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A field-dependent hydrogenic basis is used to obtain the evolution of the energy spectrum of
atoms in strong ( —10 G) and uniform magnetic fields. The basis allows results to be derived

analytically. Numerical values for the first 13 excited states of hydrogen are found to be in very

good agreement with much more elaborate calculations of Smith et al. and of Brandi. In addition,

the possibility of having a remnant type of degeneracy in the presence of the magnetic field is inves-

tigated.

I. INTRODUCTION II. THEORY

In recent years the challenge of the nonseparable di-
amagnetic Zeeman interaction has attracted much atten-
tion. Besides the well-known applications in astrophysics
and condensed matter, the recent upsurge of interest in
this basic and still unsolved problem of theoretical physics
is motivated by several empirical discoveries and growing
accumulation of evidence that a dynamic symmetry exists
when hydrogenic atoms are placed in a uniform magnetic
field. References 1—5 give some recent representative
works on this subject where the motivation and difficul-
ties of this problem are further discussed.

The purpose of the present paper is to present a simple
and reliable way to follow, from the Coulomb limit, the
field evolution of the energy spectrum of hydrogenic
atoms placed in a uniform and strong magnetic field. The
basic idea behind the present approach is the physically
reasonable assumption that the main effect of the magnet-
ic field on the atomic eigenfunctions, as it adiabatically in-
creases from zero, is to compress them. In other words,
we assume that the nlm field-free eigenfunctions continue
to basically represent the nlm state in the presence of the
field. The primary effect of the field on the quantum
states would be to introduce distortions to them and we
simulate such distortions by introducing one single field-
dependent nonlinear variational parameter in the radial
part of the eigenfunction. As will be seen below, applica-
tion of this idea produces remarkably good results, consid-
ering its simplicity. Furthermore, all results are obtained
analytically. For the three lowest n manifolds (for which
results of elaborate calculations are available in the litera-
ture) the present analytical approach is reliable for the
study of atoms in fields typical of white dwarfs (up to
-2.3)&10 G). In particular, they compare fairly well
with the much more elaborate calculations of Smith
et al. and of Brandi. With "effective atomic units" used
in the usual way, these results can easily be applied to lab-
oratory field strengths, e.g., in hydrogenic excitons.

2

H= p+ —A
2m~ c

Assuming the magnetic field B to be along the z direction

[B=(O,O,B)], choosing the usual gauge A= —,BXr,
spherical coordinates (r, 8,$), and atomic units such that
A=e =m, = 1, one gets

H=Ho+H, s Ho+ ,'yL, ——+ —,'y r sin 8—, (2)

where Ho ———,'p —1/r is the field-free Hamiltonian, L, is
the z component of the angular momentum, and

y =eB/(m, c). In the units used, the parameter y is equal
to the cyclotron frequency. It measures the magnetic field
strength in units of 2.35 && 10 G or, equivalently,
2.35~10' T.

As mentioned before, the basic idea behind the present
calculation of the Zeeman diamagnetism is to simulate the
field compression of the atomic eigenfunctions through a
nonlinear variational parameter which will be called P.
This parameter plays essentially the same role as the
"effective-charge" parameter common in molecular calcu-
lations. We therefore define the basis

I
nlm )

=R„t(r)Yt (0,$), where R„t(r)Yt (8,$) are the usual nor-
malized eigensolutions of the field-free Hamiltonian Ho
[defined in Eq. (2)] in which the nuclear charge was re-
placed by p. For p+1 this basis is not completely orthog-
onal. Using these eigensolutions, one can derive the ener-

gy in the standard way

E„t~(P)=&nlm IH I
nlm ) =Eo+E,g .

The paramagnetic contribution is given by

(nlm
I ,'yL,

I
nlm) = —,'ym —.

(3)

(4)

With spin and relativistic effects neglected, the Hamil-
tonian for a hydrogen atom in a uniform magnetic field

characterized by a vector potential A is
'2
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The diamagnetic contribution is also easy to evaluate
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In evaluating Eo one should pay due attention to the fact
that

~

nlm & is not an eigenfunction of —,'p —1/r but, in-

stead, of ,' p p/—r. H—ence,

Ep ——nlm Tp ——nlm2

r

= nlm -;p ——nlm + —1 nbn —nlmp 1

r

1
, +(P—1),=,(P' —2P)

For P= 1, Eo reduces to the well-known hydrogenic ener-

gy spectrum, as it should. Collecting all terms together, it
follows that

E„i (p)=ap 2ap+b+—c/p

where

a= —,n
1

b = —,ym,

c = —,
'

y f(n, l, m),

(9c)

P (P—1)——=0
a

(10)

for the unique positive root p,~,. Before proceeding, a few
comments are in order. For P= 1 Eq. (9) reduces to the

f (n, l, m) = nz[5n —3I(l +1)+1][l(l+1)+m —1]

&& [41(l +1)—3] (9e)

This equation is the basic equation of the present paper.
The field evolution of an nlm state can be obtained by
solving the equation M„i /Op=0 for the optimum pa-
rameter p. This amounts to solving the quartic

I

result obtained by Guth' (' and by Schiff and Snyder' ' '

using first-order perturbation theory. As discussed by
Ruder et al. ,

" the perturbative result is strictly only valid
for nondegenerate states. In contrast, the present uaria
tional result has no such restriction. By comparing results
from the perturbative equation with the ones from a much
more elaborate variational calculation, Smith et al. con-
cluded that for the n =2 and 3 manifolds, perturbative re-
sults are inadequate for 8 values of about 10 and 3X10
G, respectively. As will be shown in the next section, Eq.
(9) allows the validity of the results for the aforemen-
tioned manifolds to be easily extended by 1 order of mag-
nitude at least. It is also interesting to note that, with the
paramagnetic-term b omitted, Eq. (9) obeys the same scal-
ing relation recently obtained for Rydberg atoms in mag-
netic fields. "

III. DISCUSSION

There have been a number of calculations on the effect
of a magnetic field on the spectrum of hydrogen. These
calculations, in a, general manner, can be divided into two
classes: (a) high-field calculations, when one starts with
Landau-type eigenfunctions and tries to follow the field
evolution of the levels as the field is adiabatically de-
creased, or (b) low-field calculations, where Coulomb-type
eigenfunctions are employed and one follows the adiabatic
changes as the field is increased. It is clear that our
present approach fits into this second generic type. In
general, it is quite hard to estimate the error present in a
calculation of any type. We therefore try to assess the
limit of validity of the present calculation by systematic
comparison with results from the literature. We will be
mainly concerned with members of the n =2 and 3 mani-
folds, for which, at least, some results have already been

State

1$
2$

2pO

2p
3d
3d 2

KiHingbeck
(Ref. 14)

—0.497 521 7
—0.095 653 0
—0.111752 6
—0.150 522 0
—0.054 308 9
—0.086 S74 9

This work
(minimizing p)

—0.497 500
—0.090000
—0.100000
—0.14S 000
—0.01S 556
—0.020 556

—0.497 512
—0.095 822
—0.111363
—0.149 509
—0.051 678
—0.082 822

TABLE I. Some energies (in a.u. ) for 8 =2.35&10 G (@=0.1).

First-order
perturbation theory

(P=1)
Praddaude
(Rd'. 13)

—0.497 525
—0.098 085
—0.112410
—0.150 84S
—0.057 810
—0.087 83S
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TABLE II. Energies (in a.u.) for more intense field strengths (y =0.0425, 0.2127, and 0.42S).

State

1$

8 (G)

1X10
5 X10'
1X10'

Peek and Katriel
(Ref. 15)

—0.499 548
—0.489 06
—0.459 68

This work
(minimizing P)

—0.499 548
—0.488 92
—0.458 02

Cohen and Herman

1X10
5 X10'
1X10'

—0.1207
—0.055 08

0.060 80

—0.118943
—0.02441

0.15035

—0.11908
—0.033 49

0.122 16

2po 1X10'
5 X 10'
1X10'

—0.122 37
—0.077 58

0.010 18

—0.122 339
—0.073 78

0.025 80

—0.122 40
—0.079 96

0.003 61

2p& 1X 10'
5 X10'
1X10'

—0.098 59
0.064 73
0.3152

—0.098 50
0.070 67
0.3352

—0.098 60
0.063 92
0.31336

published. For these 13 states the high-field regime starts
at about 3)& 10 G (i.e., at y =—0.01).

Table I shows some energy values for y =0.1. The first
column shows the result of first-order perturbation theory
[Eq. (9) with P= I]. The second column contains the re-
sult as obtained from Eq. (9) after minimization with

respect to P. These values are compared with the corre-
sponding ones of Praddaude' (variational calculation us-

ing Laguerre polynomials in cylindrical coordinates) and
of Killingbeck' (partitioning of the Zeeman Hamiltonian
plus series method). One clearly sees the effect of the P
minimization over the perturbative calculations, especially

4.700X10' G
0.2

TABLE III. Comparison of the energy spectrum [in Rydberg units (= I/2 a.u.)] in a uniform mag-
netic field for the 13 lowest states above the ground state. Upper line, present results; lower line, Smith
et al. (Ref. 8). For the 3$ state the present results are smaller up to y =0.05.

8 =1.175X10 G 4.700X10 G 1.175X10 G 2.350X10 G
State y =0.005 0.02 0.05 0.1

2$

2p

2po

2pl

—0.2498
—0.2498
—0.2548
—0.2549
—0.2499
—0.2499
—0.2448
—0.2448

—0.2472
—0.2472
—0.2676
—0.2676
—0.2488
—0.2488
—0.2276
—0.2276

—0.2335
—0.2340
—0.2857
—0.2861
—0.2427
—0.2429
—0.1857
—0.1861

—0.1916

—0.2990

—0.2227

—0.0990

—0.067 15
—0.097 85
—0.2879
—0.3007
—0.1575
—0.1702

0.1120

3$

3p(

3d

3d —1

3do

3d&

3d2

—0.1102
—0.1101
—0.1152
—0.1152
—0.1106
—0.1106
—0.1052
—0.1052
—0.1204
—0.1204
—0.1156
—0.1156
—0.1107
—0.1108
—0.1056
—0.1056
—0.1004
—0.1004

—0.098 60
—0.097 27
—0.1181
—0.1182
—0.1043
—0.1047
—0.078 10
—0.084 16
—0.1411
—0.1414
—0.1243
—0.1245
—0.1053
—0.1072
—0.084 31
—0.08449
—0.061 14
—0.078 21

—0.050 25
—0.049 39
—0.098 14
—0.102S
—0.0755
—0.082 76

0.001 86

—0.1612
—0.1635
—0.1255
—0.1282
—0.080 63
—0.090 96
—0.025 50

0.038 79

0.062 47

—0.032 18

—0.0033

—0.1656

—0.1033

—0.01727

0.096 64

0.2343

0.3339
0.1778
0.1464
0.021 74
0.1782
0.0521
0.5464

—0.1318
—0.1606
—0.021 76
—0.062 25

0.1444
0.058 43
0.3782

0.6681
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for the 3d states. Our results are in good agreement with
the other two calculations.

Table II shows a similar comparison, at higher-field
strengths, for some states as calculated by Peek and Ka-
triel' and by Cohen and Herman. ' The first authors nu-
merically solved a pair of self-consistent equations (exact
at zero field) in prolate spheroidal coordinates, while
Cohen and Herman used a combination of perturbation
theory with a variational calculation. Again, fair agree-
ment is obtained by our one-parameter variational results.
As a final comparison, Table III shows the field evolution
of the 13 lowest states above the ground state. In this
table our results are compared with the ones obtained by
Smith et al. with an elaborate variational calculation us-
ing an eigenfunction made of up to 12 Slater-type orbitals.
These same 13 states in the same field range were also in-
vestigated by Brandi. He used an hydrogenic basis with
ns, n'd, and n"p functions with 1&n &6, 2(n" &7, and
3&n'(8. The results obtained by these authors are in
very good agreement with each other, as can be seen from
Fig. 1 of Brandi. Both results were given for fields of up
to 2.35&&10 G (y=0. 1), which are typical of white
dwarfs. Once again one sees that the results obtained
from the trivial one-parameter minimization of Eq. (9) are
in good agreement with the much more elaborate calcula-
tions. It is worth pointing out that in this range perturba-
tive calculations [Eq. (9) with p= 1] can be off by a factor
of up to 18. In Table III we have also included positive
energies although, owing to the very different boundary
conditions of the problem in this region, they are expected
to lose accuracy quickly. In general, the results of Eq. (9)
with p minimization tend to remain fairly accurate as
long as the energies are below the autoionization limit
(E =0). This agreement is particularly interesting if one
remembers that the basis being used is not completely
orthogonal. %'e believe the above comparison to demon-
strate the usefulness of the "p-scaled"

~

nlm ) hydrogenic
basis in deriving reliable analytica/ results. Numerical
work with this basis has already been done by Brandi and
Koiller. ' They used a variational eigenfunction made of
up to 35

~

nlm ) states to investigate the diamagnetism of
hydrogen. As a consequence (and in contrast to the
present case), they had to diagonalize large matrices with
a computer. Perhaps one should at this point recall that
the computational difficulty to calculate the field evolu-
tion of the quantum states in the presence of the field
amounts to solving Eq. (10) for the positive root, indeed a
trivial task. %'e also remark that the fact that our one-

parameter variational functions coincide in form with the
field-free hydrogenic eigenfunctions makes it relatively
easy to obtain matrix elements and, therefore, bound-
bound as well as bound-free (photoionization) transition
probabilities. These and some other results will be
presented elsewhere.

To conclude, we should like to call attention to the very
interesting possibility of having "remnant" degeneracies in
the E„t (p) of Eq. (9). Within an n manifold, this corre-
sponds to having cases such thai
f (n, l, m) =f (n, l', m'),f (n, l, m) being defined in Eq. (9e).
The paramagnetic contribution [Eq. (9c)] tells us that we
must have I=m ' and, therefore, should look for
f(n, l, m) =f(n, l', m). From this, one obtains a very sim-
ple equation to determine I', namely,

x 2Px ——Q =0,
wherex =l'(I'+1) and

I' = ,' (v 3p—4N—/D)—, Q = ,
' vp+N—/D,

(1 la)

(1 lb)

N =[v—3l(l+1)][1(l+1)+p], D =4l(1+1)—3,
(1 lc)

(1 ld)

To be a solution of the physical problem, besides being a
positive root of Eq. (11a), x must be an integer and a
member of the very particular set
x =0,2,6, 12,20, . . . , n (n —1). It is easy to see that, e.g.,f(4, 1,0)=f (4,2,0), and therefore that these states, in our
approximate solution, ought to remain degenerate at any
field strength By cho.osing p=1 in Eq. (9), this con-
clusion can also be regarded as a consequence of first-
order perturbation theory. A natural question arises
whether this type of degeneracy would persist in a more
elaborate calculation (e.g., in a higher-order perturbative
treatment) or not. At any rate, in a limited but still wide
field range, a more elaborate calculation is not expected to
affect the above conclusions very much.
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