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The quantum noise of an injection-locked laser oscillator is analyzed by the operator Langevin
equation. The problem is also treated by the Fokker-Planck equation and the same results are ob-
tained in the same regimes of applicability. The steady-state solution of the Fokker-Planck equation
gives the probability distribution of amplitude and phase, the Langevin equation arrives more
directly at the spectrum of amplitude and phase. The phase of the injection-locked oscillator is re-
lated to the phase of the injection signal and thus constitutes a measurement of phase. In the limit
of complete inversion and zero internal loss of the laser resonator, the associated uncertainty is
twice that dictated by the uncertainty principle. This result is interpreted by comparing it with the
uncertainty introduced by a linear amplifier which can perform a simultaneous measurement of am-
plitude and phase.

INTRODUCTION the output waveform are found to be

The quantum noise of a laser oscillator has received a
great amount of study, both theoretical and experimental.
The first treatment of the laser oscillator with operator
noise sources is due to Haken. ' Lax and co-workers, in
a series of papers, developed and expanded the theory fur-
ther. A density matrix description of the laser oscilla-
tor was pioneered by Scully and Lamb' and expanded
upon in a book by Sargent, Scully, and Lamb. " Mandel
and Wolf contributed to the theoretical description. '

The experimental verification of the quantum noise
emitted by lasers started with the study of frequency noise
of an He-Ne laser by Javan et al. ' was followed up by
laser amplifier noise studies by Kluver. ' The frequency
noise initially observed was governed by the thermal vi-
brations of the laser cavity length. The amplitude noise
near threshold, however, was found to be attributable to
quantum noise. ' ' Quantum noise could be detected in
semiconductor diode lasers, ' since quantum noise
predominates over classical noise generating mechanisms
in such lasers because of their small dimensions and fast
relaxation times. More recently, quantum noise fluctua-
tions were observed in He-Ne laser gyros, ' the emergence
of quantum noise having been made possible by cancella-
tion of classical noise contributions in the measurement of
difference frequencies.

Injection locking of lasers for communication pur-
poses' has rekindled the interest in quantum noise limita-
tions on this form of modulation. The classical theory of
injection locking is discussed in Stratonovich's book.
Haken et al. ' studied the quantum theory of locking of
modes in a laser oscillator. Chow et al. pointed out the
narrowing of the laser spectrum due to injection locking.
No complete quantum-mechanical treatment of the noise
accompanying injection locking exists in the literature.
The present paper presents such an analysis. In the limit
when the oscillator runs at a very high power level with
complete inversion, the mean-square phase fluctuations of
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where (n, ),„ is the average photon number of the injec-
tion signal. If the phase of the output is viewed as a mea-
surement of the phase of the locking signal, then this mea-
surement results in a phase uncertainty twice that dictated
by the uncertainty principle. This result is compared with
a measurement of a coherent state after amplification by
an ideal linear amplifier. Such an amplification makes
possible the simultaneous measurement of amplitude and
phase fluctuations, doubling the uncertainty in the pro-
cess, as pointed out by Haus and Townes, Arthurs and
Kelly, and Caves.

We start in Sec. I with the operator Langevin equation
and obtain the fluctuation spectra of amplitude and phase
of the locked oscillator in Sec. II. In the limit of complete
inversion we determine the minimum phase uncertainty.
This result is compared with that of the linear amplifier in
Sec. III. The only difference between the two systems is
that the relaxation times of amplitude and phase, different
in the case of the locked oscillator, become identical in the
case of the linear amplifier. We ascertain the fact that the
linear amplifier is capable of reaching the ideal limit of a
simultaneous measurement.

In Sec. IV we set up the Fokker-Planck equation for the
I'(a) function of the laser oscillator, supplemented by an
injection-locking term due to a c-number source. Section
V treats the case of a coherent state coupled to the oscilla-
tor via an optical isolator and finds that the Fokker-
Planck equation is identical with that of a c-number
source, with the amplitude of the c-number source re-
placed by the eigenvalue of the coherent state. The
steady-state distribution I'(a) is approximately a two-
dimensional Gaussian in amplitude and phase. The equa-
tions of motion for the expectation values of amplitude
and phase are then related to the analysis of Sec. II. The
mean-square amplitude and phase Auctuations are ob-
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tained in Sec. VI and compared with the results of the
Langevin approach. The two approaches are shown to
lead to the same result in the same ranges of applicability.

is an envelope operator, the natural time dependence
exp(itot) has been factored out. The decay rate coo/Q con-
sists of two contributions, one from the unloaded quality
factor Qo, and the other from the external Q, Q, :

I. QUANTUM-MECHANICAL
LANGEVIN EQUATION

COp Np COp

Q Q, Qo
(1.4)

In this section, and the subsequent two sections we con-
sider the operator Langevin equation for the injection-
locked oscillator (see Fig. 1) and the regenerative ampli-
fier. We start with the Langevin equation for the laser in

the absence of an injection signal as derived in Ref. 11.
The pertinent equation is (49), p. 334:

a(t) = —— —M+ %a a a (t)+G(t), (1.1)
1 ~p

2

where a (t) is the slowly varying envelope of the annihila-—l CiPot

tion operator a (t)e
M is the linear gain parameter, coo/Q is the decay rate

of the laser resonator in the absence of the gain medium,
A' is the saturation parameter expressing the dependence
of the gain on the photon number ata: the total gain pa-
rameter is M —Kata. The function G(t) is the operator
noise source with the correlation function

(Gt(t)G(t') ) + (G(t)G (t') )

=2 — + (N, +N, ) &(t —t'), (1.2)
Np g

2 Q

where the first term —,
'

coo/Q represents the zero-point fluc-

tuation of the photon field and the second term

(g /y)(N2+N&) represents the atomic dipole moment
fluctuation. g is the atom-field interaction matrix element

and y is the phase decay constant of the dipole moment.
The Marcovian assumption that the dipole moment and

energy decay constants are much larger than the photon
decay constant coo/Q is used to derive (1.1) and (1.2). The
noise contribution of the level operator is neglected be-

cause it is of higher order in (ga).
The interaction Hamiltonian between a laser photon

operator a and an injection signal operator b is assumed to
be

The external Q expresses the coupling to the mode of the
injection signal, the unloaded Q incorporates coupling to
any other modes and to the loss. VVe shall find it con-
venient to use time constants r, and ro defined by

~p 2

e 7e

~p 2

Qo ro
(1.6)

The coupling constant v has been assumed real with no
loss of generality, since this choice disposes of an arbitrary
phase reference.

The Heisenberg equation of motion:

a= —[A, a]
fi

(1.7)

which led to (1.2) is supplemented by the coupling term
(1.3) and results in

1 ~p —l (GP —COO)t—Kata a+she ' +G(t) . (1.8)
2

—1/2

x =2(B/r, )' 1+
7p

(1.9)

Here 8 is the Nyquist bandwidth related to the signal
sampling time T as follows:

This is the quantum-mechanical Langevin equation of in-
jection locking of an oscillator. The linear laser amplifier,
operating below its oscillation threshold, is also described
by (1.8) if the gain saturation term Aa a is dropped in
the above equation. The coupling constant ~ can be relat-
ed to the external Q and the bandwidth B of the injection
signal as shown in Appendix A

1/2

—i (co—coo)t l (CO —No)t
V =i'(aba e ~ab e —), (1.3)

B =1/2T .

where b is the annihilation operator of the injection signal,
to is the frequency of the injection signal, and coo that of
the oscillator. The interaction Hamiltonian is quadratic in
the excitation amplitudes of the two systems, laser and in-

jection signal. The coupling is thus linear. Here, again, b

PARTIAI LY
TRANSMITTING

MIRROR

LASER MEDIUM

8/Ill&&&vu/YAlllll//i

II. AMPLITUDE AND PHASE NOISE
OF INJECTION-LOCKED OSCILLATOR

The Langevin approach leads directly to the spectra of
the amplitude and phase fluctuations, the Fourier
transforms of the correlation functions. The Fokker-
Planck approach used later on gives the probability densi-
ties of the fluctuating quantities. In this section we derive
the amplitude and phase spectra of the injection-locked
oscillator starting with (1.8).

The operator a generally follows the time dependence of
the injection signal, if the locking is successful. Thus, it is
convenient to write

I /&y, I /&o

FIG. 1. Schematic of injection-locked laser oscillator. and

( ) ( ~ )
—i[(a)—rao)t+$o+hPJ

(2.1)
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b(t) =(ho+gab)e (2.2)

1 coo i
BIOi (co —coo)a—o — W — Dao ao =—Icboe (2 3)

2 Q

Here ap bp and Po are real c numbers. The Hermitian
operators b,b and b,g express the excess amplitude and
phase noise of the injection signal, and Hermitian opera-
tors b,a and b,P those of the oscillator excitation. The
zero-point fluctuations attributable to the input port are
already included in the Langevin noise operator G(t). We
shall assume that b,b and b,g commute and are uncorrelat-
ed. G(t) commutes with both and is uncorrelated with ei-
ther because we assume that a and b are operators pertain-
ing to two different subsystems.

The above quantum-mechanical quasilinearization is an
extension of the one used for a laser oscillator by Haken
and Lax. Use of (2.1) and (2.2) in the quantum-
mechanical Langevin equation (1.4) leads, after separation
into orders of the perturbation, to an equation for the c-
number amplitude ap and phase Po

+ —,
' (G(t)exp{i [(co coo—)t +pp] J

+G (t)exp{ i[—(co cop—)t+pp] I ),

where we have used (2.4) and (2.5). Further,

(2.8)

scb p

ao
b,a

cosPp( hP bP—) + (coo —co )
ao

K
sinPphb

ao

+ (G(t)exP{i [(co cop)—t +Pp] I2ao

The oscillation frequency co, the phase shift pp, and the in-
crease hap of the amplitude are shown schematically in
Fig. 2 as functions of the detuning cop —co;.

The equations for the amplitude and phase perturba-
tions are

Aaba = — (cop —co)ap—bP+Iccosgpbb+lcsingpbpbg

ao ——

2 1 COp 2
(co —coo) +—M — —Map

4

The amplitude ao is related to bo by

. 2 1/2bo ~ (2 4) where

—G (t)exP { i [(co c—op)t +P—p] I ), (2.9)

where the factor multiplying bo is the net gain, the
enhancement of the injection signal, and

tanPp ——

1 6)o

2
ao —~+

(2.5)

0-

In the absence of an injection signal, the gain is infinite,
and from this fact one may evaluate the value of ap of the
free-running oscillator

2ao —— (2.6)

The injection signal increases ao so that

W —A a p (

coo�

/Q

and the gain coefficient is less than the loss coefficient.
The increase in amplitude with the injection signal, for
small changes Aap from ap, is given by (2.4) and (2.6)

QJ —QJ0 I

K cosfp
ap(ho&0) —ap(bp ——0)=— 2 b p .

wacko
(2.7)

5o,
)(

/coo —co/ ( ~bo —:Ecol
ao

At synchronism, co=coo, the injection signal bo and the
response ape ' are in phase, Pp ——0. Increased detuning
leads to a reduction of the net gain and an increase of the
dephasing, provided that the detuning is within the lock-
ing bandwidth A~&. The locking bandwidth is obtained
from the imaginary part of (2.3) and by noting that
~sinPp

~

( 1. We then have

v' b

(c) = ~O-~1

FIG. 2. Oscillation frequency co, phase shift $0 and increase
in amplitude Dao vs frequency detuning co; —mo. co; is the input
signal frequency, coo is the oscillator frequency without input
signal and hcoL is the locking bandwidth.
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1 =Nap
+a

(2.10) l 1 1Q= ——
2 Ta 7

1+l
4 +a 7 p

—(cpp —c0)2
1/2

is the decay rate of the amplitude perturbation, i.e.,

—Aa a
COO

2

expanded to first order in b,a, giving Aapb, a. The decay
rate of the phase is zero in the absence of an injection sig-
nal. In the presence of an injection signal it is

7p

Kbp 1 2 cpp
cosPp= —Nap —M+

ao
(2.11)

1
cpp —cp = tangp =

7 p

~ho
sinPp .

ao
(2.12)

The deterrninantal equation for the homogeneous equa-
tion, for an assumed exp( i Qt) dep—endence, is

1—iQ+ l Q+ + (Qjp Q7) =01 2

7p
(2.13)

where we have used (2.4) and (2.5). The solution is

and is larger, the larger the injection signal. The phase re-
laxation time is directly related to the gain at resonance,
ap =KTpbp at resonance, as can be seen from (2.4) and
(2.11).

A useful relation is obtained by combining (2.11) and
(2.5):

When the injection signal is not detuned, coo ——co, the
eigenfrequencies are imaginary and equal in magnitude to
the decay rates I/r, and I/rz of amplitude and phase.
The amplitude and phase fluctuations are decoupled.
When top&co, the two fluctuations couple and the decay
rates of the resulting solutions are affected by the indivi-
dual decay rates and degree of detuning.

The Fourier transform of the amplitude fluctuation
operator, treated as a periodic function of period T~ is

T /2
b,a (n b,Q)—:lim f ha (t)e'" 'dt . (2.14)

From here on, we treat

Q= lim n EQ
EQ~O

as a continuous variable Q. From (2.8) and (2.9)

b.a (Q) =
i Q—+ N, (Q) —(top —cp)N, (Q)

1

Tp

1—iQ+
+a

—iQ+ +(top —co)
1 2

7p

(2.15)

where the noise sources N, (Q) and N, (Q) are defined,
with n AQ=—Q:

T /2

N, (Q) = lim f dt e'" 'I(cosgp)a bb(t)+(singp)abpht)'j(t)
T ~oo p p

(2.16)

T /2
N, (Q) = lim f dt e'" 'I (cosgp)abpbg(t) —(sinPp)~ bb (t)

2' (2.17)

The noise sources consist of the inphase (cosine, subscript
c) and quadrature (sine, subscript s) contributions of the
excess noise of the signal and the noise source G(t). The
former are due to the amplitude b,b and phase hg and are
weighted by cosPp and +sinPp, respectively; the weighting
is interchanged between that for amplitude and phase.
Further, the spectrum of the noise source G(t) is shifted
from that centered around coo, as implied by the noise en-
velope G (t) of (1.8), to that centered around co.

The Fourier transform of b,P(t),
T /2

&p(Q) = lim f gp(t)e'" ~«(2 18)T ~oo T —Tp/2
p p

with nhQ=Q, follows similarly,

i Q+ N, (Q)+—(cop —co)N, (Q)1

ta
bg(Q) =

ao —iQ+ 1

+a
—iQ+ +(~p —~)1 2

7p

(2.19)

The spectrum 8'~~(Q) is obtained from (2.15) by taking
the average of ba (Q)ba(Q) and by dividing by the
frequency interval bQ=2n. /T in the limit as T~~,
EQ O.
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Wa, (Q)= lim (ba "(Q)ba(Q)) = lim
1 t 1 1

bn p bQ cn p bQ
Q + 2 (X,(Q)N, (Q))+(cop co—) (N, (Q)N, (Q))

7p

iQ+ (cop —co)(N, (Q)N, (Q) )
7p

i Q—+ (cop —co)(N, (Q)N, (Q) )
7p

(2.20)

where

Q' —(cop —co)'—
7a 7p

+ +1 1

lim (N, (Q)N, (Q) )
sn o EQ

=(sin pp)K Wab(Q)+(cos pp)K
~

bp
~

Way(Q)

Wzb(Q)= lim (bb (Q)hb(Q))1

an o AQ
(2.22)

(2.21)

The noise source G (t) is uncorrelated with itself;
G (t)G(t') is correlated in an impulselike manner (1.2)
and, hence, its spectrum is flat. Denote the spectrum of
hb by

1 1o g+ — + (N2+Nl)
4II 2 g y

The cross spectrum of », and», is

lim (N, (Q)N, (Q) )
En~0 AQ

=K singpcosgp[ Wbb(Q)
~
bp W~~(Q)] .

(2.24)

(2.25)

and similarly for b,f. We further assume that the ampli-
tude and phase fluctuations of the injection signal are un-
correlated. Then using (2.16) and (2.17) the spectra of N,
and 1V, are

lim (N, (Q)N, (Q) )
an o AQ

The spectra of the excess noise of the injection signal may
possess structure, whereas the internal noise has a flat
spectrum, the last terms in (2.23) and (2.24). The internal
noise spectrum has an intensity that is simply related to
the inversion as one may ascertain by eliminating the
atom-field interaction parameter g /y with the relation"

= (cos'yp)K'WC b(Q)+ (sin'yp)K'
l

bp
l
'W~y«) coo

2(N2 —Nl )
y

(2.26)

(N, +N, )
1 1 cop g

4Ir 2 y
(2.23) Combining (2.20) and (2.22)—(2.26) one may write for the

amplitude spectrum

Wg, (Q) = 1
Q + cos yp+(Cop —Co) sin yp+ (CoQ —Co)sinypcosyp K Wab(Q)2 1 2 2 2 2 2

7p 7p

+ Q + 2 Sill Pp+(COp —CO) COS Pp—
1 4 2 2

7p

2
(cop —co)slnfpcosgp K bpWgl1(co)

2 2

~o 1 1» +»~
+ Q +, +(cop —co) - —+— (2.27)

The phase spectrum is

1
Wgp(Q) =

I
~

I

'ap
Q + 2

cos pp+(cop —co) sill pp+ (cop —co)slnppcospp K bpW&g(Q)
7a 7a

Q + 2 sin pp+ (cop —co)cos pp ——(cop —co)sinppcospp K W&b(Q)
1 2 2 2

7a 7a

coo 1 1+ Q +, +(~p —~)' ——+-
r, Q 4 4 N2 —NI

(2.28)
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apW'ap(Q) =2

Q + z +(top —eo)2 1 2

Tg

Let us consider first the effect of the oscillator noise, as-
suming zero excess noise of the injection signal. In this
case both amplitude and phase spectra simplify greatly.
Consider the phase spectrum

r

The phase measurement on the oscillator at a large am-

plitude a 0 may be viewed as a measurement of the phase
of the injection signal. In the process noise is introduced.
The minimum amount of uncertainty, or mean-square
phase deviation within the observation time T, must be
compatible with the uncertainty principle that does not
permit the measurement of phase better than given by the
inequality

] &2+&I
Q 4 4 N2 Ni— (2.29) (2.31)

In the amplitude spectrum 1/r, is interchanged with I/rz.
r

Q + ~ +(a)p —co)
1 2

7p 1
Wa, (Q) =

2m

~o 1 1 &2+&I
Q 4 4 N2 —Ni

(2.30)

Because the two relaxation rates are not the same, the
spectra differ.

where (hn, ),„are the fluctuations of the signal photon
number. For a coherent state (b,n, ),„=(n,),„and there-
fore

1
(hP ),„&

( )

The spectrum of the injection signal is at, and near, the
frequency cu. A measurement of the phase must be cen-
tered at Q=O and have a bandwidth 4mB =2m. /T (two-
sided spectrum). To detect an undistorted phase signal,
the phase response of the locked oscillator must not vary

IOO— IOO—
(b)

IQ-
Vl
C3

LLj0

IJJ

sin $,
0.8

0.4

Z/
IO— sin P

04

Ot-

O.OI
O.OOI O.OI

O.OI
Q.GOI

IOO— (c) IOO—
sing

IO—
sin $,
G.8 IO

C)

O. l—

LLJ

I-

4J
IX

O. I

O.OI
O.O

O.O I

O.OOI Q.Q I O. I

FREQUENCY

I,O IO

FIG. 3. Spectrum of amplitude and phase noise. Amplitude and phase noise are normalized by coos, /4m. g and cood~cos~go/4m. ga o,

respectively. Frequency is normalized by the amplitude noise bandwidth, 1/~, . Phase noise bandwidth is assumed to be
1/r~= 1/10', and signal bandwidth 1/T= 1/100', . Excess noise of input signal is (a) (bb ) =b (hfo)=02, coherent state, (b)

(hb ) =bo(hl( ) =0.1/4, (c} (b,b ) =bo(bib ) = ~, equal to zero-point fluctuation, and (d) (b,b ) =bo(b, f~) = '4 .
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over the bandwidth 4~8. Therefore, we may evaluate the
mean-square fluctuations (b,Pz ),„within the observation
time T from the product

4irBWgp(Q=0) .

Using (2.11) and (1.9)

(b,Pz ),„=4m.Bop(Q =0)

due to amplitude-to-phase conversion and vice versa. The
phase noise relaxation rate 1/wz is assumed to be —„ times

the amplitude relaxation rate I/r, which corresponds to a
signal gain of 20 dB. The excess noise is assumed to have
the same bandwidth as the signal.

III. AMPLITUDE AND PHASE NOISE
OF LINEAR AMPLIFIER

%2 +e1+ '
2(ng ),„N2 —Ni rp

X
[1+~(cop—co) ][1+~ (cop —co) ]JJ

[1+~,~~(cop co) ]'— (2.32)

where (n, ),„=bp is the average number of signal pho-
tons. The frequency-dependent factor has a minimum
value of 1 at (co —cop)=0 and (co —cop)=oo (the latter
value is uninteresting because it corresponds to no gain).
Thus, the minimum value of (b,PT),„occurs at co=cop,
when the injection signal has the natural frequency of the
oscillator, and is equal to twice the value imposed by the
uncertainty principle enhanced by the inversion factor
Nzl(N2 —Ni), and the cavity loss factor [1+(~, /~p)].
The two factors approach unity for complete inversion of
the atoinic systems, and for a highly over-coupled cavity
r, /rp ((1.

Next, consider the noise in the presence of excess ampli-
tude and phase noise of the injection signal. The spectra
of amplitude and phase are plotted in Fig. 3 for different
detunings and input excess noise spectra. %ith increasing
detuning both the amplitude and phase noise are increased

I

tanfp = (cop —co )7 (3.2)

Introduction of these relations into (2.27) and (2.28) gives

We have found that a locked oscillator measures the
phase of the injection signal with an uncertainty twice
that of the ideal measurement. This is, at first sight,
surprising because one may have expected that the locking
of an oscillator constitutes a measurement of the phase of
the injection signal without a simultaneous measurement
of the amplitude. As such, it ought not to incur the 3 dB
penalty imposed by a simultaneous measurement. In
order to understand our result, it is useful to study the
linear amplifier.

The fluctuations of the linear amplifier differ from
those of the locked oscillator only by the fact that the
phase and amplitude relaxation times are identical in the
amplifier case

1 1 1 1 ~o
(3.1)

2 Q

and the saturation term Hap is ignored. The result of
Sec. II can be taken over with the interpretation of Pp
[compare (2.5)]

Wg, (Q) = 1
Q cos Pp+ Ic W~b(Q)+Ic bpQ (sin Pp) W~~(Q)

cos2yp

coo 1 1 1 1 %2+X&+~+( o ) (3.3)

and

2 1 2 2 1
ap W~y(Q) = —, Q cos'yp+, &'bo W~y(Q)+~'Q'sin'yp W~b(Q)

cos 0

COO 1 1 1 X2+N)+ Q + +(cop —co) +
Q 2m 4 4 N2 —lV)

(3.4)

where

I
~ I'= [Q+(~p —~)1'+— [Q—(~p —~)] +—1

(cop —co) +2 1

gcves, at Q =0,

(3.5)

It is of interest to ascertain the uncertainty in the deter-
mination of amplitude and phase of a coherent state, with
8'~~ ——8'~b ——0. In this limit, the amplitude spectrum re-
ferred to the "input" by division by the power gain

Wg~(Q =0)
62 (3.6)

Q 4nN2 Ni. —

The same result is obtained for bpW~~(Q=0). Again the
use of the definition of the coupling coefficient gives for
the amplitude uncertainty (bbT ),„measured in a time in-
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terval T

2~ Wa, (Q=O)
62 2 X2 —N) &p

(3.7)

Planck equation for the P distribution of Ref. 11, pp.
294—295, Eq. (25), corrected for the erroneously omitted
term describing diffusion in the radial direction, reads

and for the phase uncertainty
M 11 a, ~p

r W — —Ar P
Br 2rBr g

1+
7p

1 9 BP M 1
r

4 r Br Br 4 r2 ()g2
(4.1)

The product of the two uncertainties is

(3.g)
Here, polar coordinates are used and the a parameter is
written

«b,'&.,«y', ).,=—,4 yn, g,„X2—X)

2

1+"
Tp

(3.9)

(3.10)
1+(~—~0)'r~

The measurement of b within an observation time T is
subject to fluctuations referred to the input by division by

2.G, :

When the inversion is complete this product reaches the
ideal limit, imposed on a simultaneous measurement of
amplitude and phase. The rms value of the ideal limit is

two times larger than that imposed by the Heisenberg

principle on an ideal measurement of either amplitude or
phase. This is the penalty incurred by a simultaneous
measurement.

Injection-locked oscillators also permit the simultaneous
measurement of amplitude and phase variations; however,

the gains for the in-phase and quadrature components are
not the same. It is of interest, therefore, to ascertain
whether the locked oscillator obeys the uncertainty princi-

ple as it applies to a simultaneous measurement. The am-

plitude gain follows from (2.7) with Q —+0:
2 2 2

G, = («)
K7 icos p

a=r e'

Equation (4.1) was obtained by assuming an "injection" of
active particles in the upper state. The lower state is pop-
ulated as the result of the interaction of the particles with
the field, resulting in the reduction by A r of the gain pa-
rameter M.

The equation of motion is a diffusion equation with a
forcing term in the radial direction, the first derivative
with respect to r, that tends to confine the P distribution
in the radial direction. An initial delta function distribu-
tion P(a) =5(a —ao), diffuses from ao and, as a function
of time, spreads in both 0 directions. The natural time
dependence exp( icoot), wh—ere coo is the frequency of the
oscillator, has been factored out.

Next, recall the origin of the Fokker-Planck equation
which was derived through integration by parts of the
equation for the density matrix

p—= f d aP(a)
~
a) &a

where

p= f d'a ~a)(a~

( AbT ).„=W,.(Q =0)
G2

N2 [1+(co—coo) ~~]1+ '
+2 +1 'ro [1+(CO—COO) 7+ri ]

(3.11)
a2

+ f d'aMP [a)(a[ .
Ba Ba*

(4.2)

= f dna a W — —A
~

a
~

' P
~

a) (a
~

+c.c.
g a~

For (co —coo)~0 the above reduces to the result of the
linear amplifier. The product (hbT), „(EPT),„can be
made to approach the ideal limit for a simultaneous mea-
surement in the limit of no detuning, strong over-
couphng, and complete inversion. The product increases
with increased detuning, because ~& ~ ~, for a locked oscil-
lator. [Compare the definitions of I/r, and 1/~~, (2.10)
and (2.11), respectively. ]

IV. FOKKER-PLANCK EQUATION
FOR c-NUMBER INJECTION SIGNAL

In the preceding sections we used the Langevin ap-
proach to obtain expressions for the spectra of the fluctua-
tions. The Fokker-Planck equation leads to the probabili-
ty distributions of amplitude and phase. The Fokker-

We shall use both (4.1) and (4.2) in extending the analysis
to an injection signal.

Suppose that the Hamiltonian used in the derivation of
the equation of motion of the density matrix

(4.3)

is supplied by the coupling Hamiltonian (1.3). In this sec-
tion we shall treat the annihilation operator b of the injec-
tion signal as a c number. In Sec. V we shall generalize
the analysis, treating b as an operator. The time depen-
dence of the density matrix

p= ——[A,p]

is supplemented by
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[(~ba e ' —ab'a e ' )P(a)
I
a)(a

I

—P(a) Ia)(a I(~ba e ' —~b*ae ' )]

BQ Ba
(4.5)

atIa&(aI = +a' Ia&&aI,

where we have used the identities"

a Ia)(aI =aIa&(aI,

]

lead to the Fokker-Planck equation:

dP
at

Ia)(a Ia = , +a Ia)(aI,

u a a~=a* a o,

Equation (4.5) introduced into (4.2) to supplement the
interaction Hamiltonian, subsequent integration by parts,

I

(4.6)

One may now introduce polar coordinates to clarify the
meaning of the above equation. Define the argument of b
as —P, b= Ib Ie

BP1182~~o~ppW18dPr M — Ar P+— — r
dt 2rBr Q 4 rdr Br

1 8 1a 1 a+ P a
I
b

I

—— r cos[8+(to too)t +—g]P —— sin[8+(co —coo)t +g]Pr' 882 r Br r B8
(4.7)

By introducing a new angular variable

(too co)t ——g —8—

we may transform (4.7) into

(4.8)

a8 1 1 8P(r, g, t) = ——— r
Bt 2r Br

~oo ~ 2 M 1 B B W 1 8
3Pr P—+ — r P

Q 4 r Br dr 4 r2 Qp2

+ (co too) ——a
I

b
I

— (r cosP P) —— (sing P)aZ 1a 1 a
BP r dr r 3y

(4.9)

This is the desired locking equation.
Before we proceed with its analysis we want to show that it is of more general validity than its derivation implies. We

have assumed that the injection signal was a c-number source Yet, w. e are interested in a full quantum-mechanical
analysis of a locked oscillator. One may question, therefore, whether the results obtained from (4.9) ignore some quan-
tum noise effects. This is not the case. In Sec. V we shall show that Eq. (4.9) is valid, if the injection signal is a coherent
state of another system separated from the oscillator by an isolator at zero temperature so that the coherent state can be
defined independent of the evolution of the excitation in the oscillator. Of course, the isolator is responsible, in part, for
the zero-point fluctuations of the injection source. The parameter b in (4.9) has to be interpreted as the eigenvalue p of
the coherent state of the injection signal, b =p.

V. FOKKER-PLANCK EQUATION FOR OPERATOR INJECTION SIGNAL

In Sec. IV, we have treated the injection signal amplitude b as a c number. Consider now the case when the injection
signal is treated as an operator. The density matrix of the combined system is now

t =P«») Ia&&a I I&&&PI

where
I p) (p I

is the matrix of the states of the injected signal. The coupling term (4.5) has to be generalized to account
for the operator nature of b. We note the property of the operator product b ta:

b'&
I
a&&a I I ~&&~

I

= +& a
I a&&a

I I &&(& I

and analogous relations for the pre- and post-multiplication by bat and bta The result is.
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(mba"e ' ~—abte '
) la)(a

l lP)(Pl —la)(a lISI lP)(Pl (~bate ' a—abte '
)

—e'" "'"xa +e'"' ""~p +e'" "'"~g', e'—" ""ma* la)&a I
@

I
p)&pl (5 1)

Integration by parts transfer the derivatives onto P, so that the equation of motion for P becomes [compare (4.6)]
r

dP 8 COp 2 . a'
a W — —Alai P +c c . .+W, P

at aa Q Bcx Bcx*

i (,co—coo)+ —Ke
3 l (coo —cd)t—x e ' a' P+c.c.

Ba a
(5.2)

We can integrate P over all p. Then, the terms containing derivatives with respect to p and p" integrate to zero. The
equation of motion for f d PP is

f d pp=. —

2+M, f d pP+ — ~e f d2pp'P+c. c.
Ba Ba' Bn

(5.3)

This is the Fokker-Planck equation for an oscillator,
described in terms of a P distribution of a states, locked
by injection of p states. In general, the oscillator system
reacts back onto the injection-signal system. Another
equation would have to be written down for it. If an iso-
lator (at zero degrees) is inserted between the oscillator
and the injection-signal system, the latter may be treated
as unaffected by the former, except of course that energy
is being lost by it to the oscillator. One may imagine it to
be continually prepared in sequences of P states assigned
to time intervals T.

If the injection signal is in a p state, the integral over all

p of g' P can be replaced by p" f d p P. Then, interpret-
ing f d pP as the reduced P distribution one finds that
(5.3) and (4.6) are in one-to-one correspondence if p is in-

terpreted as b, and P as P o the ull P distribution.

In the sequel we shall use the notation of Sec. IV with the
understanding that we are treating the case of locking via
a coherent p state.

VI. FLUCTUATIONS DERIVED
FROM FOKKER-PI.ANCK EQUATION

around the equilibrium value r =ap, for which

COp 2=—Aao ——0. (6.1)

The equation is solved approximately by expanding

r M — —ArCOp

around r =ap..

COp 2 = 2rW — A—r =—2&ao(r —ao)

COp=2 M — (r —ao) . (6.2)

(r —ao)'
P(r) = exp—

2 trlrr 20'„
(6.3)

with

The P distribution can be integrated directly from (6.2)

In Sec. IV we have derived the Fokker-Planck equation
for a c-number injection signal. In Sec. V we showed that
the same equation follows for an injection signal that is in
a coherent state; the eigenvalue p of the coherent state can
be identified with the amplitude of the c-number source.
In this section we shall study the mean-square fluctuations
predicted by the Fokker-Planck equation and compare
them with the results obtained from the operator
Langevin equations. Because we assumed a coherent state
injection signal we are covering only the case of zero ex-
cess noise of the injection signal.

Consider first (4.1), the equation of the free-running os-
cillator. In the steady state, (8/Bt)P=O, the phase is ran-
dom, (8/BO)P=O. The first derivative with respect to r
provides a forcelike restoring action that makes P cluster

o„—=(4&ao/M) (6.4)

The distribution is Gaussian around the average value
r =ao. Note that the first derivative term with respect to
r provides a stabilizing effect around r =ap and that its
coefficient is positive.

The locking of the oscillator by the injection signal has
two effects represented by the new terms, derivatives with
respect to r and P. The derivative with respect to P pro-
vides a forcelike restoring action on the phase analogous
to the restoring "force" on the amplitude of the free-
running oscillator. This term can be interpreted by ex-
panding it around Po, the phase for which the argument of
the derivative (8/rBQ) vanishes. Write r =ao+5r,
P =Po+ 5$. Then
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(co c—op)r +K
I
b

I
sing =(co —coo)up+~

I
b 1»nA

+(co cop—)5r+a
I
b

I
cosgo5$ .

(6.5)

The zeroth-order part of the above equation vanishes
when

4

1 1 1 1 1+ + +2(co —cop)
Tp 7g, Tg 7g Tp

1 1+ +4(~—~p)'
Tg Tp

(6.12)
Ir

I
b

I
sinPo

ap
(6.6)

which is identical in form with (2.12).
The second effect of locking is the increase of the am-

plitude ao from the' value imposed by (6.1) in the free-
running case. Expansion of the terms under the derivative
(1/r)(a/ar)r in (4.1) around ap and Pp gives

and

4

1 1+
Tp 7g 7p

1 +
+g

1 1+ +2(co —cop)
2

7g 7p

1 +4(co —cop)
7p

(6.13)

rM —— 9Fr +—a Ib Icos/
COp

2

1 COp

Qp 83K — —%a p
2 Q

4A„(coo—co)

+4(co —coo)

1 1
2 2

7g 7p

1'+ (6.14)

+~
I
b

I
cosko —~o5" ~

I
b

I
»n4'o54' . (6.7)

The zeroth-order term gives the new equation for the am-

plitude ap as affected by the injection signal and corre-
sponds to (2.7). The perturbation term may be approxi-
mated, in the limit of

I
b

I
/ao « 1, large gain, by

The probability distribution is indicated in Fig. 4 in the
(r, P) plane. The x and y coordinates parallel to the ampli-
tude and phase perturbations, respectively, are also indi-
cated. When the injection signal is detuned from the

—Aao5r —a
I
b

I sinPo 5P =—1
5r —(co —cop)a o 5P,

+g

(6.8)

(0) IN JECTION-LOCKEO OSCILLATOR

Ctl —td & O0

where we have used (2.10) and (6.6). When (6.5)—(6.8) are
introduced into (4.9) one obtains the "linearized" version
of the Fokker-Planck equation with x =5r and y:—ao5$ as
the independent variables. A change of variables to the
Cartesian coordinates x and y gives

1P (x,y, t) = x + (cop —co)y P
Bt Bx 'Tg

a2 a2
+

Bx By

ao &b, $s

x

j NI

0 0I col —cu-0
L

I
I

I

2&Ba &
I I

where we have set

8 1+ y —(~o—~)x P,
By 7p

(6.9) (b) i( a2

L I NEAR AMPLIF I ER

~Ib I
1

cospp =
ap 7p

(6.10)

~exp( —~(~~x +~» xy+& y')] . (6.11)

Equating equal powers of x and y one obtains four equa-
tions for the three unknowns J4zz Ayy and A„y. These
equations are not independent and have the solution:

in analogy with (2.11).
The steady-state solution of (6.9) is obtained with the

Gaussian ansatz I

I
I

I
I I

I

&h, o~&

FIG. 4. I' distribution of injection-locked oscillator (a) and
linear amplifier (b) in a plane.
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COp(""--g 4. "N, N,4ap
(6.16)

Next we introduce the average photon number of the in-

jection signal,
~

b
~

=(n, ),„, using the gain at synchro-
nism derived from (2.4)

g 4(n, ).„&2, N, —N,
(6.17)

The phase fluctuations have a Lorentzian spectral profile
(see Sec. II) that occupies a bandwidth proportional to
1/rz The phas.e measurement of the source requires only
a bandwidth 8 equal to I/2T, where T is the time of "ob-
servation" of the source. Thus, if a filter is introduced
that cuts out the unnecessary part of the spectrum, the
mean-square fluctuations are reduced by the factor
48~~ =2~~/T (see Appendix B) so that one has for the fil-
tered mean-square fluctuations

1 N21+ '
2(n, ),„ro Nz N]—(6.18)

where we have used (1.9). This is the same result as (2.32)
for coo —co=0. An analogous investigation of the mean-
square amplitude fluctuations ( b, r ),„cofnirmsthe result
of Sec. III at synchronism. The analysis of locking off
synchronism is considerably more complicated and is not
presented here. The following issues have to be confront-
ed: (a) The mean-square deviation of the amplitude and
phase are equal to the diagonal elements of the inverse of
the matrix

~~~ y

A yAyy

natural frequency of the oscillator, co&coo, then the two-
dimensional Gaussian has principal axes that are not
parallel to x and y, respectively; the phase and amplitude

fluctuations are correlated.
The present results are easily compared with the results

of Sec. II when co=coo. We shall look at this case in de-

tail. Consider the mean-square phase deviations of (6.9)
for coo —co=0, &„„=0,

(6.15)
Ayyap 4Q p

In the derivation of (4.1) it had been assumed that the
laser medium is in the upper state in the absence of sa-
turation. The saturation reduces the gain so that one may
identify the unsaturated gain parameter W, divided by the
saturated gain, with the ratio of the upper level population
N2, to the difference between upper and lower level popu-
lations:

N2

~—a 02 N2 N(—
and no level degeneracy has been considered. The saturat-
ed gain is approximately equal to coo/Q. Thus, we may
write for (6.15)

can be derived from this information. The spectra are the
Fourier transforms of the autocorrelation functions. The
same result is obtained as from the Langevin equations,
albeit with considerably more effort.

Finally, we note that according to (4.6) we have related
the results of the Langevin equation to the mean-square
fluctuations of a =r e', and not those of the field opera-
tor a. In doing so we have ignored the mean-square fluc-
tuations associated with an a state. Because the mean-
square fluctuations found are large compared with the
mean-square spread associated with an a state, the ap-
proximation, applicable in the limit of high gain, is a legi-
timate one.

VII. DISCUSSION

The operator Langevin equation leads rather directly to
the spectra of the amplitude and phase fluctuations of a
locked oscillator. The two spectra differ in the case of the
oscillator, become identical for the modulated amplifier.
The locked oscillator provides a means for the quantum
measurement of the phase of the injection signal. It does
not give minimum uncertainty. In the limit of complete
inversion and negligible internal loss the excess fluctuation
is 3 dB higher than the ideal limit. We interpreted this re-
sult with the aid of the linear amplifier which does offer
an ideal simultaneous quantum measurement of amplitude
and phase in the limit of complete inversion and negligible
internal loss. Such a measurement requires doubling of
the minimum uncertainty of each of the complementary
variables. The phase noise of the locked oscillator can be
understood from another point of view: It can be inter-
preted as frequency-noise to phase-noise conversion of the
oscillator. The spectrum of the frequency modulation
noise W~ (0) of the self-oscillating laser follows from
(2.29), with I/r~ =0 and co —coo ——0

coo/g N2
Wg„(Q) =II Wgy(A) =

4map N2 —N~
(7.1)

The frequency-to-phase conversion factor is obtained from
(2.5) and (2.11)

(b) The spectrum of the fluctuations off synchronism is
given by (2.29) and (2.30), respectively. The filter of band-
width B selects the portion 4m.B of the overall spectrum at
0=0. When the analysis is carried out the results of Secs.
II and III in the general case, co&coo, are fully confirmed.

We have used the spectral information obtained from
the Langevin equations to derive the filtered mean-square
fluctuations from the total mean-square fluctuations of
the steady-state solution of the Fokker-Planck equation.
Alternately, one could have derived the spectrum from the
time-dependent solution of the Fokker-Planck equation.
The time-dependent Fokker-Planck equation yields the
time evolution of an initial impulse of the probability dis-
tribution in the x-y plane. The autocorrelation functions

(x (t)x (t+r) ),„
and

(y(&)y(&+r).,
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ao/&bo

d coo cosfo

Combining (7.1) and (7.2) we find

(7.2)

But

' i( ) i

= '
i( ) i'="'"'i'

t r, 2/r,

Wag(Q) = Wa„(Q) dg
d Q)p

coo/Q N2

4mtc bocos Po &q
~

(b) '= (a)'T, (A3)
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APPENDIX A: THE EXPECTATION OF EQ. (1.8)

We explore the expectation of Eq. (1.8) as applied to the
cavity with no gain

1 1+—(a )+lc(b )
Tp Tp

(Al)

The system is conservative when I/ro ——0. In this limit
one may apply time reversal considerations to the system.
Consider the unexcited cavity, with (b) =0. Thus, (a)
decays because energy escapes from the resonator at the
rate 2/r, .

The rate of energy escape is 2ficoolr,
~

(a ) . This has
to equal to the power carried away from the resonator (see
Fig. 1). When this solution is time reversed, the power
flow is reversed and travels toward the resonator. The
buildup rate of energy is now 2/r, . From (Al)

and thus

2 =2 N2
(Ap ) = Way(Q)= 2 2

1+
T 2b(')cos'po &z —&r ro

which is equal to the phase noise of the locked oscillator
(6.18) for cosgo= l.

The Fokker-Planck approach gives the probability dis-

tribution of amplitude and phase. The uncertainty of a
measurement cannot be determined from it directly
without information on the spectra of phase and ampli-
tude which is obtained most conveniently from the
Langevin approach. Of course, the information on the
spectrum is contained in the Fokker-Planck equation as
well but requires a greater effort of extrication.

APPENDIX 8: THE FILTERING
OF PHASE FLUCTUATIONS

We have stated in the text that a filter of bandwidth B
reduces the mean-square fluctuations of the phase by a
factor of 48&&, where rz is the response time of the phase.
We prove this statement here.

In Sec. II we find that the spectrum of the phase is
Lorentzian of the form

H(Q)= 1

1+0 z
(81)

where ~~ is the decay time of the phase and H(Q) is as-
signed unity amplitude at Q =0. The area of H (Q) is

f" H(Q)dQ= f"
00 1+0,'~'

IJ

(82)

A filter with flat response over a bandwidth 8 ( &&1/~z)
in Hz passes a portion 4n8 of the (two-sided) spectrum.
Thus, the ratio of the total mean-square fluctuations [in-
tegral over all Q of H(Q)] to the mean-square fluctua-
tions passed by the filter is'" =4B; (83)JJ

The sampling time T is related to the bandwidth B by the
Nyquist criterion

B =1/2T .

Thus, the fraction 4B~& can be written

4B&p ——2'/T . (84)

where T is the sampling time for b. Introducing (A3) into
(A2) we find

2 2
K

~, T

This is the desired relation.
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