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A single brief current pulse delivered to a spontaneously beating aggregate of cardiac cells from
embryonic chick heart will reset the rhythm of the aggregate. The resetting depends on both the
magnitude of the stimulus and the phase in the cycle at which the stimulus is delivered. Experimen-
tal data on resetting are fitted to an analytic function. This function, in turn, is used to construct a
first return or Poincaré map which can be iterated to predict the effects of periodic pulsatile stimu-
lation for any particular combination of frequency and amplitude of the stimulation. As the stimu-
lation strength is increased the Poincaré map changes from a monotonic circle map of degree 1 to a
nonmonotonic circle map of degree 1. The bifurcations in the frequency-amplitude parameter space
are determined numerically by iterating the Poincaré map, and are compared with bifurcations in a
simple model map and with those experimentally observed. These systems display period-doubling,
intermittent, and quasiperiodic dynamics. Universal features of the bifurcations in the frequency-

amplitude parameter space are described.

I. INTRODUCTION

There is currently great interest in the transition from
regular periodic dynamics to irregular “chaotic” dynamics
in diverse physical and biological systems.! Two main
concepts have evolved: (1) In many systems the dynamics
can be well approximated by the one-dimensional deter-
ministic finite-difference equation x; = f (x; _;), where f is
a nonlinear function depending on one or more parame-
ters; (2) the bifurcations (changes in the qualitative nature
of the dynamics) which are observed under parametric
changes seem to depend mainly on the topological proper-
ties of f. Here, we analyze the experimentally observed
dynamics resulting from periodic stimulation of spontane-
ously beating aggregates of embryonic chick heart cells by
reducing the problem to an analysis of the bifurcations of
two-parameter one-dimensional finite-difference equa-
tions.

Most theoretical work to date on one-dimensional
difference equations has considered the situation in which
f is a one-parameter function with a single maximum
which maps the unit interval into itself. There are certain
features observed in the bifurcation structure of the
dynamics under parametric changes which do not depend
on the detailed functional form of f. For example, for
f(x)=Ax(1—x), as A increases from O to 4, one observes
that stable periodic orbits are encountered in a well-
defined sequence, called the U sequence.? The U sequence
contains successive period doublings which have been
described by a renormalization group.® In physical situa-
tions involving chemical oscillators* and nonlinear elec-
tronic oscillators® which are modeled by interval maps,
theoretical predictions based on the U sequence and the
renormalization group have been experimentally con-
firmed.

In many instances, and, in particular, in situations in-
volving periodic forcing of nonlinear oscillators, the
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dynamics can be described by a continuous nonlinear
function f which maps the unit circle into itself. Such
functions, sometimes called circle maps, have been pro-
posed as models for periodically forced limit-cycle oscilla-
tors,%” sinusoidally modulated Josephson junctions,® hy-
brid optical devices,” and periodically stimulated biologi-
cal'®=15 and chemical'® oscillators. A circle map can be
classified by its (topological) degree. The degree of a cir-
cle map f counts the number of times f winds around the
unit circle as the argument of f traverses the unit circle
once. If fis of degree 1 and monotonic, then the bifurca-
tions found under parametric changes are well under-
stood.'” A recent application of the renormalization
group has treated the case in which f is of degree 1 at the
transition point from monotonicity to nonmonotonicity.'?
Although the situation in which f is nonmonotonic has
been considered in several recent papers,®!°~2* much less
is known about the bifurcations in this circumstance. In
our experiments, nonmonotonic, degree-1 circle maps are
found; therefore, understanding the bifurcations of these
maps is crucial to understanding the observed dynamics.

This paper gives a detailed analysis of the bifurcations
observed during periodic stimulation of chick heart cells
as the strength and frequency of the periodic stimulation
are varied. We compare the dynamics experimentally ob-
served with the dynamics predicted by iterating experi-
mentally derived, one-dimensional circle maps. The close
agreement between the experiment and theory lends fur-
ther support to the hypothesis that the dynamics of
periodically stimulated cardiac cells can be described by
circle maps. We also evaluate, from numerical studies,
the possibility for universal bifurcations of two-parameter
circle maps.

In Sec. II we describe the general theory and review pre-
vious results. In Sec. III we propose a functional form for
the circle maps for periodically stimulated spontaneously
active cardiac cells which enables us to carry out numeri-
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cal studies of the bifurcations. The bifurcation structure
is described in Sec. IV. The results are discussed in Sec.
V.

II. THEORY

We assume that the spontaneous beating of chick heart
cells can be represented by a strongly attracting limit-cycle
oscillation. The response of this system to single and
periodic perturbations has been discussed recently,'® and,
hence, will only briefly be reviewed.

Assume the limit cycle has period T, with initial condi-
tions y (¢t =0)=y,, with y, being an arbitrary point on the
limit cycle. Then the phase ¢ (0<¢ < 1) of any point y ()
on the cycle is defined to be ¢t /T (mod 1). Let y(t=0)
and y’(t =0) be the initial conditions of a point on the cy-
cle and a point not on the cycle, respectively; and let y ()
and y’(t) be the coordinates of the trajectories at time ¢. If

‘limd(y(t),y’(t))=0 )

where d is the Euclidean distance, then the eventual phase
of y'(t =0) is defined to be the phase of y (¢ =0). A locus
of points all with the same eventual phase is called an
isochron.

A brief stimulus delivered at a phase ¢ perturbs the os-
cillation from the isochron at phase ¢ to the isochron with
new phase ¢’,

¢'=g(4), (1

where g(¢) is called the phase transition curve (PTC).
Define the cycle length to be the time between two succes-
sive marker events of an oscillation. If the length of a
perturbed cycle is T, and if the return to the limit cycle
following a perturbation is sufficiently rapid,

T/To=1+¢—g($) . @)

Consequently, the PTC can be determined once T /T is
experimentally measured as a function of ¢.

Now assume that during periodic stimulation by brief-
duration stimuli the properties of the oscillator are not
changed, and that the return to the cycle is rapid com-
pared to the time between consecutive stimuli. Calling ¢;
(0<¢; < 1) the phase of the oscillator just before delivery
of the ith stimulus and ¢, the time between successive
stimuli,?® we then have

biv1=S(¢;)=g(¢;)+7 (mod 1) 3)

where 7=t; /T is the normalized period between stimuli.
Iteration of Eq. (3) (called the first return or Poincaré
map) generates the sequence ¢g ¢1=f(do), ¢,
=f(@)=fHdo), - -.,dn=rNdo). The cycle of period N
consists of N points ¢1,¢3, . . ., ¢¥ satisfying ¢f, y =¢],
¢i4j7#¢; for j=1,2,...,N —1, and is stable, provided
that | 9fN/9¢; | gt < 1. If an extremum of f is on a cycle,

the cycle is called superstable. The locus of superstable
cycles in parameter space is called the skeleton. Stable cy-
cles of Eq. (3) correspond to stable phase-locked solutions
of the forced oscillator. A period-N cycle of Eq. (3) corre-
sponds to N : M phase locking where
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N
M= Ad;, A¢f=g(f)—¢f+7. )

i=1

The rotation number p is defined as

%éAqﬁi}. (5)

i=1

p=jlim sup

N : M phase locking thus has p=M/N.

In general, the PTC, Eq. (1), will depend on the strength
of the imposed stimulus. In our experiments, as stimulus
strength increases the PTC changes from a monotonic
degree-1 map to a nonmonotonic degree-1 map. When
f(¢) is monotonic the rotation number is independent of
the initial point, leading to phase-locked (p rational) or
quasiperiodic (p irrational) dynamics.”” In the strength-
frequency parameter plane, values leading to a rational
p=¢q/p form a compact region called an Arnol’d tongue.
When f is not monotonic, less complete results are avail-
able.%°—2* The rotation number may cover an interval,
and stable periodic points of different periods can coex-
ist 6:19—24

The “canonical” example of degree-1 circle maps is the
sine map, defined as

¢i 1=f(¢;)=¢; +bsin(2me;) + . (6)

Its bifurcation structure is schematically depicted in Figs.
1 and 2 which are based on results in Refs. 19—23. Each
Arnol’d tongue, associated with p:q phase locking splits
into two branches as b is increased. Period-doubling bi-
furcations occur leading to 2p:2q phase locking. Higher-
order bifurcations also occur leading to a complex geome-
trical structure. One way to represent the bifurcations is
the skeleton. In Fig. 2 we show the skeleton associated
with the rotation number p=1, up to cycles of period 4.
A topologically equivalent skeleton was conjectured to
arise in the Y-shaped region of each Arnol’d tongue.!’
This structure is also found in other two-parameter
maps.?®?” We propose that the topological structure in
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FIG. 1. Schematic representation of two Arnol’d tongues
from Eq. (6) with rotation numbers ¢ /p and q’/p’. The super-
stable cycles are shown by dashed lines. For b < 1/27 the sine
map is monotonic and the structure described by Arnol’d of
nonoverlapping tongues is found. For b > 1/27 there are su-
perstable cycles, period-doubling bifurcations, and overlapping
of Arnol’d tongues.
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FIG. 2. Superstable cycles for Eq. (6) up to period 4 with
p=1. Cycles derived from the maximum of the map are labeled
by + whereas those derived from the minimum are labeled by
— (redrawn from Ref. 19).

Fig. 2 represents a “universal” feature of the bifurcations
of two-parameter one-dimensional maps with two extrema
and is thus a two-dimensional analog of the U sequence.
For all circle maps of degree 1, we know that all Arnol’d
tongues must extend into the region of parameter space in
which the map becomes nonmonotonic.!>?* However, we
do not know if the two-dimensional bifurcation topology
of Figs. 1 and 2 is found for other circle maps of degree 1.

III. PHASE TRANSITION CURVE (PTC)

Under the assumption that the cardiac oscillator is a
strongly attracting limit-cycle oscillator with rapid relaxa-
tion back to the cycle following a perturbation, it is only
necessary to know the PTC, Eq. (1), in order to compute
the effects of periodic stimulation. Some work has been
done using model functions for the PTC, such as the sine
function!"!® or piecewise-linear functions.!"?#2° Alterna-
tively, mathematical models are assumed for the limit-
cycle oscillation and the PTC’s are either analytically'>%°
or numerically'*3! computed.

In our original study, a region of the experimentally ob-
tained PTC which shows a maximum and a minimum
was fit to a quartic polynomial, and numerical studies of
the phase-locking regions were carried out.'® To extend
this earlier work it is necessary to obtain an analytic ex-
pression for the entire PTC as a function of parameter
strength.

An experiment used to determine the PTC is shown in
Fig. 3. The potential difference across the membrane of
one cell in an aggregate of electrically coupled spontane-
ously beating embryonic cardiac cells is recorded with a
microelectrode. The preparation and properties of the ag-
gregates have been detailed previously.”? The upstroke of
the action potential is assigned a phase of zero. At a
phase ¢ =8/T,, where 8 is the time after the upstroke and
T, is the intrinsic cycle length, following every tenth ac-
tion potential, a brief pulse of current is delivered through
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FIG. 3. One trial in a typical phase resetting experiment. A
fine-tipped hollow glass microelectrode filled with electrolytic
solution (3M KCl) is inserted into one cell of an aggregate 114
pm in diameter composed of approximately 800 spontaneously
beating cells derived from embryonic chick heart. The electrode
is used to record transmembrane voltage (which ranges from
—80 to + 30 mV) and also to inject current pulses. An 8.8-nA
current pulse of 20-msec duration delivered at a time 8 after the
third action potential upstroke gives rise to a prolonged cycle of
length T. This pulse of current, since it flows through the large
resistance (~30—80 MQ) of the microelectrode, produces an
off-scale rapidly rising and falling artifact in the voltage tracing.
The phase of the stimulus is ¢ =8/T, where Ty is the duration
of the immediately preceding unperturbed cycle. Aggregate No.
1.

the microelectrode leading to a perturbed cycle length T.
For perturbations delivered sufficiently late in the cycle,
the stimulus leads to an action potential upstroke some-
time during the stimulus artifact itself so that T cannot be
precisely measured.

Figure 4 shows plots of the normalized perturbed cycle
length T /T, arranged in order of increasing perturbation
strength [strength increases from Figs. 4(a) to 4(e)]. The
most complete set of data from one aggregate is shown by
the closed circles in Figs. 4(c), 4(d), and 4(e). These three
levels of stimulation were obtained by setting the ampli-
tude control of the stimulator to 0.06, 0.08, and 0.10,
respectively (arbitrary units). The stimulus amplitude pa-
rameter A is taken to be 0.06, 0.08, and 0.10 in Figs. 4(c),
4(d), and 4(e), respectively. Data in Figs. 4(a) and 4(b)
were selected to demonstrate a progression in the shape of
the T /T, curve from Figs. 4(a) to 4(e) that is typical of
that seen in many experiments. We assign values of the
stimulus amplitude parameter 4 of 0.02 and 0.04 to Figs.
4(a) and 4(b), respectively, so that the value of 4 in Figs.
4(a) through 4(e) falls in the ratios 1:2:3:4:5. Over the
most interesting region, from the standpoint of this work
[Figs. 4(c), 4(d), and 4(e)], this assumption is well support-
ed by the experimentally measured current amplitudes
within a given aggregate [5.2, 6.8, and 8.8 nA for the
closed circles of 4(c), 4(d), and 4(e), respectively; 8.7 and
11.0 nA for the open circles of 4(d) and 4(e), respectively].
Since the number of cells (and hence the amount of
current needed to charge the capacitance of the total
membrane area) and the electrophysiological properties
vary from aggregate to aggregate, the current pulse ampli-
tude is not the same for both sets of data in each panel of
Fig. 4.

We assume that the normalized perturbed cycle length
T /T, is given by

T/To=14+U($)+U,(¢),
where

(7a)
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FIG. 4. Experimentally measured curves showing perturbed cycle length T /T, as a function of phase ¢ =8/T of delivery of the
stimulus. The effective pulse amplitude increases in (a) through (e) (see text). The code numbers are our internal codes. Solid lines
represent functions fitted using Eq. (7). Since the stimulus artifact obscures the action potential upstroke for stimuli delivered late in
the cycle, T /T, data points for late cycle phases cannot be exactly given. However, the experimental points are closely approximated
by the fitted curve. Pairs of sets of data points in (a)—(e), respectively, are from different aggregates and were selected on the basis of
their similar appearance. Aggregate No. 1 (diameter is 114 um): (c), (d), and (e) (closed symbols); pulse amplitude 5.2, 6.8, 8.8 nA;
pulse duration 20 msec. Aggregate No. 2 (diameter is 181 um): (c) and (d) (open symbols); pulse amplitude 8.7, 11.0 nA; pulse dura-
tion 20 msec. Aggregate No. 3 (diameter is 171 um): panel (a) (open symbols); pulse amplitude 4.6 nA; pulse duration 20 msec. Ag-
gregate No. 4 (diameter is 171 um): panel (a) (closed symbols); pulse amplitude 3.2 nA; pulse duration 20 msec. Aggregate No. 5 (di-
ameter is 228 um): panel (b) (open symbols); pulse amplitude 14.1 nA; pulse duration 10 msec. Aggregate No. 6 (diameter is 105
pm): panel (b) (closed symbols); pulse amplitude 3.1 nA; pulse duration 20 msec. Aggregate No. 7 (diameter is 190 um): panel (e)
(open symbols); pulse amplitude, 23.8 nA; pulse duration 20 msec. In aggregates Nos. 3, 5, and 7 the current was injected in a
switched mode at a frequency of 1 kHz. The currents quoted for these aggregates are the effective currents.
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TABLE 1. Qualitative dependence of T/T, vs ¢ curve on individual parameters.
Characteristic of Parameter most Change in parameter as
T /T, curve (Fig. 4) directly related stimulus strength increases
height of maximum (o 1
position of maximum Omax !
width of maximum o? i
crossover from prolongation 7] 1)
to shortening of cycle length
magnitude of slope at crossover n 1
slope of T/T, for 6<p <1 S
(6 — bonar)? S(6—1)b" Therg is a marked discrepancy between the data and the
U(¢)=Cexp | — _ir‘ngx— , Us(d)= H theoretical fit using Egs. (7) and (8) at the lowest stimulus
+¢ strength considered [Fig. 4(a), 4 =0.02]. At lower current
(7o)  strengths [i.e., 4(a) and 4(b)], the topological properties of

and C, ¢..., 0, S, 0, and n are parameters which depend
on stimulus strength. These functions were chosen to
empirically “fit” the data. The dependence of the shape
of the T/T, curves on the individual parameters is sum-
marized in Table 1.

The function U, largely gives the region of the curves
in Fig. 4 in which T/T, exceeds 1. As the stimulus
strength increases, Fig. 4 shows that the position of the
maximum (approximately at ¢,,,,) moves to lower values
of ¢, the height of the maximum (approximately 1+ C) in-
creases slowly, and the half-width of the peak [approxi-
mately 2(In2)!/20] decreases. Therefore, the parameters in
U, can be estimated by considering the position, height
and half-width of the maximum in Fig. 4. (Since the term
U, also influences these values, only approximations for
C, dmax, and o can be made in this fashion.)

In the asymptotic limit. n— o, U, is a piecewise-linear
function with U, =0 for 0<¢$ <6 and U,=S(¢—1) for
O0<¢<1. Figure 4 shows that increasing stimulus
strength leads to an earlier crossover from interbeat pro-
longation to interbeat shortening (decreasing 6), but a
steeper slope at this transition point and a deeper
minimum (increasing n). However, the slope of the T /T
vs ¢ curve for ¢ sufficiently large does not change appre-
ciably for increasing stimulus strength (constant S) and is
discontinuous at ¢=0.

The quantitative determination of the parameters in Eq.
(7) was carried out in two steps. First an attempt was
made to separately fit each of the five sets of data given
by the closed circles in Fig. 4 to Eq. (7). Parameters could
be readily estimated using the considerations outlined
above. The parameters determined in this fashion are
shown in Table II in parentheses. Next, an attempt was
made to see if the parameters could be continuously fit to
simple functions of the stimulus strength 4. All the pa-
rameters shared an approximate linear or exponential
dependence on 4. Setting A =A /0.02, we obtain

C=0.12540.0254, Gpa=0.34+0.122"4,
02=0.04x2"4 9=0.34+0.48 24,
=1.875x24, §=0.92.

(8)

the phase locking are not sensitive to quantitative details
of the T/T, curve since the PTC is monotonic. There-
fore, approximations to the PTC at lower current
strengths do not affect the conclusions of this work. In
fitting the data we have given much more emphasis to the
points with 4 >0.06 [Figs. 4(c)—4(e)]. In this range there
are complex bifurcations and our experimental data are
more complete than for 4 <0.06.

At the highest stimulus strength it appears the data are
discontinuous in the neighborhood of the value ¢ =6 [Fig.
4(e)]. This type of behavior occurs in models in which the
PTC undergoes an abrupt transition from degree 1 to de-
gree 0.'23% However, it is very difficult to establish exper-
imentally whether the data are continuous or discontinu-
ous. Because of the possibility that the response does be-
come discontinuous, extrapolation of the functions in Eq.
(7) to higher stimulus will not be pursued further in this
report.

Despite these reservations, there is excellent agreement
between the numerically fit curves in Fig. 4 and the exper-
imental data. At the moment, we cannot derive the func-

TABLE II. Values of parameters in Eq. (9) for the curves
shown in Fig. 4. Values in parentheses were estimated as
described in the text. Values not in parentheses are the values
from Egq. (8).

Parameter Stimulus strength (4)
0.02  0.04 0.06 0.08 0.10

C 0.15  0.175 0.20 0.225 0.25
0.15)  (0.15) 0.15)  (0.20) (0.20)

Dmax 040 037 0.355 0.3475 0.34375
(0.40)  (0.36) 0.36)  (0.34) (0.34)

o? 0.02 0.1 0.005  0.0025  0.00125
(0.025) (0.0075) (0.005)  (0.0025)  (0.001)

) 0.58  0.46 0.40 0.37 0.355
0.65)  (0.44) 042  (0.37) (0.36)

n 375 15 15.0 30.0 60.0

: (5.00) (7.0) (1500  (30.0) (50.0)

s 092 092 0.92 0.92 0.92
0.92) (0.92) 0.92)  (0.92) (0.92)
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FIG. 5. Principal phase-locking regions (enclosed by solid
lines) and associated superstable cycles (dashed lines) numerical-
ly computed from Eq. (9). For values of 4 between 0 and 0.02,
Smaxs 0% 0, and n were held at their value for 4 =0.02 and C
and S were linearly interpolated between O and the values of
these parameters at 4 =0.02. From Eq. (9) one can show that if
there is an N:M pattern for a given 7=7, then for r=7¢+j there
will be a N:M + Nj pattern (see Ref. 12).

tions used in Eqgs. (7) and (8) from ionic models of cardiac
activity; we consider these functions as convenient approx-
imations which facilitate detailed iteration of the Poincaré
map of Eq. (3).

IV. GLOBAL BIFURCATIONS

The main reason for deriving an analytic expression for
the PTC was to enable us to compute in detail the theoret-
ically predicted bifurcations of the periodically forced ag-
gregate of cardiac cells. From Egs. (2), (3), and (7a) we
have

$it1=0; —U(¢;)—U,(¢;)+7 (mod 1) 9)

where U, and U, are given in Egs. (7b) and (8) and 7 is
the time between successive stimuli normalized to the
mean cycle length. Upon iteration, regions of stable phase
locking, period-doubling bifurcations, bistability, and
chaotic dynamics are found. The results are shown in
Figs. 5 and 6. We first compare these results with the bi-
furcations found in the sine map of Eq. (6) (Figs. 1 and 2)
and then with those observed in the experiments.

A. Comparison of the bifurcations
of the fitted map with those of the sine map

For 0 <A <0.039 the fitted PTC is monotonic. Conse-
quently, in this region there is an Arnol’d tongue extend-
ing to 4=0.0 for each rational rotation number. For
A >0.039 there are two extrema in the PTC. Therefore,
as in the sine map, for each rational rotation number there
must be two superstable cycles at different values of 7.!°
This behavior is illustrated in Fig. 5. In addition, in some
of the Arnol’d tongues we find that there is the same com-
plex sequence of period-doubling bifurcations as observed
in the sine map. This is illustrated in Fig. 6 which shows
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FIG. 6. Enlargement of a portion of Fig. 5 to show period-
doubling and higher-order bifurcations with rotation number
p=1. (a) 1:1, 2:2, and 3:3 phase-locking zones and associated
period-1, -2, and -3 superstable cycles. (b) Superstable cycles
with rotation number p=1.

the period doubling associated with p=1. Bifurcations
having an identical skeleton have also been observed in the
tongues associated with period-3 orbits (3:1, 3:2, 3:4) but
not in the tongues associated with period-2 orbits (2:1,
2:3). Bistability, associated with the crossing of Arnol’d
tongues in the parameter plane is exemplified in Fig. 7
where both 3:4 and 2:2 phase locking are present
(4=0.08, 7=1.172). The bifurcations predicted for the
periodically stimulated heart cells thus appear to be a sub-
set of the bifurcations observed in the sine map. One pos-
sible reason that not all bifurcations are present is that the
extrema of the PTC do not grow linearly with perturba-
tion strength.

B. Comparison of the predictions
of the fitted map with the experimental
response to periodic stimulation

Periodic stimulation of spontaneously beating cardiac
cells leads to a rich variety of different periodic and
aperiodic dynamical activities (Figs. 8 and 9, respectively).



1354

¢l'|
05}

———
1
¥
K
>
ALY
-

\'

o] 0.5 1.0

@i
FIG. 7. A plot of ¢;,; vs ¢; from Eq. (9) with 4=0.08 and
7=1.172. There are two stable cycles corresponding to 3:4 and
2:2 phase locking (dashed lines). The inset shows an enlarge-
ment of the region near the local minimum.

The data indicating the different dynamics found at par-
ticular combinations of frequency and amplitude of
stimulation are superimposed on the theoretically comput-
ed zones in Fig. 10. There are three values of stimulus
strength. For 4=0.06 and 4 =0.10 the entrainment data
were collected from a single aggregate (aggregate No. 1)
and the associated T /T, phase resetting data are shown in
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FIG. 8. Recordings of transmembrane potential showing reg-
ular dynamics (aggregate No. 1). The average interbeat interval
t,y is computed from the five spontaneous interbeat intervals im-
mediately preceding the start of each run, and 7=t,/t,,. (a)
Control unperturbed activity. (b) 4 =0.10, ¢, =150 msec,
t.w =469 msec, 7=0.32, 2:1 phase locking. (c) 4=0.10, #,=190
msec, t,, =482 msec, 7=0.39, 3:2 phase locking. (d) 4=0.10,
ty, =400 msec, t,,=437 msec, 7=0.99, 1:1 phase locking. (e)
A=0.10, t,=470 msec, t,, =448 msec, 7=1.05, 2:2 phase lock-
ing. (f) 4=0.10, #,=600 msec, t,,=471 msec, 7=1.27, 2:3
phase locking.

(a)

(b)
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FIG. 9. Recordings of transmembrane potential which show
fluctuating, irregular dynamics (aggregate No. 1). (a) 4=0.06,
t; =500 msec, t,, =475 msec, 7=1.05: dynamics resemble a 1:1
pattern with added noise. (b) 4=0.06, t, =700 msec, t,, =484
msec, 7=1.44: dynamics are irregular, with apparently random-
ly inserted extra or escape beats that are not associated with a
stimulus. (c) 4=0.10, t;=200 msec, t,, =465 msec, 7=0.43:
The dynamics are irregular with occasional dropped or skipped
beats and resemble Wenckebach cardiac dysrhythmias. (d)
A=0.10, ¢t,=500 msec, t,,=437 msec, 7=1.15: dynamics are
irregular, with occasional escape beats that are not associated
with a stimulus.

Fig. 4 (runs 341291 and 340211, respectively). The data
for A =0.08 were taken from a different preparation (ag-
gregate No. 2). The associated T /T, data are also shown
in Fig. 4 (run 260 504). The phase-locking patterns cover-
ing the largest areas in the (4,7) parameter space (the 1:1,
2:1, and 2:3 patterns) are very easy to observe and main-
tain (Fig. 8). Other periodic patterns that cover smaller
areas of the (4,7) parameter space are more difficult to
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FIG. 10. A plot showing experimentally observed dynamics
superimposed on theoretically computed phase-locking zones.
Data from aggregate No. 1 are used for 4=0.06 and 4=0.10
and data from aggregate No. 2 are used for 4=0.08.
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observe. For example, in the region 1.05<7<1.4,
0.06 <A4 < 1.0, it is very difficult to obtain a stable phase-
locked pattern.

In general, there is close correspondence between the
dynamics observed experimentally and the boundaries
theoretically computed using the data shown in Fig. 4.
However, there are some discrepancies. Most striking is
our inability to experimentally observe stable phase-
locking zones which occupy small areas in the (4,7) pa-
rameter space. The failure to observe the fine structure of
phase locking theoretically predicted probably stems from
small amounts of “noise” inherent in this biological
preparation.3

One systematic discrepancy is in the location of the
high-frequency (left-hand) boundary of the 1:1 phase-
locking region. During periodic stimulation at a fixed fre-
quency and amplitude near this boundary one typically
has dynamics passing through a sequence of different pat-
terns. Thus, as the stimulation progresses, one may ob-
serve the transitions 1:1—7:6—6:5—5:4—4:3 with all
stimulation parameters held fixed. There is not an abrupt
transition from one pattern to another and intermediate
patterns and irregularity are often observed. This
behavior is most likely due to a biological phenomenon
called “overdrive suppression.”!> Following cessation of
1:1 phase locking at frequencies higher than the intrinsic
frequency of the aggregate one observes a transient in-
crease in the intrinsic period, which gradually returns
back to control. Thus, as the stimulus is continually ap-
plied the intrinsic cycle length increases (corresponding to
a decrease in 7 in Fig. 10) and this leads to bifurcations in
the dynamics.

Analyzing the dynamics over extended times during
periodic stimulation provides further confirmation for the
applicability of Egs. (3) and (9) to the experiments. The
basic idea is to determine directly from the data during
reriodic stimulation the plot of ¢, as a function of ¢,.
This is done by measuring the time from the action poten-
tial immediately preceding a stimulus to that stimulus.
That time is divided by the intrinsic cycle length, which is
taken to be the average of the five spontaneous interbeat
intervals immediately prior to the start of stimulation, to
determine the phase of the stimulus.

In the first column of Fig. 11, ¢, is plotted as a func-
tion of ¢; for four runs, partial tracings of which are
shown in Fig. 9. In the second column in Fig. 1, the func-
tion in Eq. (9) for the appro;ariate A and 7 is superimposed
on the experimental points.** Finally, in the last column
of Fig. 11 are shown simulated dynamics assuming Eq. (9)
with an added stochastic term generating uniformly distri-
buted noise in an interval +0.015.

In Fig. 11, the superposition of Eq. (9) with the experi-
mental points in the second column, and the close similar-
ity of the simulated dynamics with the observed dynamics
(compare columns 1 and 3) gives striking confirmation of
the theory. The small discrepancies which are observed
presumably reflect either inaccuracies in fitting the PTC
to experimental data [for example, in the neighborhood of
¢=0.38 in Figs. 4(e) and 11(d)] or breakdown of the as-
sumptions that allow representation of the dynamics by a
one-dimensional difference equation.
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Figure 11 also depicts three of the main postulated
“routes to chaos.”! In Figs. 11(a2) and 11(d2) there is a
period-1 fixed point in the negative slope region of the
Poincaré map. In Fig. 11(a2) this point is stable whereas
in Fig. 11(d2) the point is unstable and one sees irregular
dynamics such as are found in the “period-doubling”
route to chaos.">!° Figure 11(c2) shows that the system
is near a tangent bifurcaton on the period-1 map. This
leads to “intermittency.”® Finally, the dynamics in Fig.
11(b) clearly show density over the entire range of ¢;. In
this case the map is not monotonic, and one has irregular
dynamics similar to those expected on the “quasiperiodic”
route to chaos.!®2°

V. DISCUSSION

The present paper offers a concrete application of
theoretical work on the bifurcations of circle maps to the
field of cardiac electrophysiology. The theory was based
on the assumption that the cardiac oscillation is a strongly
attracting limit cycle which is being perturbed by electri-
cal current pulses. Thus, the theory is equally applicable
to other experimental systems in which an autonomous
limit-cycle oscillation is perturbed by brief pulsatile stimu-
li. Periodic pulsatile stimulation of chemical and electron-
ic oscillators which are strongly attracting limit cycles
should lead to similar phenomena.

One of the motivations for this work was to determine
if two-parameter circle maps would display universal bi-
furcations. Although robust results have appeared for
monotonic circle maps!” and for circle maps at the transi-
tion from monotonicity to nonmonotonicity,'® the theory
for nonmonotonic maps is still not well developed. Most
work!°=2 to date has been for maps of the form

b 1=¢;+7+bp(¢;) (mod 1)

where b and 7 are constants and p is a function with
p(0)=p(1), with a single maximum and minimum in the
interval [0, 1). The map used to predict the experimental
response to periodic stimulation [Eq. (9)] does not follow
this form. Therefore, theoretical studies of degree-1 circle
maps more general than Eq. (10) are needed. However,
the numerical studies do show that many of the main
features of the sine map (Figs. 1 and 2) are also found in
the predicted dynamics of the cardiac oscillator (Figs. 5
and 6). As well, overlapping of Arnol’d tongues is found
in other two-parameter systems’®3’ and the complex
period-doubling structures in Figs. 2 and 6 occur in other
two-parameter maps with two extrema.?®?’ Thus, there is
mounting evidence for universality in the bifurcations of
maps of two parameters, but a complete theory is current-
ly lacking.

In order to simplify this analysis we have not con-
sidered two important problems. (1) For many biological
oscillators, there is a transition from a degree-1 PTC to a
degree-0 PTC as stimulation strength is increased.'>** In
the case of the heart cell aggregate, experimental and
theoretical analysis of this transition is difficult and the
subject of recent work.>® The bifurcations found in the
neighborhood of the transition from degree-1 to degree-0
circle maps are not well understood. (2) We assume

(10)
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FIG. 11. Poincaré maps for four stimulation runs, portions of which are shown in Fig. 9, where row (a) here corresponds to row
(a) in Fig. 9, and so forth. In the first column is shown ¢, vs ¢; determined from experimental data. In the second column, the
Poincaré maps obtained from the single-pulse response [Eq. (9)] are superimposed on the experimental points. In the third column,
the dynamics are simulated using Eq. (9) with noise added uniformly distributed in an interval of +0.015. The same initial condition
and approximately the same number of stimuli are used in the simulated runs of the third column as in experimental data of the first
column. In the experiment of row (c), two stimuli not separated by an action potential occasionally occurred [see Fig. 8(c)]. The
phase of the second of such a pair of stimuli cannot be calculated. In (c1) only points for which ¢; and ¢, can be directly measured

are included.

throughout that the relaxation back to the limit cycle is
sufficiently rapid that a one-dimensional map is valid.
Further analysis is needed to understand the connection
between the bifurcation in this one-dimensional map and
higher-dimensional maps which may be more accurate
representations of the biological system.

Many pathological cardiac rhythms in man arise from
the interactions of two or more autonomous pacemaker
sites in the heart. As well, in patients with electronic

pacemakers, brief electrical stimuli are periodically
delivered directly to the cardiac tissue. Our experimental
system provides a highly oversimplified model for these
physiological situations. Since many of these complex
systems are modeled by circle maps, we are led to con-
clude that the bifurcations and associated aperiodic
dynamics observed in the iteration of circle maps may
provide insight into the origin of the bizarre, erratic, and
sometimes fatal cardiac dysrhythmias clinically observed.
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