading to the turbulent diffusivity'

=2 I (,V(t) V(~))dr. (1.2)
d~

We see that in order to understand turbulent diffusion we
have to estimate time-correlation functions of velocity
differences across a length scale R. Recently, such esti-
mates have been attempted. The essence of the argument

has been as follows: The correlation (V(t).V(r) ) is
known to be nonstationary. We can assert, however, that
there exists a function of scaled time variables g(x) such
that
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t(i) (e )
—i/3R2/3 (1.6a)

or

t(2) (~ —1/3)R2/3 (1.6b)

to take just two examples. Dimensionally, both forms are
correct. The intermittency corrections, however, are en-
tirely different, leading to

t(i) ——1/3~ 2/3tg —6 R
' —2p/9

tz -e
lp

(1.7a)

(1.7b)

A similar ambiguity arises in the fractal model. Here one
can guess

(1.8)

where Vz is the typical velocity difference across a length
scale R. Other guesses are, ho~ever, possible.

The approach presented in Ref. 4 leads, with the
choices (1.7a) and (1.8},to the estimates

d(R')
dt

'al
—1/3R 4/3 t « tR

0

R
~ 1/3R4/3 t ))t

Ip

(1.9a}

(1.9b)

with R = (R2)'/2(t), and ai and a2 being ((2/6 and 2(M/3

or (M/18 and 2p/9 in the fractal and log-normal models,
respectively. These results are difficult to implement be-
cause it is not certain at what times t in a typical experi-
ment a switch from the regime t &&tz to t» tz takes
place. (Remember that ts grows with time and it might
even happen that for the duration of some experiments t is
always smaller or always larger than tz. ) Thus, showing
that the intermittency corrections are interesting and ob-
servable these estimates leave a number of problems open.

(1) Is there a unique way for estimating the relevant
timescales tz?

(2) Can one derive a theory of turbulent diffusion that is
acceptable for all times and not only asymptotically at
t « t& and t »t~?

(3) Can one derive a theory that would hold at all length

easy. Within the "homogeneous fractal model" of tur-
bulence ' ' or the "log-normal model" one finds

(V(t).V(t) ) -e R (R/lp)i' 3 (fractal model), (1.5a)

(V(t) V(t)) -e R (R/lp)('/ (log-normal model),

(1.5b)

where e is the mean energy dissipation per unit mass and
unit time and p is the intermittency exponent. Ip is the
outer length scale at which energy is injected. The calcu-
lation of t„ is, however, more ambiguous, since it can be
estimated in a variety of ways. Taking, for example, the
log-normal statistics, we can write (with ez being the dis-
sipation within a ball of radius R)

II. TURBULENT RELATIVE DIFFUSION IN TERMS
OF LAGRANGIAN CORRELATION FUNCTIONS

A. Exact relations

Consider two particles which are initially (t =tp) at po-
sitions s p and s p+ r in a field of locally isotropic, homo-
geneous turbulence. We denote the positions of these two
particles at time t=tp+wby x('T sp tp) and x(1'; sp+2 tp),
respectively. The quantity of basic interest for relative
diffusion is the interparticle vector distance R(r, w; sp tp)
which is defined by

R(r, ~; sp, tp)=x(7'sp+1' tp) —x(t sp tp) . '

Clearly,

R(r, 0; s p, tp ) = i' .

For any ~)0 we can write
1"

R(r, ~; sp tp)=i'+ d~'[u(~'; sp+r, tp)
0

—U(1 ' Sp tp)]

(2.1)

(2.2)

(2.3)

Here u(~; s p, tp) is the Lagrangian velocity,

scales in the viscous as well as in the inertial ranges?
All these questions can be answered in the affirmative if

we can relate theoretically the two-time-correlation func-
tions appearing in Eq. (1.2) to the one-time-correlation
function. Such a relation, however, calls for an analysis of
the fluid mechanical equations of motion. Fortunately
such an analysis has been presented recently in Ref. 10.
The aim of this paper is to unify the approach presented
in Ref. 10 to the issue of turbulent diffusion in a way that
yields a closed theory of turbulent diffusion. Within the
approximations adopted in Ref. 10 we obtain a theory that
appears to hold at all length scales and time scales and is
in fact free of any parameter that cannot be estimated ei-
ther theoretically or from existing experiments.

The structure of the paper is as follows. In Sec. II we
derive the exact relationship between turbulent diffusivity
and Lagrangian time-correlation functions. Next we re-
view the theory of Ref. 10 and deduce expressions for tz
and approximate forms for the turbulent diffusivity at all
times and length scales. Section III turns to quantitative
treatment of the turbulent diffusivity, taking intermitten-
cy effects into account. Equations of motion for the vari-
ance of R(t) are set and solved in the inertial as well as in
the viscous ranges. Finally the effects of molecular dif-
fusivity are assessed. Section IV offers a summary and
discussion. The main conclusion of Sec. IV, as far as
basic theory is concerned, is that one can study turbulent
diffusion with scaled variance as a function of scaled time
in a way which leads to universal plots in the absence of
intermittency. Thus, any deviation from universality is
attributable to intermittency. It turns out that even within
the log-normal model (which tends to underestimate inter-
mittency effects) the existence of intermittency leads to a
large effect rather than the small corrections that one usu-
ally refers to. Thus the study of turbulent diffusion can
shed important light on the basic structure of turbulence.
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U(r& s p, tp) =d, x(r; so, tp), (2 4) provided that

where total derivatives with respect to ~ are denoted by d, .
The velocity difference appearing in the integrand of Eq.
(2.3) will be denoted by v(r, r'; s p, tp). This velocity differ-
ence is a "Lagrangian eddy. " Introducing the average(. ) as an average over the initial conditions sp tp,
with a fixed r, we find that

(v(r, r)) =0 for all r . (2.6)

The latter equation is indeed obtained in homogeneous,
stationary turbulence due to the translational invariance of
( ll( S p, tp) ) ~

nce is now introduced by defining(R(r, t)) = r for all r,

(2.7)

(2.5) The one time varia
I

1

cr j(r,r)= (5R;(r, r)5R&(r, r)) = dry dr2(u;(r, ri,' sp tp)vj(r r2', so~to) )

where 5R(r, r) =R(r, r) —r.
Isotropy of the turbulent field leads to the symmetry

crtj crjt. W——e also have by construction o,z(r, O) =0. Since
(in locally isotropic turbulence) r is the only vector avail-
able for the construction of the variance tensor, we can
immediately write

crp (r, t)=a~~(r)r;rj+cri(r)P&(r),

where r = r Ir and P = 1 rr. —
The relative turbulent diffusivity is defined now as

(2.8)

dro', z(r, r)=2 dr'(v;(r, r; s pt p) uj( rr —r', sp, tp)),„~ .
0

(2.9)
It is interesting to realize that the diffusivity can be

decomposed again to longitudinal and transverse parts. In
principle, one can detect experimentally the two parts.
We return to this point in Sec. IV. Usually one is, howev-

er, interested only in the trace

d,o(r, r)=2 f (v(r, r) v(r, r —r'))dr'

Dj(r, r)=(u;(r, O, sp tp)uj(r r;sp tp)) (2.13)

M=[5A(r, r; sp, tp)
l
(A') & ao],

where

(2.14)

5A(r, r; s p, tp) =A(x(r; s p+ r, tp) tp+r)

A(x(r—; s p, tp), to+r) (2.15)

and A ( x, t ) may be any sum or product of the three com-
ponents of u(x, t) and of p(x, t). The inner product is
written as

D&(r, r)=(u;(r)
l

e' vj(r)) .

Here L is defined by

L 5A(r; sp tp)=d 5A(r, r; sp, tp) l,

(2.16)

(2.17)

The static correlation function is the structure function
D, (rj)=D,j(r, r=O) which can also be decomposed into
longitudinal and transverse parts

is now written as an inner product in a space M defined by

=d c7~~+2d 0'y . (2.10)
Dij ( r) D~~(r)rtrj+DJ (r)Pjj ( r) (2.18)

Equations (2.9) and (2.10) bring us as far as we can go
with the exact theory. We now relate the time-correlation
function to static structure functions, and this step re-
quires approximations.

B. Approximations based on fluid mechanics

1. The decay of Lagrangian eddies

The correlation decay of Lagrangian velocity differ-
ences has been considered in Ref. 10. Here we summarize
the ideas which are relevant for the present study.

Using the Navier-Stokes equations and the definition of
v ( r,r; s p tp) one derives the Lagrangian equation of
motion

d,u„(r,r' sp tp)=vk v (i r' sp tp) —c)„ II(r, r; sp, to) .

Incompressibility implies the relation Dz ——D~~+rD~~I2.
Next we introduce the projector H on v(r ):

~(r' so to)=
l

u (r; so, to)N j(r)uj(r' so to)
l

(2.19)

The matrix Nj is the inverse of the static correlation
functions

1 1
Nj —— P~(r)+ r;rj . (2.20)

With the help of this projector one employs the standard
Zwanzig-Mori" projection-operator technique generalized
to dissipative systems in Ref. 12 to derive the exact equa-
tions of motion (Laplace transformed) for the normalized
dynamic correlation functions, decomposed into the longi-
tudinal and transverse parts:

Here II denotes the pressure difference

II(r, r; so, to) =p(x(r; so+ r, to), to+r)

p(x(r; sp tp) tp+—r) .

The dynamic correlation function

(2.11)

(2.12)

C(~ i(r,z)=[z+y() i(r)+m~~ i(r,z)]

The following definitions are introduced:

C(r,z)=D(r, z).N(r) (correlation matrix),

y(r)= —(v(r) lLv(r)). N(r) (damping rate),

(2.21)

(2.22)

(2.23)
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m( r,z )=M( r,z ) N( r ) (memory tensor ) . (2.24) d, o~~(r, r) =2D/ f(r, )t~~(r, ) I 1 —exp[ —r/t~~(r, )]I,
The major point of this analysis is that the damping

rate y(r) can be calculated exactly. The result of this cal-
culation is'

yi(r)DJ(r)= 3 e— [r Djj'(r)+6rDIj(r)+4Dj[(r)],
2p'

(2.31)

where the eddy correlation decay time t~~(r, )=@~~ (r,~)
was introduced. Notice that in Eq. (2.31) there is still a
coupling to cri(r, r) through

[ri+ (r )]i/2

Z(((r)D()(r) = —,e——[rDIj(r)+4Dj((r)] .

(2.25)

(2.26)

Thus the equations for cr~~ and cri have to be solved simul-
taneously. For simplicity we adopt here a decoupling ap-
proximation in which we take

Unfortunately, the memory part cannot be calculated to
any degree of controlled approximation. For this reason it
has been assumed in Ref. 10 that the bare relaxation time
contains most of the essential physics. A similar assump-
tion is made here. Once the memory is neglected, the
damping rate of eddies of size r is calculable unambigu-
ously in terms of e and the static structure functions.
Thus, the ambiguity of the simple dimensional analysis is
removed. Furthermore, the extension to all r ranges is
possible.

2. The turbulent diffusivity

Guided by the above analysis we can see that the corre-
lation function of Eq. (2.10) can be written as

(v;(r, r)v;(r, r—r') )
—( v;(r, r)v;( r, r) )exp[ —y(r, ~)r'] . (2.27)

At this point we introduce the approximations

(v;(r, &)v;(r, r))=(v;(r, )v;(r, ) )

r,=[r +cr~)(r, r)]'

in the longitudinal equation and

r,=[r +o.i(r, ~)]'/

in the transverse one. Equation (2.31) becomes then, to-
gether with Eqs. (2.28) and (2.29), a closed equation for
the variance o~~(r, ) for all r and all initial separations r,
provided the static structure function D~~ is given for ed-
dies of all sizes. Equation (2.31) together with the analo-
gous expression for oi are the basic result: a set of two
coupled first-order differential equations (which in the
simple approximation adopted henceforth are decoupled)
for the variance of two-particle diffusion, released at r=0
a distance r apart.

In the limit r»t~~(r, ) and r&&t~~(r, ) we recover the
estimates of Eq. (1.4) (in which the difference between o~~
and o i has not been taken into account).

Notice that the results obtained here pertain to the
viscous and the inertial ranges simultaneously. The
theory is now set for the estimates of the intermittency ef-
fects and for the quantitative calculation of the turbulent
diffusivity.

where

=D(r, ), (2.28a) III. QUANTITATIVE TREATMENT
OF TURBULENT DIFFUSIVITY

r, = [r +o(r, ~)]'/i= [R; (r, r)R; (r, r)]'/ (2.28b)

(2.29))/(((r, r)= —,e— [rD jj(r, )+4D j((r—,)]D)((r, )
' r

and similarly yi(r, r)=yi(r, ). Focusing on cr~~ (with an
analogous equation for oi) we can perform the integration
of Eq. (2.9) and derive the equation

—yII(r )r

d,o (((r,r) =2D()(r, ) (2.30)
y)((r, )

Written differently,

In words, this approximation means that we replace the
correlation function of Lagrangian velocity differences,
evolved during the time 7 from an r eddy (but averaged
over initial conditions), by the correlation function of
velocity differences across the distance r, which is the ac-
tual rms extension of a cloud of particles released initia11y
at vector distance r. This approximation relates to clo-
sure ideas and was taken naturally within the scaling
analysis of Ref. 4. Consistently with this approximation
we take'

A. The inertial subrange

Naive dimensional analysis in the inertial range predicts

D (r )
—2/i„ /

II ~ — r (3.1)

Intermittency introduces dimensionless corrections. These
can be assessed according to either model of
intermittency —the fractal model and the log-normal
model.

1. I'ractally homogeneous turbulence

In this model one distinguishes between velocity differ-
ences across active regions which belong to the fractal, and
inactive regions which do not belong. ' The probability
that a distance r belongs to a fractal of dimension D
which is embedded in space of dimension d scales like
(r, /lo) =(r,/10)". Accordingly one writes

The all important quantity is the structure function

D~
(r, ). In order to proceed we have to know this quanti-

ty for all r, in particular both in the inertial and viscous
subranges. We begin with the inertial subrange.



( (,) (,))-v,'(,/lo)", (3.2) t„(r,)=— —-r —'r, (r„/l, )
' .

——1/3 2/3 (3.9)

where U, is the velocity difference in an active region.

The latter is related to the dissipation e via

e (-v„ /r, )(r,/lo)", (3.3)

where the factor (r, /lo)t' appears for the same reason; if
r, does not belong to the fractal there is no contribution to
e from that region. Combining Eqs. (3.2) and (3.3) we get

D
~ ~

(r, -e 'r, '(r, /lo )" ' (3.4)

For reasonable values of p, 0.25 (p &0.5, the use of Eq.
(3.4) in (2.26) shows that for r, » ld the contribution of
the viscosity term to t~

~

(r, ) can be neglected in the inertial
subrange and we get

t~~(r, ) =— e -r, (r, /10)t'——1/3 2/3 /3

2

l
' pp(p —1)/2

0
(3.7)

The structure function D~~(r, ) can now be written as

D~~(r, )-(v ) —(e, r, )-e r, (r, /lo)1'

Similarly we get for t~~(r, ),

2. The log-normal model

Within this model one writes the average of the pth
power of dissipation in a ball of radius r as

(e', ) =(e' '), (3.6)

where Y, —= in@, . Using the log-normality assumption one
then derives

3. Asymptotic results for the diffusivity

For r((t~~(r, ) and v&&t~~(r, ) we can now combine
Eqs. (3.4) and (3.5), or (3.8) and (3.9) and with the master
formula (2.31) to obtain

(3.10a)

(3.10b)

4. The diffusivity for all times

In the present theory we are not limited to asymptotic
results. Using the basic Eq. (2.31), we can write

do (r, r)
C—1/3 4/3

( /l )a( 1 (3.11)

with a similar equation for o1(r,r). Here a=2@/3, 2p/9
in the fractal and log-normal models, respectively. Equa-
tion (3.11), which is the central result of the present ap-
proach in the inertial range, is a completely defined first-
order differential equation. We rewrite it in a form suit-
able for numerical integration:

where in the first regime a, =l2/6 and p/18 in the fractal
and log-normal models, respectively, whereas in the
second regime ai=2p/3 and 2p/9 in the two models.
Notice that for the fractal model these results agree with
Ref. 4 (and ai 2 in Sec. I). For the log-normal model at is
two times the result of Ref. 4. The difference stems from
the choice (1.7a) in Ref. 4. In the present theory the ambi-
guity of t~~(r, ) is removed and therefore we believe that
the present result is the correct one.

2
' 0./2

2/3 "+~ii(r r)=Cj / [r +cr~~(r, r)] —
2 I 1 —exp[ r/t~~(r )]I—
0

(3.12)

' a/4

( ) Ce —1/3(r2+ )1/3
r +o.

II Io
2 (3.13)

I

1 and 2.
Some of the appearances of the curves in Figs. 1 and 2

can be obtained directly from Eqs. (3.10) and (3.11). For
small r, when cr«r we find from Eq. (3.11) a regime

D( )=bA "( /l)

t(((r, )=—,b((&2" (r, /ld)' +"' (3.15)

The relevant parameters for this experiment are displayed
in Table I. With these numbers we integrated Eq. (3.12)
numerically and obtained the results summarized in Figs.

These equations determine the whole temporal develop-
ment of the variance o(r, r) for a pair of particles released
initially at a distance r apart at time ~=0. The remaining
Reynolds number dependent parameters (all denoted by
the same symbol C) appearing in these equations can be
determined from independent measurements. As an ex-
ample we take the measurements reported in Ref. 13 and
which are summarized by the formulas (cf. Ref. 10)

b

p
v (viscosity)

UI =(ve)'"
d

2.7
4300
0.25

0.143 cm /sec
300 cm /sec (estimated)

0.06 cm
2.6 cm/sec

2.3 )& 10 sec

TABLE I. Parameters needed for the numerical integration
leading to Figs. 1—4.

Numerical value
according to

Ref. 13
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where
'

&2/3

(i) a~~(r, r)-e 'r, ' +, rr &&r, ~ small .
lp

Here g'3/3 —p, /3 and p/9 in the fractal and log-normal
models, respectively. For e.~~r we can integrate Eqs.
(3.10) to obtain

[~/t( lp )], r (&t
~ ~

(r )
(») ~~~(r,~)-

er'[r/t(lp)] ', r))t~~(r )

where y, =3p/(4 p) or—3p/(12 —p) and yt =3p/( I —p)
and yt =3p/(3 —p) in the fractal and log-normal models,
respectively. t(lp) =e ' l„denotes the stirring time
scale. Regime (i) can be clearly seen in Figs. 1 and 2. For
the parameters chosen, the regime w»t~~(r, ) is never
reached in the cases plotted here. Thus the asymptotic
(large-r) curves are in accord with the first equation of re-
gime (ii). It should be stressed that in other cases a cross-
over between the two regimes (ii) might occur.

subrange

dtrii(r, 't)
=2argp(1 —e s),

d7- (3.18)

where 0 = i'5 (Uld/ld)' This ~uation is integrat~ to yield

0'ii(P, 7 )
ln

r
=2atp[~+to(e ' —1)] . (3.19)

As before, we identify three stages in the evolution of the
cloud.

(i) ~ +0. A—s before, we find that initially o ~~(r, ~)-r .
(ii) r))tp but still o~~((r .

cr~~(r, r)=2atpr r . (3.20)

This is a normal diffusive behavior with a diffusion con-
stant

There is no guarantee that such a regime always exists. If
it does, then

&=atpr = ,', Cpr It(— (3.21)

B. Diffusion in the viscous subrange Using tt ——ld /v we can write the diffusion constant also asd

In the viscous subrange the structure function D~~(r, )
depends on the viscosity explicitly. For r ~~l~ analyticity
requires D~~(r)-r . Standard arguments show that (cf
Ref. 10)

D~~(r)= ,
', (r/ld—) Ut, r &&ld

Cp(~i, ) r
V

1S ld

(»1) 7"))tp, 0'i
i
)E

This process gives rise to an exponential growth

(3.22)

where UI„ is the Kolmogorov velocity. In addition one has
a constant limiting value t~~(r) = ti(r)—:t(r):

t(r) Cptt =tp, r « ld (3.17)

where Co depends on the Reynolds number only. Com-
bining Eqs. (2.31), (3.16), and (3.17) we find in the viscous

o ii(r, r) =r exp(2atpr) . (3.23)

Accordingly it cannot last long before r, exceeds ld. Once
this happens, the inertial range behavior takes over, and
the formulas of Sec. III A have to be used.

It is important to realize that for r &ld the diffusion
constant (3.22) may be smaller than its molecular counter-

5000 —,

4500—

4000-

3500-
3000-

C4

2500—
h

2000
b

I 500—

IOOO—

500-
00

I 1 i J 1 i I i I

I.O 2.0 3.0 4.0 5.0 6.0 7.0
7/tf

r r

-2 -I 0
In 7/t,

I 2

FIG. 1. Numerical solution of Eq. (3.12} with parameters as
displayed in Table I, for four initial conditions: r/Id ——5, 10, 50,
100.

FIG. 2. A log-log plot of the data of Fig. 1. Here the asymp-
totic slopes of 2 and 3 + y, are clearly seen.
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part. Whether this is so or not depends also on the Rey-
nolds number. At any rate there very well may be a com-
petition between molecular and turbulent diffusivities as
long as r &ld. Consequently two materials of different
molecular diffusivities X might show markedly different
turbulent diffusivities due to different incubation times
that are needed to reach a cloud size r for which the eddy
diffusivity takes over, i.e., gets larger than P. The quanti-
tative aspects of this effect are discussed next.

C. The effects of molecular diffusivity

Without the turbulent activity all the contribution to
the dispersion cr(r, r) would have come from molecular
diffusivity,

der(r, r)
d7

(3.24)

D(((r, )=a(r, /ld) Utd/[I+c(r, /ld) ]

Here a = —,', ,

(15b )
—is/(i2 —P)~ 3P/(i2 —P)

(3.25)

and q=(12—p)/18 in the log-normal model. A similar
interpolation formula for the fractal model can be easily
written down. We also have to interpolate t(r, ) between
Eqs. (3.9) and (3.17). This can be done by using Eq. (3.25)

I
l

I
J

I

The simplest way of assessing the influence of molecular
diffusivity is to assume that the molecular and turbulent
diffusivities are uncorrelated. In this case we simply add
2X to the right-hand side of Eq. (2.31). Since we expect
the molecular diffusivity to be important in the viscous
subrange but to become increasingly unimportant in the
inertial range r, » ld, we want to integrate Eq. (2.31) such
that r, &~ld initially but grows well into the inertial range
finally. Therefore, the asymptotic forms for D(r, ) and
t(r, ) are not sufficient. We need an expression for D~~(r, )

which holds for all r, including the crossover from the
viscous to the inertial range. As an appropriate interpola-
tion formula we use the following expression

in Eq. (2.26) ~h~~h expresses tll(r) by Dll(r) F«»mp
city we used, however, the simpler interpolation

1
t(((r, ) =to 1+—

t'ai(r, )
to

(3.26)

The results of the integration of Eq. (2.31) extended by
+ 2X on the right-hand side with these interpolation for-

mulas are shown in Figs. 3 and 4. We have picked for X
the values 0.5~10, 0.5&10, 0.5)&10, 0.5)&10
cm /sec, and the initial condition r/i~=la . We see
that the effect of the molecular diffusivity is in determin-
ing how long it takes before the turbulent diffusivity sets
in. As a result o(r, r) differs even at later times, if sub-
stances with different 7 diffuse simultaneously. This "in-
cubation time" can be understood as setting an effective
initial time for the turbulent diffusion process, from
which onward the molecular diffusivity can be neglected.
Additional discussion of this effect and comparisons to
experiments are discussed elsewhere. '

IV. DISCUSSION

One of the amusing results of the present study is the
difference between 0(( and cri. Although we treat particle
diffusion which occurs due to entrainment in chaotically
moving fluid, the structure of the velocity field introduces
infinitely long memory to the initial position difference r
[cf. Eq. (2.1)]. The structure of the velocity field is
represented by the different magnitude of D~~ and D, a
difference which reflects the different energies associated
with longitudinal and transverse motion. Our theory
predicts a transverse diffusivity larger than the longitudi-
nal one. A jet of smoke injected to a turbulent medium is
thus expected to become wider (in proportion to its length)
as a function of time. It is appropriate to reiterate at this
point that the equations for (r(~ and cri are coupled; we
decoupled them for the sake of simplicity of analysis.

Within the stated approximations we achieved simple
first-order differential equations for the variance of two-
particle diffusion which hold equally well in the viscous
and inertial subranges. Accordingly, these equations can
be used in practical applications over a wide range of ex-
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0 i I

0 5 IO 15

x/t[
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FICx. 3. The effect of molecular diffusivity. When the initial
condition r is much smaller than Id, molecular diffusivity wins

over and determines the "incubation time" after which eddy dif-

fusivity takes over.

s I ( I i I

2 3 4
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FIG. 4. A log-log plot of the data of Fig. 3. The asymptotic
slopes considered in the text are easily seen.
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FIG. 5. The same as Fig. 1 but with p=0. It is D=88.6.
Relative diffusion shows no dependence on initial separation.

perimental conditions. In addition to its practical irnpor-
tance, the analysis presented above should be useful for
deepening our basic understanding of turbulence itself.
As seen above, monitoring turbulent diffusion amounts to
a measurement of the Lagrangian time-correlation func-
tions. Done right, such measurements can be used to in-
vestigate intermittency per se. To stress this point we
rewrite here the differential equation for oII in a "quasi-
universal" form that displays clearly the effects of p&0 in
the inertial range.

Start with Eq. (2.31). Use now scaled variables

and

I (r, t) =trII(r, ~)«' (4.1)

t =~/tII(r) .

Remembering Eqs. (3.14) and (3.15) we can derive
straightforwardly the equation

dr =D(1+I )' +"'~ 1 —exp
dt (1+I )(6+@)/18

j.

FIG. 6. The same as Figs. 1 and 5 but with p=0. 5. Rey-
nolds number A~ ——4300. D is reduced to 14.3, 16.1, 21.0, 23.6.
Notice that the magnitude of relative diffusion is reduced and
delayed by intermittency, while the exponent of ~ is increased by
it. (Also seen in Fig. 1 with p=0.25, hence D=35.6, 37.7, 43.1,
45.7).

where the log-normal model has been used. An analogous
equation with fractal statistics can be easily derived. The
point is that now the dependence on initial conditions, i.e.,
rll~ and on the Reynolds number appears only through
D, and disappears for @=0. Thus, in experiments the de-
viation of I from universality as a function of r and A'~ is
only due to intermittency and seems therefore to be a par-
ticularly nice way of investigating intermittency, and the
different models for it.

Figures 5 and 6 show a numerical solution of Eq. (4.3)
for four values of rlld (5,10,50, 100) where the only
change is in the value of p (0.5;0). Together with Fig. 1

which pertains to p=0.25, a dramatic effect is clearly
seen. It thus seems tempting to suggest measurements of
the intermittency exponent based on experiments of tur-
bulent diffusivity as a function of initial conditions [i.e.,
changing r lid and monitoring I (t)].
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