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The quantum theory of the degenerate parametric amplifier is usually treated in the parametric
approximation where the pump field is treated classically. In this paper we present a fully quan-
tized theory of this nonlinear optical device using a path-integral approach. A perturbation series,
the first term of which corresponds to the parametric approximation, is employed to evaluate expli-

citly the coherent-state propagator. The question of the validity of the parametric approximation is
considered and the conditions under which this approximation is justified are elucidated. Finally,
certain correlation functions for the signal-mode operators are calculated that are needed to study
squeezed states. It is shown that the quantum nature of the pump field tends to decrease the
squeezing.

I. INTRODUCTION

The quantum statistical properties of the radiation pro-
duced by a degenerate parametric amplifier have recently
received renewed attention. ' Theoretical predictions in-
dicate that under the proper conditions one should be able
to produce light in both squeezed and antibunched states.
Both types of states are nonclassical in nature. It has also
been shown that squeezed states can be useful in the detec-
tion of very weak signals. A device which can produce
such states is, therefore, of some interest.

The degenerate parametric amplifier is a device which
provides a nonlinear coupling between two modes of the
radiation field. The first, the pump mode, has a frequen-

cy of 2co, while the second, the signal mode, has a fre-

quency co. The quantum theory of this device is usually
treated in the so-called parametric approximation. In this
approximation the pump mode is treated classically, i.e.,
replaced by a c-number, so that a single-mode Hamiltoni-
an is obtained which is quadratic in the field operators.
The problem can then be solved without further approxi-
mation. It should be noted that the parametric approxi-
mation neglects two effects. First, it ignores quantum
fluctuations in the pump mode. Second, by treating the
pump mode as a fixed c-number it also ignores depletion
of this mode.

In this paper we will show that the parametric approxi-
mation can be derived from the first term of a perturba-
tion series for the propagator of this system. Examination
of the next term in the series allows us both to calculate
corrections to the parametric approximation and to set

II. PERTURBATION SERIES FOR PROPAGATOR

The Hamiltonian for a degenerate parametric amplifier
is given by (we use units in which ih'= 1)

H =coata+2cobtb+tc(a b+a b ), (2.1)

where a (a ) and b (b ) are the annihilation (creation)
operators for the signal and pump modes, respectively,
and ~ is a coupling constant which depends upon the
second-order susceptibility tensor of the medium which
mediates the interaction. In the parametric approxima-
tion the pump mode is treated classically so that b is re-
placed by poe

'"' where po is the amplitude of the pump
mode. The resulting Hamiltonian is

H =coa a+tc(p e '"'a +p e '"'a ) (2.2)

The propagator for this Hamiltonian was calculated in
Ref. 8 and is given by (where Po is assumed to be real)

bounds on its region of validity. We then use the lowest-
order correction to the propagator to calculate corrections
to both the intensity and squeezing of the signal mode.
The perturbation series itself is derived from a path-
integral representation for the propagator of this system.
In a previous paper we presented a formalism for applying
path integrals to certain problems in nonlinear optics.
Here we employ that formalism. The path-integral ap-
proach is useful because it allows one to see more clearly
than the canonical approach the connection between the
classical and quantum dynamics of the system.
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whe~e
I
a,p)=

I
a)

I
p), i.e., the tensor product of a

coherent state for the signal mode with amplitude a and a
coherent state for the pump mode with amplitude p. It is
also possible to express this propagator in terms of a path
integral. We have that

K(af, pf, t;a;,p;,0)= f &[a(r!]f &[p(r)]e'

where

(2.6)

Here Uz(tf, t; ) is the time-development transformation
corresponding to H~ and

I
a) is a coherent state with am-

plitude a.
The propagator for the Hamiltonian given by Eq. (2.1)

is given by

K(af,pf, tf,'a;, p;, t;)=(af pf I8 Iaj p()

and the paths a(r) and p(r) are such that a(t)=af,
P(t) =Pf, a(0) =a;, and P(0) =P;.

It is not possible to evaluate the expression appearing in
Eq. (2.6) exactly and we, therefore, resort to a perturbation
expansion. The first term of this expansion gives the
contribution to the propagator corresponding to a classical
description of the pump field; that is, if we retain only
this term and make a further approximation which corre-
sponds to letting the pump mode propagate in time as if
there were no interaction, then we obtain the results given
by the parametric approximation. We can calculate
corrections by calculating the next term in the perturba-
tion series and by refining the freely-propagating-pump-
mode approximation.

Because the Harniltonian given by Eq. (2.1) has only
linear terms in b and b~ appearing in the interaction it is
possible to perform the integration over the paths p(r) by
using the results in Ref. 8 for an arbitrary quadratic Ham-
iltonian. We find that

iS = f dr[ , (a*a —a*a)+—, (p'p p—"p)—

iH(a, a*—;p,p"')], (2.7)

K(af, pf, t;a;,p;, 0)

exp ——,
'

f + i + f;e
a(a,a,p, p")=~ a

I
+2~

I p '+~[(a*)'p+a'p" ]

(2.8) where

iS() +iS jXe (2.9)

t
iSO — drI ,'(a*a a—*a)—iso a— iv[(—pfe ' ')e ' a +p;e '"'(a ) ]J,

0

2 2 —2tco[r2 —r& ) 2iS~ —— tc de — dree [a (w2)a(r~)]
0 - 0

(2.10)

(2.11)

We have split the action into two parts, So containing terms of zeroth and first order in ~, and S~ containing only terms
of second order in a. We assume that the interaction is weak so that S& is small.

We now expand the propagator in Eq. (2.9) in a power series in S~.

K(af, /3f, t;a;,p;, 0)=exp[ ——,'(
I pf I

+
I p; )+pfpe '"'] g, f &[a(w)]e '(iS~)"

0 n!

=K' '(af pf t;a;,p;,0)+K'"(af pf t;a;,p;,0), (2.12)

K' '(af, pf, t;a;,p;, 0)=exp[ ——,(
I pf +

I p; I )+pfp;e ' '] f &[a(r)]e

K'"(af,pf, t;a;,p;, 0)=exp[ ——,(
I pf + I/3;

I
)+pyp;e '"'] f &[a(~)]e '(iS, ) .

(2.13)

(2.14)

Before evaluating K' ' let us note the following. The ex-
ponential factor appearing in both K' ' and K'" has a
magnitude given by

I exl'[ —
2 (

I pf I

'+
I p I

')+pf p e

=[exp( —
I Pf P;e '"'

I
)]',—(2.15)

so that it is peaked about the value pf =e ' 'p;. This
simply corresponds to free propagation of the pump
mode, i.e., if there were no interactions and at t=O the
pump mode were in a coherent state with amplitude P;,
then at time I; it would be in a coherent state with ampli-
tude e '"'P;. If we replace Pf iniSO by e ' 'P; we find
that (again assuming that Po is real)

t
iS()~ f d~I ,'(a'a a—*a) —ice

I
a I—'

—ia.po[(a*) e ' '+a e ' ']I . (2.16)

X6 (af, t;a;,0), (2.17)

This is just the action for the signal mode in the
parametric approximation (corresponding to the Hamil-
tonian Mz). If the path integral appearing in Eq. (2.13) is
a slowly varying function of pf then this replacement is
justified and we can approximate K' ' by

K' '(af, pf, t;a;,p;, 0)

=-exp[ ——,
'

(
I pf I

'+
I p I

')+pf p e"'].



29 PATH-INTEGRAL APPROACH TO THE QUANTUM THEORY OF . . ~ 1277

where Po in the expression for G [Eq. (2.4)] is set equal to
P;. This expression for K' ' will reproduce all of the re-
sults of the parametric approximation. We can calculate
corrections to this approximation by doing two things.
First, we evaluate K"' where we set pf =e '"'p; in the
path integral appearing in Eq. (2.14). Second, we must
calculate corrections to the approximation implied by Eq.
(2.17) for K' '. We will discuss the validity of the approx-
imations we have made in Sec. IV.

Let us now evaluate K' ' and K'" W. e can find K' ' in

K'"(af,pf, t;a, ,p, ,o)

=exP[ —~(IPf I'+ IP I')+PfP e ""']

XG'"(af,pf, t;a, ,p, ,O), (2.18)

where

the same way in which we found G in Ref. 8. We have
that

G' '(af, Pf, t2, a&,P;,t&)=Isech[2+~ia2(t2 ti)—]J' exP[ ——,(oaf i + ia; i )+A2ia;+B2i(af) +C2iafa;],

1/2

(2.19)

K2
AI ————i

2
e 'tanh[2+~|a2(tj tt)], — (2.20a)

and

I.
Bgl = ——iJ

CJI ——e

j/2
Ki —2l @Of ~

e 'tanh[2+a'iv2(tj tt )], —
K2

—l~(t —tI )
sech[2+le|Kg(t tt )], —

(2.20b)

(2.20c)

ICi =Kpt, IC2 = e —2l COf

(2.21)

In the above we assume that tj & tt and we define to =0. We must also specify which branch of the square-root function
is to be chosen. It should be chosen so that Q~&/F2+~&K2=K|.

The evaluation of K'" is complicated and the details of the calculation are given in Appendix A. We will be interest-
ed in the case in which the signal mode is initially in the vacuum state. This means that we will be interested in the
propagator for a; =0. The resulting expression is

K' '(af, pf, t;O,p;, 0)=exp[ —2( ipf i + ip; i )+pfp;e ' ']G '(af, e ' 'p;, t;O, p;, 0)

X[g,(t)(e '"'af)'+g2(t)(e '"'af)'+go(t)], (2.22)

lg4(t)= z
—[(got) sech (got)+2(got)tanh(got)sech (got) —tanh (got) —2tanh (got)sech (got)],4 2 8

2

g2(t) = i 2
—

I
——(got) sech (got)tanh(got)+(got)[ —', sech (got) ——,

'
]——,tanh(got)+2tanh (got) I,4

1
go(t) = —

z
—

I (got) [3sech (got) —I ]+(got)4 tanh(riot) —6 tanh (got) I,
'go2 8

qo ——2&P; .

(2.23a)

(2.23b)

(2.23c)

(2.23d)

It follows from Eq. (2.12) that Eqs. (2.18) and (2.22) give
us an explicit expression for the propagator
K (af pf, t;0,p;,0 ) that contains the quantum corrections
to the parametric approximation. The correlation func-
tions for the field operator can be evaluated from the
propagator. In Sec. III we calculate the correlation func-
tions that are needed to study the intensity and the squeez-
ing of the signal mode.

III. CORRECTIONS TO CORRELATION
FUNCTIONS AND "SQUEEZING"

OF THE SIGNAL MODE

I

to evaluate expectation values of antinormally ordered
products of creation and annihilation operators, For the
case of interest in which the pump mode is initially in the
state

i p;) and the signal mode is initially in the vacuum
states we have

Q(af pf t) iK(af pf t;O, p;, 0)
i

. (3.1)

The two correlation functions which we wish to calculate,
(a (t)a (t) ) and ( [a (t)] ), can therefore be expressed as

(a (t)a(t))= f d af I d pf iK(af pf t;O,p;, 0)
i

The propagator K is closely related to the Q representa-
tion of the radiation field and, hence, can be used directly X oaf i' —1, (3.2)
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([a(t)] )= f d af f d pf ~K(af pf t 0 pipO)

X (tif )' . (3.3)

the correlation functions (at(t)a(t)) and (a (t)) we first
substitute K' ' for K in Eqs. (3.2) and (3.3) and make use
of the freely-propagating-pump approximation to evaluate
the Pf integral. This yields

a&i (cot —n./4)+ H (3.4a)

a a/i (d)t —n./4)+ H
1

2I,
(3.4b)

For initial vacuum state of the pump mode we obtain the
following formulas for the variances of the amplitudes a i

and a2'.

ba, = —,'+ —,
' (at(t)a(t))+ —,'ImI ([a(t)] )e ' 'I,

baz ——
4 + —,

' (a (t)a (t)) ——,Im[([a(t)] )e '"'I .

(3.5a)

(3.5b)

It is clear that we need to evaluate the correlation func-
tions given in Eqs. (3.2) and (3.3) to study the squeezing in
the variables a& and a2.

In order to calculate the lowest-order approximation to

The correlation function (a (t)a (t) ) is just the intensity
of the signal mode and examination of it will allow us to
see how this mode grows with time. Calculation of the
correlation function ([a(t)] ) allows us to examine the
squeezing of the signal mode.

In a squeezed state, the fluctuations in one quadrature
are smaller than the standard quantum limit. The Auc-

tuations are increased in the conjugate one so that the un-

certainty relation is not violated. Squeezing is a genuinely
quantum-mechanical feature of the radiation field. It has
been predicted that a number of nonlinear optical systems
will generate such states. '

We define Hermitian dimensionless amplitudes

(a (t)a(t))= —f d af
~

G' '(af, e '"'P;, t;O, P;,0)
~

1

=sinh (zoot), (3.6)

([a(t)]')=—f d af
~

G' '(af, e ' 'P;, t;0, /3;, 0)
~

uf

= —ie '"'sinh(got)cosh(got) . (3.7)

These are the results which one obtains from the
parametric approximation.

In order to calculate corrections to the above expres-
sions we need (i) to improve the freely-propagating-pump
approximation and (ii) to include the effects of K'". It is

clear how to do the latter as K'" has been calculated in
Sec. II. The idea behind the former is as follows. In mak-

ing the freely-propagating-pump approximation we as-
sumed that G' ' was a constant as a function of Pf in a
neighborhood of Pf ——e '"'P;. We can correct this by
taking into account some of the variation of 6' ' as a
function of Pf in this region. This can be done by ex-

panding in a power series in 5Pf ——/3f —P;e ' '. It turns
out that the convenient quantity to expand is f d af G' '

multiplied by either af or
~
af (where we choose af

if we are evaluating (a ) and
~

a
~

if we are evaluatingf
(a a ) ) because we can do the af integration exactly. We
then expand these quantities up to second order in 5/3f
and then perform the Pf integration. The linear and

quadratic terms in 5/3f give corrections to the freely-

propagating-pump approximation. The details of these
calculations are given in Appendix B. We obtain

2

(a (t)a(t))=sinh (r/ot)+ z I(idiot) [2sinh (got)+I]+r/ot[2sinh(got)cosh(got)] —3sinh (got) —3sinh (ilot)I,
gp

([a(t)] ) = t'e 2™sinh(—idiot)cosh(7/Ot) —ie '"'
z I(7/Ot) [2sinh(got)cosh(i)ot)]+ilot[2sinh (rIot)+2]

90

(3.g)

—3 sinh (allot)cosh(got) —2 sinh(got)cosh(got) I . (3.9)

The fluctuations in the conjugate variables a i(t) and az(t) are obtained on substituting from Eqs. (3.g) and (3.9) in Eqs.
(3.5):

2

nazi = —'e "o + [(got)ze got(e —+ 1)+[3sinh (r/ot)+2]sinh(zoot)e —sinh (r/Ot) I,
27[0

2

haz ——
~ e + z I (rtot) e +got(e + 1)—[3sinh (got)+2]sinh(riot)e —sinh (got) ] .

2Y/0

(3.10)

(3.11)

Equations (3.g), (3.10), and (3.11) give us the lowest-
order quantum corrections to the parametric approxima-
tion for the quantities (a (t)a(t)), b,ai, and b.az. In
Table I, we have calculated Aa

&
as a function of gpt for

different values of P;. It is clear that the quantum fluc-
tuations in the pump mode tend to decrease the squeezing
in the signal mode.

As we will see in Sec. IV our values for ha
&

will be
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TABLE I. Calculated values of ha ~ as a function of rtot for different values of p;.

bai (10")

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

Parametric
approx.

2500.00
1675.80
1123.32
752.986
504.741
338.338
226.795
152.025
101.906
68.309 3
45.789 1

30.693 3
20.5744
13.791 4
9.244 66
6.196 88

P; = 1000

2500.00
1675.80
1123~ 32
752.986
504.741
338.339
226.796
152.026
101.908
68.313 3
45.795 6
30.703 8
20.590 9
13.8170
9.283 90
6.256 65

P;=100

2500.00
1675.80
1123.32
752.991
504.756
338.373
226.865
152.157
102.140
68.7075

P; =10

2500.00
1675.82
1123.49
753.561

good approximations to the actual values as long as got is
of order one or less and exp(2got) «p;. For values of stot
which satisfy these conditions we find that the corrections
to the parametric approximation are of the order of 1%.
If one considers values of rjot beyond the range specified
by these conditions one finds that Aa ~ reaches a minimum
and then starts increasing. This type of behavior is not
unexpected because as the pump becomes depleted and
loses its coherent-state character its phase becomes less
well defined. This results in a decrease in the squeezing of
the signal mode. An analysis with a classical pump with
phase noise shows this explicitly. For the case of a
quantum-mechanical pump mode our results provide, at
best, an indication of this type of behavior as we are ex-
trapolating our results beyond their range of validity.
Finally, we note that the minimum uncertainty relation
Aa&ha2 ——

4 which holds for the signal mode in the
parametric approximation is now no longer satisfied. The
quantization of the pump mode removes the rninimurn
uncertainty characteristic of the signal mode.

IV. DISCUSSION OF APPROXIMATIONS

what conditions E'~ ' can be used to give an accurate
evaluation of correlation functions.

An examination of the expressions we have obtained for
E' ' and K"' shows that they cannot be valid for all
values of p; and pf. Both of these variables occur in the
arguments of the functions sech and tanh. Both of these
functions have singularities on the imaginary axis so that
for certain values of P; and Pf, IC' ' and E'" have essen-
tial singularities. This implies that for these values the
perturbation expansion given in Eq. (2.12) does not make
sense. There is, however, a more stringent requirement on
p; and pf.. The integrals which must be performed to
compute the terms of the series, e.g., those in Eq. (A4),
must converge. This restricts the range of values which p;
and Pf can assume.

In the determination of these restrictions we will work
with the variables a~ and az [see Eq. (2.21)] rather than
with p; and pf directly. Let us assume that Ir& is real and
positive. We then find a range of values of az for which
the above-mentioned integrals converge. In Appendix C
we show that the following region satisfies this require-
ment. Let xz ——

~
trz

~

e' and define o(8) as

In this section we would like to consider a number of
the approximations whick were made in Secs. II and III.
First we will examine some limitations on the validity of
the perturbation expansion itself. We will then consider
the conditions under which the approximation implied by
Eq. (2.17) is reasonable. Finally, we will examine under

I

cosh[n/2s(8) ]—1

cosh[+/2s(8)]+ 1

where s (8)= tan(8/2) We defi.ne the region R as

(4.1)

R = [~z
~

—8~,„&8&8~,„and —,
' Io(8)—2 —[o (8)—4]' j &

~

I~z/~& —1& —,
' [o(8)—2+[o (8)—4]' j j (4.2)

and picture it in Fig. 1. The angle (9 „is the angle for
which o(8,„)=2, i.e., the angle for which the inequality
in Eq. (4.2) gives 0 &

~
(az/i~&)

~

—1 & 0. We find from Eq.
(4.1) that 8,„=0.46m. If xz&R then the necessary in-
tegrals will converge. Unless this is true our perturbation

I

series will not be justified.
The next thing which we would like to consider is the

freely-propagating-pump approximation. We noted before
that Eq. (2.17) would be a good approximation for K' ', at
least in the region of interest where the Gaussian factor is
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and note that the exponential factor in Eq. (2.17) starts to
drop off rapidly for 5P&-1. Examining G' ' now, we see
that if 5p/-I then the deviations in tanh(2+IciK2t) and
sech(2+@.&v2t) will be small if at « 1, and the deviation in
QKi/K2 and Qa2/xi is of order

I 5P//P; I
and so will be

small if
I p; I

))1. These factors are, however, multiplied
by (at ) and a;. Therefore, G' will be a slowly varying
function of PI if

(4.4a)

(4.4b)

I a/ I
at « 1, (4.4c)

(4.4d)

FIG. 1. Region R in complex ~2 plane.

5' =PI —e '"'P; (4.3)

not small, if G' ' is a slowly varying function of pI. We
now want to determine when this is the case. Let us first
define

We now want to discuss the calculation of correlation
functions. Let us again assume that p; is real and take it
to be fixed. We define the function f(a/, p/, t;a;,p;) by

K"'(aI,P/, t;a, ,P, ,O)

=K' '(a/, p/, t;a;,p;,0)f(af pf t;a;,p;) . (4.5)

The region S(t) in which we would expect the approxi-
mate propagator E' ' to be close to the actual propagator
E is just

S(t)=(((a;,a/, p&) I p/E& and
I f(af pf t a' p )

I
«lj (4.6)

i.e., a point (a;,aI,pI) is in S(t) if p/ is in R and a;, aI, and pI are such that
I f I

is small. If a point (a;,a&,p/) is
in S(t) we are justified in neglecting K"' in comparison to K' ' but for the parametric approximation to hold we need
also that the freely-propagating-pump approximation be valid. That is, we require that conditions (4.4) be satisfied.
Therefore, we are interested in a region S'(t) where

S'(t)= [(a;,aI,pI) I (a;,a/, pI)ES(t) and Eqs. (4.4) are satisfied[ . (4.7)

When calculating the correlation functions for the sig-
nal mode one encounters an expression of the form

f d aI f d a; f d pIP(a;) IK(af pf t a ,p, ,O)I'
I

obeys the identity

1=
& f d a/f d p/f d ai IK(a/, p/, t;a;,p;,0)I'

where the initial state of the system is given by

p= f d a;P(a;) Ia;,P;)(a;,P; I

XP(a;) . (4.10)

If we assume that P (a; ) is positive semidefinite (or the
limit of positive semidefinite functions) then the quantity

(49) p(t)= f f f d a/d p/d a
I
K(a&,p/ t a p 0)

I

S'(t)

and P(a;) is the P representation for the signal mode at
t=O. If the "function" P(a;) IK I

is small outside of
S'(t) and falls off rapidly enough then we can accurately

approximate Eq. (4.8) by confining the integration to S'(t)
and replacing X by the expression on the right-hand side
of Eq. (2.17), at least for sufficiently small values of n~

and ml. where j=1,2. This replacement of K by the ap-
proximate expression given in Eq. (2.17) is nothing but the
parametric approximation. We need to find, then, some
sort of measure of the extent to which P(a;)

I
K

I
is con-

centrated in S'(t) and some information on the falloff
properties of IK I

Let us now consider a measure of the extent to which
P(a;)

I
K

I
is concentrated on S'(t). The propagator K

XP(a;) (4.11)

X IK' '(a/, pI, t;a;,p;,0)
I

P(a;) .

(4.12)

will provide a good indication of the extent to which the
region in which P(a;)

I
K

I
is concentrated is contained

in S'(t) If p(t) is clos.e to 1 then P(a; )
I
K

I
can be con-

sidered to be well concentrated in S'(t)
It is possible to simplify the expression appearing on the

right-hand side of Eq. (4.11). First, because of the defini-
tion of S'(t) we have that

p(t)= ', f f f d'a/d'p/d'a,
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We can go still further because the conditions for the
freely-propagating-pump approximation hold. We can
perform the pf integration with the result that

p(t)= —f f d afd a;
~

M(t)

where

(t) [(af a~ )I '(a' af e ""'p )&S'(t)

X G"'(af, e ""—'p;, t;a;,p;,0)
~

'P(a;),
(4.13)

If 1 p(t) —« 1, then it is possible to simplify the expres-
sion (4.8). We have that

f d'af f d'a, f d'pfp(a, ) ~K(af, pf, t;a, ,p, , O) ~'(af)"'af'(a*;) 'a; '

f f f d afd a;d pfp(a;) ~K' '(af, pf, t;a;,p;, 0)
~

(af) 'af'(a*;) 'a; '
S'(t)

(4.15)

=, f f d afd a;P(a;) G~ )(af, e ' 'P;;a;,P;,0) (af) 'af'(a*;) 'a;'. (4.14)
M(t)

Because p(t) is close to 1 we have that P(a;) G' '(af, e ' 'p;, t;a;,p;, 0)
~

is concentrated in M(t) and is, therefore,
small outside this region. If it also falls off rapidly enough outside of M(t) then we can extend the a; and af integra-
tions over the entire complex plane without much error. Our final approximation to expression (4.8) is then

2 f d af f d aiP(ai)
l

G' '(af e '"'p) t' ai pi 0)
l

(af)"'af'(a*;) 'a; ' .

If one substitutes expression (4.15) in the calculation of
correlation functions one will obtain the results given by
the parametric approximation. This is because
G' '(af, e '"'p;, t;a;,p;,0) is just the propagator for the
Hamiltonian given in Eq. (2.2).

In the preceding discussion we had to assume that
P(a;)

~

K
~

fell off rapidly outside of S'(t) in order for
the parametric approximation to be valid. Proving this is
difficult, but it is possible to provide some much weaker
results which at least give some idea of the behavior of
P(a;)

~
K

~

. For simplicity let us consider the case
P(a;) =5 (a;). We are then interested in the properties of
K (af,pf, t;0,p;, 0 ). One can then show that for any in-

teger n &1 there exist constants c„(p;) and d„(p;) such
that

c„(p;)
~K(af pf t Op 0)~& (4.16a)

d„(P;)
~
K(af pf t 0 p' 0)

~

& (4.16b)

so that
I
KIfalls off faster than'any power o

~
af

~

. This is demonstrated in Appendix D. Because

K(af pf t;O, p;, 0)
~

& 1 (4.17)

inequalities (4.16) only really start providing useful infor-
mation when

~
af

~

and
~ pf ~

are sufficiently large to
make the right-hand sides less than 1. In general this will

happen when af and pf are far outside of S'(t). There-
fore, while inequalities (4.16) do tell us that

~

K
~

falls off
rapidly they do not really provide us with as much infor-
mation as we would like. Therefore, the assumption that
if P(a;)

~

K
~

is well concentrated in S'(t) [)M(t) close to
1], then the contribution to the integral in expression (4.8)
from outside S'(t) is small, must remain an assumption.
The behavior of ~K

~

indicated by inequality (4.16) indi-
cates, however, that it is a plausible one.

Finally, let us give some general conditions under which

We now use these results in Eq. (4.13) to obtain

i2(t)- f d af ~

G'0—'(af, e ""'p;,t;O,p;, 0)
~

I
7T

(4.20)

af I

and we have assumed that xt « 1 and 1/
~
p;

~

&& 1.
It is possible to derive a more convenient condition than

Eq. (4.20) if we note that

~

G(0)( 2icotp t. p 0)
~

2—
=exp[ —

~
xf +yf tanh(got) —x;sech(got)

~

~ yf sech(Y)ot) +xi tailh(7iot) y~ ~ ] (4.21)

where a;=x;+iy; and af ——e ' '(xf+iyf). From this
expression we see that

~

Gio)
~

is peaked at

' '[a;cosh(got) —ia,*sinh(iiot)] (4.22)

and that this peak has a width given roughly by cosh(7iot).
If e; =0 this peak will lie within the disc-shaped region in
the af plane given by

p(t) is close to 1. We will consider the case p; real and
positive and the signal mode initially in the vacuum state,
i.e., P (a; ) =5' '(a; ). An examination of the expression
for f(af, pf, t;O, p; ) for the case a2&R (see Appendix E)
shows that

~
f(af pf t;O, p;)

~

&&1 if

1/p; «1,
i af i

'/p; «1, (4.18)
««1 («/p)lafl'«1.

These conditions determine S(t) If w.e now impose the
requirement that Eqs. (4.4) must also be satisfied we find
that a point (a;,af, pf ) is m S'(t) if pf HR, 1/

~
p;

~
&& 1,

and

(4.19)
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2qpt 2gpt
e ' « IP I, e '~t&&1. (4.24)

Let us summarize our conclusions. In order for the
parametric approximation to give accurate values for
correlation functions it must be the case that p(t) be close
to one. In the case in which the signal mode is initially in
the vacuum state this condition will be satisfied if

af I I af I
&cosh(r10t) e

If DC:L then p(t) will be approximately 1. This will be
the case when

the effect of the quantum fluctuations of the pump mode
on the squeezing of the signal mode and showed that these
fluctuations not only reduce the squeezing but also that
the minimum uncertainty relation does not hold. Finally
we examined the conditions under which the parametric
approximation will be valid.
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I/I P; I
«1,

Kt ++1
4p; vt

etc ' ~& 1,
4p; Nt

e ' «P;.

(4.25a)

(4.25b)

(4.25c)

(4.25d)

APPENDIX A

In order to calculate E''" we must first evaluate the
path integral appearing in Eq. (2.14):

A '7 e ES]

There is a certain amount of redundancy in these condi-
tions. For example, if Eqs. (4.25a) and (4.25d) are satis-
fied then Eq. (4.25b) follows as a consequence. We also
note that if Eqs. (4.25a) and (4.25d) are satisfied and the
condition that ~tI3; be of order one or less is also satisfied
then Eqs. (4.25b) and (4.25c) follow as consequences. This
is in contrast to ordinary perturbation theory which is
valid only for times such that atI3; «1 so that the
parametric approximation represents a definite improve-
ment over the perturbative result.

V. CONCLUDING REMARKS

We have presented a fully quantum-mechanical theory
of the degenerate parametric amplifier using a path-
integral representation of the coherent-state propagator.
We have developed a perturbation series for this propaga-
tor, the first term of which, under certain conditions, cor-
responds to the parametric approximation. We studied

f2= —~' f dt, f dt, e
""'" "'S(t„t2),

=—f d a'G' '(af, pf, t2, a', p;, t'')

Xf(a')G' '(a', pf, t';a;, p;, t, ), (A3)

where 6' ' is the propagator corresponding to Sp and is
given by Eq. (2.19). Application of this rule twice gives us
that

+(ti t2) —f ~[a(r)]e [a (t2)a(tl )]

The path integral in the above equation can be evaluated
by making use of the following rule: If t2~t') tl and
f(a(t')) is a function of the path a(r) at the time t', then

0,' 7. 8 CX

I

+(ti, t2)= d al f d Q2G (af Pf t ia2iPi~t2)G (Q2,pf, t2, al, P;, tl )G'(ixl Pf stliai Pi )( 2) 1

It should be noted, though we have not explicitly indicated it, that I' (tl, t2) depends upon af, pf, a;, p;, and t as well as
on tl and t2. Evaluation of the integrals in Eq. (A4) is lengthy but straightforward. Upon performing them we find that

F(t, , t, ) =G'"(af,pf, t.,a;,13;,0)
'2

X '
2 2 (2~10~21 ) (+30 +32)(af ) +4C30 32afai +4~32(~30 ~20)ai1 2 1 2 2

DiD2 &2O

+ 1~32 (+30 +32)(af ) + C30 32afai + ~32(~30 ~20)ai + 1~32
&2O

4+ 2 +10 2 iO( aC32 f+a~ 2C32 iO)a
DiD2

r

X (830—832)(af) +4C30 32afai +4+32(+30—+20)a'+6+32
1 2

&2P

+ ——
2 CiPag+

Di Di

(+30 +32)(af ) + C30 32afa'+ ~32(~30 ~20)a'+~321 2 2

&2P
(A5)
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where

1 —4~2'&~o

D2 ——1 —4332820, (A7)

and t3 ——t and to ——O. We will be interested in the case in which the signal mode is initially in the vacuum state.
This means that we need only consider the propagator of the system when a; =0 which results in a considerable simplifi-
cation of Eq. (A5). We also note that the same exponential factor which appears in K' ', i.e.,
exp[ ——,

'
(

I pf I
+

I p; I )+pfp;e '"'], also appears in K'". Therefore, we can approximate K'" by

K (af pf, t;a;,p;, 0)= —a'exp[ ——,
'

(
I pf I

'+
I p; I

') +pf p e ""']

X f dtz f dtie F(ti, tz)
I ~

(A8)

where we have assumed that F(ti, tz ) is a slowly varying function of pf. If we now calculate F(ti, tz) under these two
restrictions, i.e., a; =0 and pf =e '"'p;, we find that

F(ti, tz) =6' '(af, e '"'P;, t;O, P;,0)e

X( —sech (rtpt)cosh (zlptz)sinh (z)pt, )(e '"'af)

+i sech (rtpt)cosh(z)ptz)sinh(zlpti )

X t6sech(zlpt)sinh(z)pti)sinh[zlp(t —tz)] —cosh[gp(tz ti)]I(e —'"'af)

+sech(gpt)sinh(zlpt i )sinh[zlp(t —tz ) ] I 3 sech(zlpt) + sinh(z)pt i )sinh[z)p(t —tz )]—cosh[7)p(tz —t i )] I ),
(A9)

where rip ——2aP; (again P; is assumed real). Before proceeding we note the identities

D, =sech[zip(tz —t, )]cosh(z)ptz)sech(z)pt, ),
Dz ——sech[rip(t tz )]cosh(rtpt)s—ech(rtptz)

(A10a)

(A lob)

which were of use in deriving Eq. (A9) from Eq. (A5).
In order to complete our calculation of K'" we must perform the time integrations appearing in Eq. (A8). On doing

so we obtain Eqs. (2.22) and (2.23) of the text.

APPENMX 8

We first consider the improvement of the freely-propagating-pump approximation. The contribution of K' ' to
(at(t)a(t)) is

, f d'pf f d'afexp( —
I pf —e ""'p I')

I

6"'(af pf t*o p o) I'Iaf I' —1.1

We evaluate the af integral first; this can be done exactly. We then expand the result in terms 5pf ——pf —e '"'p;, i.e.,

—f d'af
I
G'"(af pf t 0 p o)

I
'I af I

'=ci"+c'i"5pf+c', ""5pf+c',"5pf+cz
I 5pf I

'+ci""(5pf)' (B2)

where c J' is a function of p; and t. We recall that if inequalities (4.4) are satisfied, then
I

O' '
I

is a slowly varying func-
tion of p;. Therefore, we expect c'i" and cI z to be small if these inequalities are satisfied. We can now evaluate the in-
tegral. The terms linear in 5pf give no contribution, and the terms proportional to ci ' integrate to zero as well. The c'i '

term is just given by Eq. (3.6) while the term proportional to cz ' represents a correction to this. It is this term which is
the lowest-order correction to the freely-propagating-pump approximation. We find that

—I&& I

2—f d pfcz '(p;, t)e f
I 5pf I

=—
z [(gpt) [—,

' sinh (zIpt)+ —, ]—(zlpt)[6sinh (zIpt)cosh(rtpt)+3 cosh(zIpt)sinh(zlpt)]
7T' 90

+ —", sinh (gpt)+ —", sinh (rtpt)+ —,
' sinh (rtpt)] . (B3)

In the case of ( [a (t)] ) the calculation is carried out in the same way. Now one has

f d af I
6 (af pf, t;O,p;, 0)

I af =Bi ' +d i"5pf +1i" 5pf +di '(5pf ) +dz '
I 5pf I

+dI '"(5' )' (B4)
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Upon performing the pf integration we find that only the terms proportional to dp' and dz ' contribute. The dp' term
yields the result in Eq. (3.7) while the d z

' term yields

f d /3fdz '(/3;, t)e f 5pf
~

—2l C)fie— '"'
z I (riot) [—,

'
sinh (z)ot)tanh(z)ot)+ —', tanh(got)]

90

—got[6smh (got)+4sinh (got)+ z sinh (got)tanh (got)+ —', tanh (got)]

+ [ '~' sinh (z)ot)+ —", sinh (got)+ 3 sinh (got)]tanh(got) I . (BS)

We now want to briefly discuss some of the assumptions underlying this approximation. We are assuming that
inequalities (4.24) are satisfied so that the range of integration in Eq. (4.6) should be restricted to 5 (t). Now, because
these inequalities are satisfied the freely-propagating-pump approximation is valid so that only the integration region in
which

~
5pf

~

—1 and af HI. is important. If inequalities (4.24) are satisfied, then for
~
5/3f

~

—1,
~

G' '
~ ~

af
~

de-
creases rapidly outside of I. and its integral over the entire complex plane converges. Therefore, we can, with little error,
extend the af integration to the entire complex plane. We expand the resulting expression about 5/3f ——0 in order to take
into account the variation of J d af

~

G' '
~

af with 5' in the neighborhood
~
5pf

~

—1. This expansion, when

multiplied by exp( —
~ 5pf ), decreases rapidly away from the region in which

j 5pf ~

—1. We can, therefore, again ex-
tend the integration to the entire complex plane. The results of this procedure are exhibited in the preceding paragraph.

Next we consider the effects of K'" on (a t(t)a (t) ) and ( [a (t)] ). This is done by evaluating the following integrals:

l(a (t)a(t)& I~~~I= z
d'~f f d /3fK (Qf /3f t 0 J9; 0)[K (cxf /3f t 0, /3' 0)] ~Qf

~

+c~ C.

txf 6 a~, e ' ';,t;0, ,0 g4 t e ' 'a~ +g2 t e ' 'cx~ +go t af +c.c.

([a(t)] )
~

~&~
—— j d af I d p~K~ '(af, pf, t;O, p;,0)[K'"(af /3f t; 0/;3, )0]*a f+c.c.

d a~ 6' ' aI, e ' ';, t 0, ;,0 g4 t e ' 'o;y +gz t e ' 'ny +go t af+c.c. (87)

In writing Eqs. (86) and (87), we have substituted for K' ' and K'" from Eqs. (2.18) and (2.22), respectively. Further-
more we have made the substitution pf ——exp( 2icot)/3; in—the integrands following our earlier discussion. The integrals
in Eqs. (86) and (87) are rather lengthy but straightforward. On carrying them out, we obtain

(a (t)a (t)) zI&~
——

z I(r/ot) [——,
' cosh (r/ot)]+z)ot[5 sinh(got)cosh(got)+6sinh (r/ot)cosh(z)ot)]

lo

——", sinh (got) ——", sinh (z)ot) ——,sinh (got)),

2

([a(t)] )
~

~&~
—— ie '"'

z
—I(z)ot) [2sinh(got)cosh(got) ——', sinh (got)tanh(got) ——', tanh(got)]

IO

+ r/ot[6 sinh (r/ot) +6 sinh (got) + —,
' sinh (got)tanh (z/ot)+ —,

' tanh (got)+2]

—[—'„' sinh (7/ot)+ —'„' sinh (got)+8 sinh (got)+2]tanh(got) I . (89)

We now add the contributions to (at(t)a(t)) and ([a(t)] ) due to the freely-propagating-pump approximation,

and the corrections to it (Eqs. (3.6), (82), (83), and (88) for (at(t)a(t)) and Eqs. (3.7), (84), (85), and (89) for

([a (t)] ) ). We then obtain Eqs. (3.8) and (3.9) of the text.
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APPENDIX C

In this appendix we would hke to examine the conver-
gence of the integrals which occur in the perturbation
series, i e ., .integrals of the type which occur in Eq. (A4).
All of these integrals are of the form

Ip f d——xz f dyzexP[azxz+bzy z+a 1xz+biyz2 2

%'e have that
1/2

cosh( 2x )—cos( 2y )
tanhz

cosh(2x) +cos(2y)
(C9)

where z =x +iy. This expression achieves a maximum on
I. when n/4&y &m./2, i.e., n. /4u &x &m/2u, where
u =tan8. Therefore, on I. we have

where

+Clxzyz]xzy2 (Cl) cosh(~/2u ) + 1
tanhz

cosh(m /2u) —1

' 1/'2

—:m(8) . (C10)

a2 ———1+B21+A 32,

b2 l B21 ~32

Ci 2i——(232 821),

(C2)

and A,z, 8;~, and C~J are defined by Eqs. (2.20). The coef-
ficients a1 and b1 can also be expressed in terms of A;J,
B,&, and C;J but are not relevant to convergence considera-
tions. The integral Ip will converge if

r

1

a2 ~C1

0& lail &m( —,'8p),

«
I kz I

&m(T18p)

(Cl 1)

If we let x =
I
Kz/Ki

I
we see that

~' r

—x+ —m( 2 8p)'& -.'x
I k I'+ —— lk I

'

Let us now assume that ~1 is real and positive,
argK2=8p and that

I
8p

I
& m. Then we have that

arg+K1K2= & 8p. This then implies that

(xzy2) 1

2C1 b2 y2 ——,
'

Re(g, gz) (C12)
for all values of xz and yz. This will be the case if both of
the eigenvalues of the real, symmetric matrix 3 given by

so that inequality (C8) is satisfied if

1
a2 2C1

A =Re
—,
'

C1 b2

are negative. This is equivalent to the two conditions

TrA &0, detA ~0.
Substituting froin Eq. (C2) we obtain

~ = I —l»1+~» I'.

(C4)

(C5)

1 4x+ —&, =—o(8p) .
m ( —,

'
8p)

(C13)

The function (1/x)+x has a minimum of 2 for x&0 so
that we must have o (8p) )2. The angle for which
o(8p)=2 is 8,„=0.46m. . For all angles I8pl &8,„we
have o(8p) )2. Inequality (C13) is satisfied, then, if

I
8p

I

& O,„and

—,
' [o.—2 —(o —4) '~ ] & x —1 & ,' [o 2—+(o— 4)'~ —]

As can be seen the trace condition is satisfied automatical-
ly so that we are left with the condition which is the condition given in the text.

(C14)

»
I
I121+~» I

'
~ (C6) APPENDIX D

Let us define

fj =tanh(2+K1K2'71), g'2 ——tanh(2+K1Kzrz) (Cj)

We then have that inequality (C6) will be satisfied for all
values of K1 and Kz such that the inequality

» —,
'

IK1«2 I Ik I

'+ —.
'

IKz«11142 I

'—
2 Re(442)

(C8)

is satisfied for all values of r, and rz greater than zero.
That is, if inequahty (CS) is satisfied for some specific
values of Ki and Kz, and all values of r1 & 0 and rz & 0, then
these values of K1 and Kz will be such that inequality (C6)
is also satisfied. Therefore we want to examine inequality
(CS).

Before doing so, however, we need to place a bound on
I
tanhz

I
for z on the line

I.=[z
I

z =re', 8 fixed and I8I &n/2, r &OJ .

Here we would like to show that the propagator falls
off more rapidly than any power of

I u/ I

or
I p/ I. In

order to do this we first note that the operator

M =2b b+ata (D 1)

e " lap)= g f (t),
m=0

where

(t)=P "Hl p )

(D2)

(D3)

Because [M, H]=0 the norm of g~(t) is independent of
time.

commutes with the Hamiltonian. Therefore, the Hilbert
space for the problem splits into the direct sum of the Hil-
bert spaces A on which M has the eigenvalue m. If

, then exp( itH)QE~ . Le—t P be the projec-
tion operator onto A . We then have that
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The power bounds are obtained from the inequality

Iafp'fiaf Pf ie " la» & I

=
I (af»f I

«'&'(bt&'e "H
I a;Pt & I

&
I
l«t)'(bt)'e '~'

I a;,P; & II . (D4)

if m "&m'. Therefore

ll(tt't)r(bt) e iH—t
I
a P &ll

X I I
«')"(b')'@.«)

l
l'

m=o

1/2

(D7)

(a )"(b )'1i, (t)em (D5)

This is really all that is necessary to obtain bounds of the
form given in Eq. (4.16) as the right-hand side of inequali-
ty (D4) is independent of af and pf. It is useful, however,
to examine this expression a little more closely. We see
that

Let us now consider the case a; =0 and s =0. We then
have that

! m/2

(0) (DS)

Because there can be at most m signal-mode photons in
A we have

so that

((a )"(b~)'1i, (t) I(a )"(b )'g -(t)&=0 (D6) This then, provides the bound

1/2

(D9)

1/2

il«'&e " lop &il&e ' X i! (2l)!

—
I I3; I

'/2(e d'
I P; I

1/2

r!
, fP I" '( i)" 'H„—i(i P I)

1/2

(D10)

where H„(x) is the nth Hermite polynomial. Combining inequalities (D4) and (D9) gives
1/2

1 ' " r!
IK(af pf t'0 Pi 0)

I
& „g i

'
I p I' ( i)' 'H —i(i-

i=o .'. "—i '
(Dl 1)

A similar derivation for the case a; =0 and r=0 gives

IK(af pf t;O, p;,0)
I

& [s!L,( —lp; I
))'

=Kpfe '"'CR. In Eqs. (2.22) and (2.23) we have given
an expression for K'" from which f(af, e '"'P;, t;O, P;)
can be immediately derived, i.e.,

where L, is the sth Laguerre polynomial. We note that
for large

I P; I

f(af, e '"'p;, t;O, p;)

=g4(t)(e af) +g2(t)(e af) +go(t), (E1)

r —I ~ r —I
i (r i)!

1/2
X Hr t(t IP; I

) -(~2 IP; I
)", (D13)

where g4(t), g2(t), and go(t) are given by Eq. (2.23). By
going back through the derivation of K"' we can find an
expression for f(af,pf, t;O,p;), i.e., for the case in which

pf is not equal to exp( 2i tot)p; T—he result .is

ls'L. ( —
I P I

'&)'"-
I p,. I

' (D14)
f(af pf t;O, p;)=

K1
g4(t)(e '"'af )

K2

so that the bounds (Dl 1) and (D12) start being useful (i.e.,
the right-hand sides become less than 1) for

I af I

—
I P; I

and
I Pf I

—
I p; I

.
APPENDIX E

K2

1/2

g2(t)(e -taf )2+go(t), -

(E2)

In this appendix we want to find the conditions on a~,
p;, and t so that

I f(af pf t;O, p;) I
«1 for

where g~(t) is just gj (t) with 2&o replaced by 2+K&K2.
We now note that for K2&R, K1/K2 is of order 1 and
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I
tanh(2+]A]tc2t)

I
&W2,

I
sech(2+tc]tc2)I & 1,

I
(2+x]a2t) sech (2+a.]tr2t)

I
& 3,

I
(2~K]trpt) sech (2~K]K2t)

I
& 3 .

It can then be seen that

If(~f Pf t o P )
I

(E3)

I /2
K& K

I g, (t)
I —,[qot+ 0(I)],

90
2

I
go(t)

I —,[(not)'+not+0(1) l,
Q0

where

K) K
[ri,t +.O(1)],

K2 90

(E5)

K&

Ig4«) I I~f I'
K2

where we have used Eqs. (E3) and the fact that for tc2&R,
(go/2+x]xz)-1. Putting Eqs. (E4) and (E5) together we
find that

I f I
is small if

1/2

I g2«)
I I ~f I

'+
I go«) I, (E4)

I/P;«1,
I ~f I'/P; «1,

a.t «1, at/p; Iaf I
«1.
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