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First-passage times and hysteresis in multivariable stochastic processes:
The two-mode ring laser
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The decay of metastable states of a system obeying an n-variable Fokker-Planck equation is con-
sidered by evaluating the mean first-passage time T~ using the asymptotic method of Schuss and
Matkowsky. The statistics of the first-passage time ~ in the small-noise high-barrier limit is shown
to follow (r')=r!(r)', where Tr =(r), independent of the number of degrees of freedom, n. The
time T~ in the low-barrier, high-noise limit is also calculated. The hysteresis window for the
control-parameter sweep rate is generalized to multivariate systems. These general results are ap-
plied to a model of a two-mode laser, where n =4. A comparison with recent results of Mandel and
co-workers is made, and experimental tests of the predictions are suggested.

I. INTRODUCTION

The decay of metastable states is a problein of interest
in many fields of condensed-matter physics and quantum
optics. Examples include the rate of droplet formation in
a supersaturated vapor, ' the decay rate of superconductor
currents, and spontaneous switching times between two
coherent modes in a ring laser.

Generally, the statistical dynamics of a large class of
systems that exhibit metastable behavior can be character-
ized by a multivariate Fokker-Planck equation of the form

dP " a " ~'ID'(x)Pl
[Ai(x,p, )P]+ g =L „P

Br ~ i Bx( Bx(BxJ

situations where detailed balance does not hold; and
(iv) it answers questions regarding the statistics of pas-

sage times, as we11.
The FPT formalism focuses on the time r for a fluc-

tuating x=(xi,x2, . . . , x„)CQ to first cross a specified
boundary BQ, with v. being a stochastic variable. The
mean first-passage time

T, (xo)= (~(xo) &

depends on the initial value x = xo and satisfies a differen-
tial equation in xo that is exactly soluble in the single-
variable n = I case:

~2
DV Tp(xo) —A(xo)'V' Tp(7xo)= —1 .

whose steady-state solution Po(x) has a bimodal charac-
ter @is a. control parameter for the transition.

One would like to calculate the rate of transition from
one minimum of Po(x) to another. For a single-variable
Fokker-Planck system, various methods for computing
such a rate are known —the Kramers method based on
probability current fiow, the variational approach and
the first-passage-time formalism. These methods yield
very similar results, and have been applied extensively to
one-variable situations. They have been reviewed else-
where.

The generalization of these methods to multivariate sys-
tems is far from trivial since no general methods for solv-
ing multivariate Fokker-Planck equations appear to be
known. Schuss and Matkowsky, in a series of important
papers, ' have shown how the average first-passage
time (FPT) can be asymptotically evaluated in a systemat-
ic fashion, in the limit of weak noise and a high barrier.

An extension to n variables of the Kramers" and varia-
tional' methods, by similar arguments, is also possible.
However, in what follows, we discuss the FPT formalism
because of the following:

(i) it is directly relevant to some experimental results;
(ii) it treats metastable lifetimes and dissipative phase

transitions' in a single unified framework;
(iii) it is relatively versatile, and can be generalized to

Here A (x) is the drift term and D is a diffusion term,
constant and diagonal, for simplicity. (A more general
case is considered later. )

In the problem of interest, xo is in a well around a
metastable minimum x "' and jumps occur over a barrier
at a saddle point x, to a stable minimum x ~'. The bar-
rier height is b, U = U(x, )—U(x "') where the potential is
defined by the stationary solution Po(x) =e ' " '~ of the
Fokker-Planck equation. The small parameter in the ap-
proximation methods for T~ is then

in a weak-noise, high-barrier regime.
The basic point is to recognize that, although e is small,

it is a singular perturbation as far as a mean FPT is con-
cerned, as the noise kicks the particle over the barrier.
The escape time must go to infinity as the scaled noise
strength goes to zero, with e playing the role of a tempera-
ture in an activated process,

Tp( xp) =v ( xone)e

With the essential singularity extracted, v ( xo,e) is expand-
able in powers of e. It is natural to consider a "preferred"
reference frame centered on the saddle point x, and rotat-
ed so one axis z is along the line of steepest decents of
U(x). Then, scaling the new variables in e'~, the dif-
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ferential equation for U(xp,'e) becomes effectively one di-
mensional, in z, to leading order in e. The asymptotic
mean FPT is thus found.

In this paper we outline the general approximation
scheme of Schuss and Matkowsky for n variables, and for
x-dependent, nondiagonal diffusion, but with detailed bal-
ance. We show that FPT statistics can also be analyzed

by the same methods. The general formalism is applied
to calculate T~ for an explicit model, namely a two-mode
ring laser, ' ' where n =4. The FPT can be directly mea-
sured and the equations are particularly simple, so the
model is of both pedagogical' and experimental interest.
The degeneracy of the potential with respect to the phase
reduces this to a n =2 problem with an intensity-
dependent diffusion term. We also generalize our ideas
for the limits of observable hysteresis, ' to n-dimensions,
and calculate the "hysteresis window" for the ring laser
from the decay and relaxation times. The mean FPT and
hysteresis window are also calculated for the @~~1 or
low-barrier, high-noise limit, from a scaled expansion of
the FPT equation in x "'—x„. near the limit of metasta-
bility. The mean FPT goes to zero quadratically in the
difference of the control parameter from its critical value.

The outline of the paper is as follows. In Sec. II we

present the Schuss-Matkowsky argument and show that it
can also be applied to higher moments of the FPT
T~"'=(v ). In Sec. III we generalize the hysteresis win-

dom to many dimensions. Explicit applications to the
two-mode laser are made in Secs. IV, V, and VI that deal
with, respectively, the preferred reference frame, the mean
FPT and its moments (for e « 1), and the hysteresis win-

dow. Finally, in Sec. VII we summarize our results and
discuss possible experimental tests of these theoretical
Nieas.

II. FIRST-PASSAG E-TIME DISTRIBUTIONS
IN THE HIGH-BARRIER, %EAK-NOISE LIMIT

—g A;(xp)—
BXOi

T (xp)= —1, (2.1)

where A;(x) and DJ(x) are the drift and diffusion terms,
assumed to satisfy the potential conditions, and L, is the
Hermitian conjugate of the Fokker-Planck operator. Here

xoEQ, the n-dimensional volume containing a single
metastable mInimum x . The boundary BQ contains a
saddle point x, . The boundary condition is that the mean
FPT vanishes on the boundary

T~(xp&BQ)=0 . (2.2)

Furthermore, T~(xp) tends to a constant for xp deep in-
side Q.

The stationary solution of the Fokker-Planck equation
ls Pp(x)=e, dcflnlng a potcIltlal, cxpl'csslblc as a
line integral of the drift and diffusion terms

As mentioned in the Introduction, the equation obeyed

by the mean FPT Tz(xp) in n variables is

Pf 82
L Tq(xp)= g D,J(xp)

0 —1 xol XOJ

@(x)=f g dx(D ')J AJ+ g (2.3)

As the two-mode laser involves x-dependent diffusion, we
generalize the treatment slightly. Scaling in AU defined
by

b, U—:[4(x, ) —@(x )]—g D;;(x, )
Pl s=1

leads to

(2.4)

n g2
L rz(x)= e g d~(x)-

8

—$ g;(x) i~(x)= —1,
Bx.

(2.&)

dJ(x)=— —g D;;(x, )
i=1

D,J.(x), (2.6a)

g;(x) =A;(x)/b, U,

~q(x)—:hU Tq(x) .

The small parameter e is

(2.6b)

(2.6c)

e= —g D;;(x, )
Pl i=I

(2.7)

Note that e depends on D,J, as @depends on the diffusion.
For a constant diagonal diffusion term D,J(x)=D6,J, one

has N(x)= J A.d 1/D =U(x)/D, b, U is independent

of D, d;J(x)=5,J, and e=D/b, U
As noted in (1.2), the Schuss-Matkowsky starting point

is to write

r~(x) =Re 'U(x;e), (2.8)

where E is a constant that can be found later. From (2.2),

U(x EBQ;e)=0 . (2.9)

Away from the boundary BQ, i.e., deep inside 0, the func-
tions U tends to unity. We will use the symbol oo for deep
inside the volume even though Q is finite. Note that if a
function has a width M, then deep inside would mean
x &~M. Now we write

U(x;e)~1;
~

x —xb
~

~oo, x&Q, xb EI)Q

so that the asymptotic mean FPT is, in this limit,

~~(x)~~z( oo ) =A,e

(2.10)

The constant A, can be related to v (x;e) through the iden-
tity

J d"xPp(x)[L T (x)+1]=0. (2.11)

Using (2.7) and (2.9) and Green's theorem on the second
derivative terms of (2.1), the asymptotic mean FPT is ex-
pressible as a ratio between a volume and a surface in-

tegral:
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r»(oo )=— "xP x
n

e " 'xPox v;x iJ x v x;E'
an

(2.12)

lf Q2
e g d;, (a)

Ba;Ba,

n—g g;(a)
Bo.;

v' '(a)=0,

where A is the appropriate rotation-reflection matrix.
Then

where v(x) is an outward normal to the boundary BQ,
and in the denominator xEBQ. The asymptotic FPT
Tz(00) depends on v(x;e} only through its derivative,
evaluated on the boundary BQ.

For small e, the function v ( x;e) can be expanded as
d; (a)= g A;kAJ(dk((x, +Au),

k, l =].

(2.17)

(2.18)

v(x'yf)=v (x)+Ev (x}+ ' ' '

so that

(2.13) A; ( a ) = g A,J./I J( x, +A a ),
j=1

g;(a )—=/I;(a)/b. U .
(2.19)

n g2
E g d(J( x )

J=1 ax Bxj

a—g g;(x)
Bxi

v"'(x)=0

(2.20)
neglecting e /'&&1 since e " goes to zero faster than
1/x in the hmit x —+ao. The first term on the left-hand
side is retained, as it must contain an O(1) contribution
due to rapid variation on a scale e'/ . If it is dropped as
being O(e) then one is led to unacceptable solutions: If
v' '(x) is a constant where g(x)&0, then from (2.9) this
constant must be zero.

To study escape over a barrier near a saddle point x„it
is appropriate to transform to a new and preferred set of
axes centered at x, and rotated such that one axis, z, is
along the line of steepest descent of the force /((x). The
other p =(p), . . . , p„)} axes are perpendicular to z. The
saddle point is (p,z)=(0,0) in the new frame. The z
direction increases inward from the boundary so a reflec-
tion may be necessary for acute rotation angles (see Fig.
1). Then the old x =(x i,x2, . . . , x„) and new

where scaled variables are denoted by a prime. Expanding
in e, the leading contributions are

n

d z(e'/ a ')=d J(0)= g A;kAJIdk)( x, )
k, l =1

(2.21a)

and, using the fact that the saddle point is a steady state,

-( i/2 i) ~1/2 i.b (i)+~1/2 ib(~)) (2.21b}

where

b',. '—:V~, (p, O) ~, b ))'= g;(O,z) ~, () . (2.21c)

Now, close to the saddle point, at points on the z (p;} axis,
the direction of the deterministic force is along the z (p;)
axis itself, by the choice of the preferred frame. Thus,
from (2.2lc) b ))' (b ') is in the z' (pI) direction, other
components being zero. Then (2.17) becomes

tl 82g d;J(0)
Ba,' BaJ

(2.15)a—:(p,z)

coordinates are related by

x( =xq( + g A(ja~ (2.16)

(2 14) Now, all curvatures sharpen as e~O, so we scale as

n —1
(I)

P 'Or.
Bp Bz

(2.22)

where now U' ' is assumed to depend on c7' only. Note
that the "steepest ascent" line as well as the steepest des-
cent line enters into and could affect the final result. It is
the boundary condition that makes only the steepest des-
cent variable relevant, as seen below (Ref. 10 considers the
case where only z needs scaling).

The boundary BQ can be defined by the parametrization

z'=o(p ') . (2.23)

FIG. 1. Schematic plot of equipotentials and preferred axes

(p, z) for the problems of escape over barrier. x, is the saddle

point, x the metastable minimum, and BQ the boundary en-

closing Q.

One can eliminate z' in favor of the new variable
y'=z' —o(p '} in terms of which the boundary condition
(2.9) can be written as v(p ',y'=0)=0, so we can write
v (p ',y') =y'w (p ',y'). Since the integral of (2.12) is taken
along y' =0, this means T» ( 00 ) is determined by
[Bv/By' ]» 0

——w(p ',y'=0). Rewriting (2.22) in terms of
y' instead of z', one finds that a possible solution is



SUBODH R. SHENOY AND G. S. AGAR%'AL

(u(p ',y')=(u(y') independent of p '. This corresponds to
suppressing the p' dependence of (2.22), so that a one-
dimensional ordinary differential equation results:

T

) I
bal ll)/g (o)

I ]z '/2
dz e

(0)( )
0

—[ I
b(II)/Z„„(O)

I
]z /2dz'e0"

(2.25)

dZ Z

This has the solution, in terms of z',

(2.24) where both conditions (2.9) and (2.10) hold.
With the use of (2.25) in (2.12), and evaluating integrals

by sharp peaking arguments,

T~(ao)=
a~„(o,z)

z=0

~e~~
1/2

d.„(0) ~'"(x~ )~n —")'(xs )

(2.26)

where

A „(x)=det 1 ~D ( )
B(I)(x)

(2.27)

T~"'(x)=r f dx'[P0(x)]
I P If

X f dx "T,' "(x")- (2.29b)

is an n &(n Hessian evaluated at x.
Turning to statistics, the rth moment of the FPT

T,'"'(-..)
—= (~)

obeys the equation '
(2.27')

For the case of high barriers and low noise, P0(x) =e
's sharply peaked at x, and if we ~ss~m~ that ?~' "(x
is slowly varying, then (2.29b) leads to

T(")(~)=rT("-"(~)T,(~ )
-- T,"(~) =r![T,(~)]".

1l Q2

g DJ(x)

—g A((x)
BXI.

? (r)(~) ? (r —1)(~)

(2.28)

In the one-variable case, this can be written as

, ,
BT'"'(x)

Bx ax Dx (2.29a)

where @ is the analog of (2.3). This can be written in an
integral form

(2.30)

Equation (2.30) corresponds to the following distribution
of the first-passage times:

P(r)=Tp 'e (2.31)

This distribution was first obtained by Roy et al. in the
context of the ring laser, through a detailed disentangling
of nested integrals.

In the n-variable case, following (2.8)

vz'(x) =A(„)u(„)(x;e)e" (2.32)

where u(, ) vanishes on the boundary. As in (2.12), the
asymptotic limit is

(r)( ) g rK/e f d"x P0(x)rsvp" "(x)

e f d" 'x P()(x) gy;(x)dj(x)
au((,')'( x )

l,j

(2.33)

Neglecting terms -re /' after inserting (2.32) into
(2.28), one gets the same equation as (2.14) for u(x;e),
with the same boundary conditions. Thus to this order,
u („)'(x )=u( ( x ). As P0( x ) is sharply peaked at x~,

(x ) is approximated by its asymptotic value, and us-

ing (2.12), one gets (2.30) holding even in the n-variable
case. The first-passage-time statistics are seen to be in-
dependent of dimension in the high-barrier, weak-noise
limit.

For completeness we also mention some results on the
FPT statistics in one dimension, with the control parame-
ter p close to the limit of metastability p, i, of the well at
x~()((,). For simplicity, a constant diffusion term D is tak-
en. Then one is in the low-barrier, high=noise limit and
from (2.29b) with x, ) ——x~'(p, )),

Tp"'(x~ )=(x~ —x, ) )X("),

where g"' has been evaluated and, for r & 1,
Z

(„) f c)d,(, )
[@(x~))—@(x)]/D (r ))

(2.34)

X"=O.29
" 2D

@III

2/3

X" ' (r&1) . (2.36)

With the use of

y( ) O41
D

1/3

(2.37)

0

(2.35)
Expanding 4(x,p, () about x, ), with @"(x, ),p, ) )=0

(primes are x derivatives),
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it follows that
—1/3

(r!)v", (2.3'8a)
~ p ~

&&min
l

lnymi

where

v—:0.41— 2D
' 2/3

(2.38b)

=min l 3'mi

;; BA;(y,p)
Bp

(3.3)

Using the general expansion for a probability distribution
in terms of its moments one finds from (2.38) a distribu-
tion e '~" similar to (2.31), but with a delta-function term
that does not contribute to the moments.

(i) p, the rate of change of the control parameter,
(ii) Tz

' the "hop-over" or first-passage rate, and
(iii) T, ' the "roll-back" or relaxation rate in the

metastable well.

The basic idea is that p must raise the metastable well too
fast for a hop-over to occur, but slow enough so that the
system sits near the moving well minimum (adiabatic fol-
lowing). These two requirements define the brackets of a
hysteresis window for p.

In n variables, the n)&n relaxation matrix is obtained
from linearizing the deterministic equation about the
(metastable) steady state x m".

= —A;(x,p)= —$ (i) (xj —xmj') . (3.l)
j=i ~xmj

In the representation Iy; I in which the relaxation matrix
is diagonal, with

dy;(t, iu(t))

dt
~3 mi

Bp
p— yi(t, ji,(t)),

(3.2)

where we have allowed the drive ji,(t) to vary with time.
For adiabatic following of the moving minimum, the devi-
ation y;/ym; « 1 is small, and remains so, dy; /dt =0 for
all components i. This gives the sufficient condition (ab-
solute values implicit on all quantities)

III. THE HYSTERESIS WINDOW IN n VARIABLES

The two wells of @(x), at x m" and x m', move relatively
up and down as the drive parameter p is varied between
the liniits of metastability p, i &p &p, 2 of wells 1 and 2.
Since the probability is Po(x) =e ' " ', thermodynamic
considerations dictate a first-order transition to the more
probable global minimum, as soon as p crosses pM, where
the well depths are equal: @(x "',pM ) =4(x ' ',pM ). In
fact, hysteresis can occur, and the system can jump at
some pz & ji,M, from the metastable to the stable well. As
noted elsewhere' ' the question of when the jump actual-
ly occurs is a question of the relative size of three time
scales.

We have in mind a sawtooth time variation of p(t) be-
tween limits p, l and p, 2, so p is a constant, within a
sweep. The relevant rates are then as follows:

Th„,',— lnPO(x '"(ji,),p)
dt

= p, 4 (x m"(iM), p, )
Bp

(3 5)

For hysteresis to occur, the rate T~», must exceed the
decay rate of ni across the shrinking barrier. As barrier
shrinkage can only increase the decay rate, a lower bound
will be the time-independent decay rate ni/ni at that in-
stantaneous value of jj,=ji(t). This fixe-p decay rate de-
pends on the initial conditions and will be largest for a
large asymmetry of the initial population in the meta-
stable well. A lower bound, in turn, will therefore be a
( —,', —,

'
) initial distribution of (n&, n2). The necessary con-

dition for hysteresis is therefore

—1
Thys~ &

(1/2, 1/2)n1
(1/2, 1/2) (3.6)

where the superscript refers to the initial conditions.

where A( ym )=0 has been used. This is a condition that
the hysteresis state should have the same simple
(potential-minimum) description as a true steady state. If
the drive is varied too fast and the inequality is violated,
the fluctuation states away from the minimum will be ex-
plol ed.

The other bracket of the hysteresis window says that
the drive is varied faster than the net depletion time of the
population in the metastable well. We generalize this
bound' to cover experimental situations where the wells
are almost of equal depth.

A probability distribution may evolve either due to
jumps to the more stable well, for fixed p (decay), or due
to parametric time variation p(t) of the initial distribution
(hysteresis). In a one-variable situation, with a plot of
P(x;p;t) (x being the vertical axis, ji, the horizontal axis,
and P out of the paper) this corresponds to a probability
current flowing either vertically (decay) or horizontally
(hysteresis).

Consider a sweep along branch 1 from p=p, 2 at t =0
to p=p, i at t =(p, i

—p,,2)/p, . The fraction of the popu-
lation in well 1 is

n (pi)= f P(x;Lu(t), t) (3.4)
well 1

with the probability density normalized over all space
(well 1 and well 2).

At t =0, p=p, 2, the distribution is sharply peaked
about x "'(p,2), the branch 1 most probable value, just at
the edge of the bistable region. If hysteresis occurs, this
distribution is swept along at a rate T~~„given by
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For fixed p, , i.e., time-independent decay rates, the ki-
netic equations are

1 1
PS 1+ Pl2, Pl1+Pl2 = 1

Tp4 Tpt
(3.7)

where Tz, (Tz, ) are the first-passage times for 1 to 2 (2 to
1); Tz, T~——(x '",p) [Tz, Tz——(x ~',p)]. From (3.7)

(1/2, 1/21(t)n1
—1 —1 —1

pt Tpl Tpt —(T +T )&Pt JP&

rp , '+T-;, ' 2(T;, '+T;, ') (3.8)

The initial decay rate is defined by the initial (i~O) rela-
tive change in the well 1 population,

(1/2 1/2) / (1/2 1/2) T 1
1 T 1

Pl 1 /n1 p) + pt

From (3.5), (3.6), and (3.9) we get the inequality

ae(x"' )
I p I &[Tq '(x'",p) —Tp '(x' ',p)]

t}p

(3.9)

(3.10)

for hysteresis along branch 1. Similar considerations ap-

ply along branch 2, and the window is not, in general,
symmetrical. The jump occurs when the FPT drops to-
wards zero, and the inequality (3.8) is violated. For p
close to limit of metastability, return jumps are unlikely,

Tp, ~& Tp, and the previous' bound is recovered.
Equations (3.10) and (3.3) constitute a generalization of

the hysteresis window idea to n dimensions, with x-
dependent, nondiagonal diffusion terms. For the potential
conditions' holding, @ is given by (2.3), otherwise it must
itself be calculated by an e expansion, and the FPT also
evaluated. '

For a S-shaped hysteresis curve, T, ' —
I p —p, i, z I

'/

and Tz —
I p —p, 1,2 I

' near the limits of metastabili-

ty. At p pM, T&,
' —Tz, —

I p —pM I
in general. Thus

IV. THE T%'O-MODE RING LASER
AND THE PREFERRED FRAME

The two-mode ring laser' is a useful system for appli-
cation of the ideas of Secs. II and III. The model is
theoretically simple, leading to tractable equations. On
the other hand, the intrinsic time scales (-msec) are such
that first-passage-time scales and statistics are experimen-
tally measurable.

The ring laser has two possible modes of excitation
representing traveling waves in opposite directions. The
coherent photon amplitudes are

i8) 2 '~1,2Ei 2 =Pi ze ' =QI1 28

with the Langevin equations (all times dimensionless)

Ei,z (ai, z I +1,2 I

'—0 I &z. i I
'}El,2+f1,z(t) .

(4.1}

(4.2)

Here ai, az are the pump parameters for each mode, g is
the mode coupling parameter, g&1 for inhomogeneous
broadening, and the random forces are (f (t)f j(0))
=25 J5(t) representing a constant diagonal diffusion ma-

trix, scaled to be unity.
It is convenient to define

if the bounds are plotted vertically, and p, horizontally, the
hysteresis window is the shaded area in Fig. 2. For a
given sweep rate, suppose an average over many cycles is
made of the points pzi, pzz on branches 1,2, where the
jumps actually take place. Then a horizontal bar of width

Ipqi —pzz I
(extent of hysteresis) at a height p, (sweep

rate), will fall inside the hysteresis window.
Notice that from Fig. 2, the adiabatic following condi-

tion has to be violated if we want to approach p, i, z very
closely. The approach to the "spinodal line, " defined by
the locus of points [x "'(p, 1 ),p, 1] thus cannot be
described in terms of states close to x (p) alone. Fluc-
tuations become important. Of course, in practice the sto-
chastic switching region near the spinodal line may be
narrow, so mean-field spinodal exponent behavior could
still be seen.

RATES
1a =——,(a 1+az), Aa =—a 1

—az .

Clearly, with real and imaginary parts defined as

E1 =X1+EX2 ~ E2 =—X3+EX4 ~

(4.3}

(4.4)

+ca

this is a four-dimensional problem.
The stationary solution of the Fokker-Planck equation

is Po(x) =e ' *' where the potential depends only on the
intensities:

1 1 1 2 1 2' 1

U(I1~I2) 2 alI1 2 a2I2+ 4 I1+ 4 I2+ 2 P1I2

(4.5)

For f & 1, this has, as steady states, two minima

FIG. 2. Hysteresis window bounds (shaded area) on the
sweep rate p and hysteresis width IpJ~ —pq2I for jumps be-

tween branches. Heavy dashed line is the decay bound or no-

jump condition. Solid line is the relaxation bound or small-

fluctuation condition.

I '"=(a, ,O)=(a + —,
' ha, O),

I ' '=(O, az)=(O, a ——,ba),

and a saddle point

(4.6a}
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disappears at p, ~ (p, 2). The slope of the stable branch at
p, ~ is not infinite; this has consequences.

In terms of the drive parameter (4.8) the barrier for
jumping out of the well at I ~ is

I2
~U—=« I, )—«I ~')= ~a'p. (1+p/p, )' (4 9)

ka2 —a i

g —1 g —1
r

—ha1 1

2 Q
—Aa

g —1' /+1 g —1
(4.6b)

thus exhibiting bistability, provided the drive parameter

p—=ha/2a

is between two limits

(4.7)

I)-
FIG. 3. Two intensities I~,I2 of the two-mode laser, showing

minima, saddle points, boundary BQ, and preferred axes.

—1/2— 1/2a1 2
=6' Q1 2, Tp =E' Tp

(4.10)

with g unchanged. In terms of the new variables the bar-
rier height is unity. Explicitly, from (4.9)

e '= —,'a p, (l+p/p, ) =(a/a) (4.11)

Similar results hold for jumping out of the well at I~'.
we now drop overbars on I1 2, a1 2, and Tz, reintroducing
them in (5.12) below.

The potential, when seen from a frame centered at the
saddle point

and vanishes, as expected, at p=p, 1. This corresponds to
the ridge of Fig. 3 (dashed line), containing the saddle

point I„rolling down to annihilate the minimum at I (1)

The two-mode laser problem is considered elsewhere' '
in units where the diffusion constant is unity. We scale in
the barrier height b, U, as in (2.6). However, it is con-
venient to further scale the variables x and pump parame-
ters a1,a 2 to absorb the 4 U factor so that
g(x, a) =A (x,a)/b, U =A (x,a), where the overbar denotes
scaled variables. One then has, with (4.2),

(b, U) '=e, Ii g=e ' Ii 2,

(pc2 pc) &p&(pc&= pc) ~

p, —= (g—I)/(/+1) .
(4.8)

I1,2 =I.1,F2+I 1,2

has no linear terms:

(4.12)

The steady states (4.6) are shown as points on an I~ vs I2
plot in Fig. 3, while the hysteresis curve as seen in terms
of the well I& is plotted in Fig. 4. The two branches are
I, =a (1+.p) (branch 1) and I& ——0 (branch 2) while the in-
tervening barrier is given by I, ~

——a(l —p/p, )/(/+1).
The choice of labels p, ~,2 in (4.8) is such that well 1 (2)

2 2

U(I(, q)= —— 1 — + ,'Il+ ,'I2+ 2—gItI—z.+1 pc

(4.13)

Diagonalizing the 2)&2 matrix, the preferred axis vari-
ables are p, z;

Ir ——g Agjaj, a) ——p, a2 ——z
j=1,2

(4.14a)

with A corresponding to a rotation of the original matrix
by 45' plus a reflection of the z axis to point inwards:

r

(4.14b)

This is an explicit illustration of (2.16) and

a/( St+1 )

UgSVASLE
1 Q PU(p, z) = —— 1—
2 /+I p,

+ —,
' (g'+ 1)(p' —p,z'),

(4.15)

8r)=-Hc +c~ =&c

FIG. 4. Hysteresis curve projected on I& axis for two-mode
laser showing limits of metastability p, &,,z

——Tp, = T( g—1)/(g+ 1) where well 1,2 disappears.

clearly displaying the saddle-point structure around I„
i.e., around (p,z) =(0,0), with z along the line of steepest
descent. (As I&,I2 are restricted to be positive, and the tri-
angles defined by ~z

~ &p,
~ p (

intersect the axes,
there are no convergence difficulties in normalization fac-
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tors. ) Because of the simplicity of the model, this form is
exact, and not an expansion as would occur in the general
case. But the special property that U is quartic in r],r2
needs a special analysis later.

As shown in Fig. 3, the natural boundary BQ for defin-
ing escape from well 1 is along the ridge z =0 containing
the saddle point, with, say, a far-off circular section clos-
ing the area. Thus BQ is particularly simple, and in terms
of (2.23) is defined by y'=z'=0 (cf. Fig. 1).

V. THE FIRST-PASSAGE TIME
FOR THE TWO-MODE LASER

1 B B B B B=2, 2
——2 +4I)

r~ Br~ BI] Br~ BI] BI&

we have the equation

(5.4)

L T~(x)= g 4@I; 2+ 4e 4I;— T~{I )

where the last term is dropped as the potential (4.5) over
which the passage occurs, and hence the passage time, are
both independent of 8(,82. In terms of intensities

The FPT equation is

B BLtT~= g e-
2

—A;(x)
()X( ()X(

where x = (xi,x2,x3,x4) as defined in (4.4) and

()U( I )

BX(

In polar coordinates

B B B 1 B 1 B

Bx] Bx2 Br) r} Br] r$ Be)

(5.1)

(5.2)

(5.3)

(5.5)

The n =4 problem with an I-independent diffusion
term becomes an n =2 problem with a diffusion term'

D,z(I )=4';5,z dependent on I. Physically this can be
understood: As all angles are equally allowed, the phase
space for diffusion for a given ri is increased by a factor
of -n.ri. Singh and Mandel' have substituted D;1( I)
into a one-dimensional formula to estimate Tz. Here we
can use the general n-variable ideas of Secs. II and III to
evaluate T~.

In the preferred frame, from (4.14) and (5.5),

r

L T~ = e — +2~2p + T~+e +4~2z4a a' a' B Trp

(3p2 ()z2 BpBz

+[4v 2m —2ap —haz —v 2(/+1)p +W2(g —1)z ]- +
Bp

Aa— p+2p, az —2v 2pz
Pc

(5 6)

and using (2.8)

L, tu'"(p z) =0
as in (2.17) with d,j and g; now known explicitly.

Scaling in e'~, as in (2.20), and with e~O, i.e., a ~ ao along lines 6 & a2/a i

g2 g2 2 y2u(P) (0)
u'"(p', ') —~ —, , ——,

' (/+ 1)(p'+p ') &, + —,
'

(g—1)
Bp'

(5.7)

I B~(0)z'+ ",p' — ",-=O.
p Bz

(5.8)

&6 ', where 6=—(1—2)M, )/(1+2)M, ),

Comparing with (2.21)
2

d,j(0)= g A;kAJk4I, k
k=1

(5.9a)

with A given by (4.14), I, being the saddle point of (4.6b),
and

b',"=——,'(g+1), b',"= ((g—1)(p, /p, 2),

b, ll
2 (g+ 1))M ~

b2ll T(g 1)
(5.9b)

Notice that because the potential is quadratic in intensi-
ty variables (quartic in amplitudes) the drift term in (5.5)
contains phase-space factors of intensity and is not just a
vector (gradient) in intensity variables. Therefore cross
terms do appear and the argument below (2.21) for the p
independence of [Bu (p,z)/()z]z p cannot be taken over as
it stands. However, the same result can be obtained, by
similar arguments, directly.

I

Note that (5.8) is invariant under the following general-
ized parity transformations:

u' '(p', z',p) =fp(p', z')+pf i (p', z')+ (5.10)

Setting p=O in (5.8) the zeroth-order solution fp is
found to be independent of p':

—1/2

dz~e —(i/4)(g —1)z 2
(5.1 1)

9
fp{z')=

{i)p', z'~ —p', —z', )((, fixed;
(ii) p, z' —+ —)((,, —z', p' fixed;
(iii) p', )((,~—p', —p, , z' fixed.

Thus the solution u' )(p',z', )M ) can be chosen to be even or
odd under (i), (ii), and (iii). From (4.11), the e«1 limit
corresponds, in terms of the original, unbarred variables to
large a ~~1, i.e., (((, =ha/2a &&1 for fixed ha. Thus a
power-series solution in p is
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2~~~'"
(Ig 1+I,2)I,2(g 1)— (5.12)

where the bars on the scaled variables have been restored.
Going back, through (4.10)

4(g+ i) I, i ~~ e'
( I+Iq2/Is 1) Is2 2 (g —1} I, 1

(5.13)

Here the expression in large parentheses is the Singh-
Mandel one-dimensional estimate' and I, 1, I,2, and hU

This is odd under (i) and (ii), but even under (iii) and

pf 1 (p', z', p) must have the same parity. Trying
fi ——p'hi(z ) the correction term is found to be -pp'z'2
for small z', and does not contribute to the z' derivative of
v' '(p', z') for z'=0, of (2.12). The relevant contribution
(5.11) is just what we would get from solving (5.8) after
suppressing all the p' dependence. From (2.26} the mean
FPT is

are given in (4.6) and (4.9). In terms of p
(1/4)a 2p, (1+p/p, )

T~(oo)= m e
a' p', '(1+p/p, )

(5.14)

Experimentally, '
lnT& has been found to vary linearly

in a for a »1, with the disagreement with -a depen-
dence attributed to backscattering.

The statistics of the FPT have been measured and
found to obey the exponential distribution of (2.31) first
obtained in the n =1 case. From the generalization of
Sec. II, the FPT statistics are independent of dimension,
accounting for this behavior.

It is also of interest to explicitly find the mean FPT
near the limits of metastability p, 1,2. From (4.11) this
corresponds to e»1, a low-barrier, high-noise regime.
Here a2/ai —+(1+2p, )/(1 —2p, ) while ai+a2 ——a is
large and fixed. From (4.6) the small parameter is the
separation between the saddle point and the minimum
~ (1+p/p, ) ~ e '/ . From (5.6),

(/+1)p
V 2am'/2 Bp Bz p, v 2am Ops

r

(/+1) ~ 2a(p —pz) ~2(4+1}(P +Pcz } Bv (/+1) 2a(pz —p)4v2—
4 ~1/2 ~1/2 E' 1/2 ~1/2+ 2~Zpz ev

e Bz

(~+", (s.is)
4am Tz(a~ )

where variables are again implicitly overbarred as in (4.10), and Tz(a)=T&(a~}v(a;e '/2) with v-v(v)(pi)+
'/2v")(a)+. . . Here v vanishes at z=0 and is unity at a = (p,z~)=& 2(p,',p,, ' ). In these overbarred vari-

ables, the minimum is independent of e '/, and the transition is forced by the divergence of the noise. For e '/2 —+0,
v'/+1/a «1 and (g—1)/16«1, the diffusion terms dominate, and v' '—z/z~. Tz(a~) is found from the analog of
(2.12). Restoring overbars, the result is

Tq(a ) =
e +2v 2(P)s„4a

$+1

(5.16)

where the diffusion constant in the denominator is averaged over the boundary. Here, since Ii 2 & 0, p & —p(), and z() & z
with zo ———p()

——2v 2/[(/+1)p, '
] (see Fig. 3). In unscaled variables one has the result

a (1+pip, )'
T~(u ) = (5.17)[I+[(2/ )(/+1)]'

VI. THE HYSTERESIS WINDOW FGR THE TWO-MODE LASER

The relaxation-rate matrix is, from (4.2) and (3.2),

—zai+ IEi I'+ 241E2 I'

2 Ã)E2

—,
' gE)E2

Y~a2+
I
E2

I

'+
z 4 I

Ei
I

' (6.1)

The relaxation matrix around I ~"= (a1,0) is already diagonal, with

[(T ) ]11——2a(l+p), [(T ) ]22
——2a(g —1) 1—

Pe1
(6.2)

The smaller of these enters the inequality of (3.3). The -(1—pip, 1) behavior comes from the linear Ii(p) in Fig. 4.
The first-passage times of (5.14) and (5.16) are for jumps from metastable states to the stable states Tz„ in the notation

of (3.7). Tz, is obtained by p,~—p. Then
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1

Tp $

2 3/2

exp ——„'a2p, 1+ ~
p~ Pc

—(p~ —p)—:K (6.3)

in the high-barrier, low-noise limit valid near p=pM and we have

1 4
I p I I 1+[2(g'+1)/m)'~ /a]

ttp'[1 (p—/p. )']' (6.4)

in the low-barrier, high-noise limit valid near p=p, 1,2. Since

U( I "'(p),p) = —,
' a'(1+p)

RIM

and

(6.5)

=a —1

the hysteresis window estimate for branch 1 is

min 4 a (1+p), 4 tt (g—1) 1—
Pc1

2'/a (1+p), for
I p I

«1,
~ g

I p I
[1+[2((+1)/vr]' /ct] f p

~'p. (1+p) [1—(p/p. )'l'

(6.7)

If this is plotted as in Fig. 2 one would see linear decreases to zero of T, —
I p —p, i, 2 I

and quadratic divergences
—1

~p I p pci cz I

VII. DISCUSSION

The principal features of this investigation are as fol-
lows. (1) The application of the Schuss-Matkowsky
method to situations where the diffusion term is a matrix
dependent on the system variables, (2) statistics of the
first-passage time for a multivariate system (2.30), and (3)
generalization of the hysteresis window [(3.3) and (3.10)]
to many variables. There are also new predictions for the
dynamics of the two-mode ring laser, including (4) new es-
timates [(5.14) and (5.17)] for the first-passage time based
on the full Fokker-Planck equation and (5) the condition
(6.7) for the observation of hysteresis within this model.
Further, (6) the low-barrier, high-noise FPT is estimated.

The experiments done have defined "passage" by the
boundary I1 ——I, 1 parallel to the I2 axis, with I1 )I, 1 as
"on" and I, &I„as "off." From Fig. 3, a more natural
choice is the z =0 line. For ka =0 this means a division
into "state 1"as I1 ~ I2 and "state 2" as I2 &I1.

The results given here could be tested by the following

methods.
(a) A measurement of the passage time Tz as a function

of a and b,tt, showing that Tz vs p =b,tt/2a goes quadrati-
cally to zero at p =+(g—1)/(g+ 1).

(b) Measurement of the relaxation-rate matrix, showing
(T„')2q goes linearly to zero as

I p —p, i I
.

(c) Rapid cycling of b,a and hence p (-100 Hz for the
paraineters of Ref. 3) to trace out the hysteresis window of
Fig. 4.

(d) Recording of average jump points pq i,p Jq to test the
hysteresis window idea, seeing if the range for (well-
defined) hysteresis is largest at some p, where the window
is widest. See if there is an increase in "noisiness" of the
signal as p is increased so that p, 1,2 are approached
closely, violating (3.3).

The two-mode ring laser thus may have both pedagogic
simplicity and experimental significance in understanding
lifetimes and hysteresis. The usefulness and generality of
the Schuss-Matkowsky methods for first-passage times in
multivariate systems is clearly demonstrated in this con-
text.
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