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A theory of saturation spectroscopy is developed which accounts for effects of level degeneracy.
The theory can be applied to those situations in which a pump laser field of arbitrary strength and
polarization acts between two manifolds of degenerate or nearly degenerate atomic levels, while a
probe laser field of arbitrary strength and polarization acts between a coupled manifold of levels.
As such, this theory of "three-level" systems could, in principle, include effects arising from level

degeneracy, optical pumping, atomic motion, transient laser fields, different polarizations and
strengths for pump and probe fields, and atomic transit across the laser fields. The present calcula-
tion, however, is limited to a study of optical pumping and field polarization effects for pump fieMs
of arbitrary strength and weak probe fields interacting with a single velocity subclass of atoms.
Probe absorption line shapes clearly display the effects of pump-field strength (Rabi splittings),
pump-field polarization (positions and number of Rabi-split resonance peaks), pump-field detuning
(positions of resonance peaks), and optical pumping (relative strengths of the resonance peaks). The
calculation is carried out with the use of an irreducible tensor basis for the atomic density matrix al-

though a standard (m-basis) calculation is included in an appendix.

I. INTRODUCTION

Over the past 15 years, laser saturation spectroscopy
has become an accepted method for obtaining Doppler-
free spectra of atomic and molecular vapors. The three-
level system (see Fig. 1) is typical of the level scheme em-

ployed in a laser spectroscopy experiment. A "pump"
laser acting on the b-c transition selectively excites a velo-

city subclass of atoms. A "probe" laser acting on the cou-
pled c-d transition interacts with this excited velocity sub-
class only; consequently the linewidth of the probe absorp-
tion line profile is determined by the natural rather than
the Doppler width associated with the transition. Owing

FIG. 1. A schematic representation of a three-level system
used in laser spectroscopy experiments.

to its relative importance as a prototype system, the
three-level configuration has been of extensive theoreti-
cal' and experimental" ' ' ' ' ' interest.

In many situations of practical importance, the actual
level structure encountered in a given problem cannot be
adequately represented by a "three-level" approximation.
For example, the often used three-level system in Na
(3S~3P~4D) is actually composed of 72 levels. Of
these 72 levels, the number that enters into a given satura-
tion spectroscopy experiment depends on the laser band-
width, laser polarization, and the tuning range of the
pump and probe laser fields that are used. In formulating
a complete theory of saturation spectroscopy for this mul-
tilevel system, one must solve the equations of motion for
the density-matrix elements characterizing the system. If
all 72 levels enter, one is faced with 5184 density-matrix
elements for each velocity subclass of atoms. The prob-
lem can be substantially simplified if narrow-band lasers
are used such that the laser-induced transitions can be as-
sumed to occur between specific hyperfine states of the
3S, 3P, and 4D manifolds.

In this paper, we develop a general formalism that can
be used to solve problems involving three-level systems
with magnetic degeneracy. The type of level scheme
under consideration is shown in Fig. 2. There are three
manifolds of levels, labeled 1, 2, and 3, respectively.
Within a given manifold, the levels (labeled by Roman
letters) are nearly degenerate and could represent for ex-
ample, different hyperfine levels within a given fine-
structure multiplet. Each level labeled by a Roman letter
is characterized by a total angular momentum quantum
number F and is itself degenerate, containing (2F+1)
magnetic sublevels. A pump laser field of arbitrary polar-
ization acts between manifolds 1 and 2, while a probe laser
field (which, in principle, can be of arbitrary strength) acts
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with the modifications arising from optical pumping.
There are also two appendixes containing somewhat corn-
plementary calculations. In Appendix A, the problem is
recast and solved in the standard (m-basis) representation.
This representation is particularly useful in obtaining
steady-state line shapes when the pump and probe fields
are either linearly or circularly (but not elliptically) polar-
ized and when there is no collisional relaxation. In Ap-
pendix 8, we use a dressed-atom picture to obtain predic-
tions for the positions of resonances that appear in the
(weak) probe absorption line shape when a strong pump
field of arbitrary polarization acts between manifolds 1

and 2.

II. THE LIOUVILLE EXPANSION

FIG. 2. Level scheme of Fig. 1 generalized to allow for level

degeneracy.

between manifolds 2 and 3. The frequency separations be-
tween the manifolds is such that the pump field drives the
1-2 manifold only and the probe field the 2-3 manifold
only.

Using irreducible tensor techniques (which will be ex-
tremely useful when relaxation processes are included), we
formulate the theory in a way that can incorporate effects
arising from atomic motion, optical pumping (resulting
from spontaneous emission), transient laser fields, and fi-
nite transit times of the atoms in the laser field. Several
other treatments of magnetic degeneracy effects in three-
level systems exist' ' ' ' ' ' ' but none, to our
knowledge, provides the type of generality to be presented
below. As an application of the formalism, we calculate
the steady-state probe absorption line shape when a strong
pump field acts between two degenerate sets of levels of
the 1-2 manifold and a weak probe field between two de-
generate sets of levels of the 2-3 manifold. The calcula-
tion is performed for a single velocity subclass of atoms;
that is, no integration over the atomic velocity distribution
is carried out. As such, the calculation, at its present
stage, is applicable to laser fields interacting with an
atomic beam rather than to laser fields interacting with an
atomic vapor in a cell. Optical-pumping effects are in-
cluded. The resultant line shapes will be seen to be strong-
ly dependent on the pump-field strength, polarization, and
detuning, as well as on any optical-pumping processes that
may be occurring.

The paper is organized as follows. In Secs. II—IV some
properties of irreducible tensor operators are reviewed and
the equations of motion for density-matrix elements, ap-
propriate to the atom-field interaction under considera-
tion, are obtained. In Sec. V, a steady-state solution, appl-
icable to the strong-pump-field, weak-probe-field limit is
derived in a Inanner analogous to that employed in treat-
ing three-level nondegenerate systems. Probe absorption
line shapes for specific values of the pump-field strength,
detuning, and polarization are presented in Sec. VI, along

P=QPIOI r

I

then it may be easily shown

p, =Tr(O, p) .

(2)

(3)

The corresponding expansion of the Schrodinger equation
for the density matrix,

p= — (Hp pH), — —

where H is a semiclassical Hamiltonian which includes
the perturbations due to the incident laser radiation, leads
to a set of coupled first-order differential equations for the
time-dependent coefficients pI in Eq. (2),

PI g+IJPJ ~

J

where the component of the "Liouville matrix" I.IJ is re-
lated to the Hamiltonian H and to the operators 0 by the
expression

I.„= 'Tr(H [o„oJ]). —

For nondegenerate two- and three-level systems, the
operators 0 take the form of sets of two- and three-
dimensional Lie matrices, respectively. ' The equations
derived using these matrices have been applied to
numerous problems in laser and molecular physics and are
well described in textbooks and review articles. '

In the case of degenerate level systems, it is convenient

The method used here to derive the equations which
describe the interaction of laser radiation with an atomic
system involves a Liouville expansion of the density-
matrix equation of motion for the system; a procedure
that has been discussed by Fano. ' The ensemble
behavior of the atoms is described by the density matrix p,
which is expanded in terms of a complete set of operators
0 spanning the Hilbert space of the system. These opera-
tors are chosen so that any arbitrary pair of them, say OI
and OJ, obey the orthonormality condition

(OI OJ ) ~IJ (1)

so that if p is written
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to expand the density matrix in terms of a set of spherical
tensor operators 0, which span the degenerate space of the
atomic energy levels between which pumping takes place.
This method has been discussed by Omont, and has been
used previously to describe single- and double-resonant ra-
diative processes between molecular rotational energy lev-
els. ' In this case, the tensor operators are constructed
by forming Clebsch-Gordan expansions of projection
operators between the hyperfine energy eigenstates

~
F,mF) of the atomic system. Therefore, if we consider

two hyperfine states F;,FJ of the system, we may define

Og(i,j)=g(—1) ' (E,Q ~F;,m;Fj. ,n)
m, n

(7a)

where

L~ (ij;r,s)= —TrIH[[O~(i j)]t,Og (r,s)]j .

The values of K', Q', r, s entering the sum in Eq. (11) re-
flect the various multipoles and intermediate states that
are coupled into the problem by the external fields. An
explicit evaluation of the elements of the Liouville matrix,
as in Eq. (12), will be given in Sec. IV.

(12)

III. THE HAMILTONIAN

In this section we will show how the Hamiltonian for a
two-level nondegenerate system may be expressed in a ro-
tating frame, and then demonstrate that the resulting ex-
pression may be readily adapted to the degenerate case.
The Hamiltonian which appears in Eq. (4) may be written

[O~(i,j)]"=(—1) ' ' 0 (j,i), (7b) H =H, +U(t), (13)

where the factor ( —1) ' indicates a choice of phase, and
n: n—; Q—:——Q. When evaluated in the energy state
representation, this operator may also be thought of as a
vector-coupled combination of density-matrix elements.
Thus expanding p in terms of the members of 0, cf. Eq.
(2),

p= g pg(t, J)Og(t,j)

gives

p~(t j)=g( —1) (X,Q ~
Fi,m;F~, n )p~„(t',j), (9)

m, n

where p~„(i,j) is the matrix element of the density matrix
between the energy eigenstates ~F;,m) and ~F~,n). If
i =j, then the quantities defined in Eq. (9) are related to
properties of the state F; alone. These could be the total
population of the state, or the alignment or orientation
among its degenerate components, depending upon the
value of It:. If K =Q =0, then we have quite simply

where the time-independent part Ho is the unperturbed
atomic Hamiltonian and U(t) describes the time-
dependent perturbations on the system due to the incident
laser field. We will perform the Liouville expansion of
Eq. (4) following transformation into a frame rotating at
the incident field frequency and after the application of
the rotating-wave approximation. Let us denote the
transformed Hamiltonian by H. The terms which will ap-
pear in the equations as a result of commutation of the
operators 0 with Ho in Eq. (12), will describe free preces-
sion of the system if solved for zero field. Those appear-
ing due to U describe the coherent radiative coupling of
the system. We will now derive an expression for U in
terms of the operators defined by Eq. (7), which may be
directly applied in the derivation of the radiative equa-
tions from Eqs. (11) and (12).

The atom-field interaction may be written

(14)

po(i, i) =g( —1) ' (0,0
~
F;,m;F;, m )p (t', i)

N(F;)
+2Ft+ 1

(10)

E(t) ( g eint+ g ee int)— (15)

where D is the dipole moment operator of the atomic sys-

tem and E(t) represents the time-dependent electric field
of the laser (the following analysis applies equally to mag-
netic dipole transitions). In the atomic rest frame, it is
convenient to write E as

where N (F; ) is the total population of the state Fi. If i &j
then the quantities defined by Eq. (9) are tensor multipoles
of different ranks describing the coherent coupling of the
two states. For example, the first-ranked tensors p~(i, j),
for two atomic states i and j which are dipole connected,
are directly related to the dielectric polarization induced
in the atom by an applied field coupling the two states.

%'e see that a Liouville expansion of the density-matrix
equation of motion, in terms of the tensors defined by Eq.
(9), leads to a set of equations involving quantities which
are closely related to physical properties of the atomic sys-
tem. These are given by the expression, cf. Eqs. (5) and
(6),

E( ) y L KK'( ~ .. ) X'(
)

K', Q', r, s

.g int
lJ0

U( )=——
. @ee int—
0

1

.g eint
J1

where 8' (a complex variable) represents a state of arbi-
trary polarization and 0 is the frequency of the radiation
including the Doppler shift. The first step in the deriva-
tion is to consider matrix elements of U(t), as defined by
Eqs. (14) and (15) between two nondegenerate states of an
atom, which for our purposes here we may define simply
as ~i) and

~
j). Then, Umaybe expanded
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where D;J
—= (i

I
D

Ij ) and DJ;—:(j I
D

I
i ) are dipole ma-

trix elements between the two states. Now U is taken into
the rotating frame by the matrix transformation

iTt
U=exp U exp (17) where

+(—1) ' '
G~t(e )'-0'(j, i)], (23)

where (F IID'II'�) I

@'
I

(24)

(18)

and the tiMe indicates the interaction representation of the
applied field. Explicitly the transformed matrix U is

0
U= ——

2 D, ~ g
D;J 8'

0

0

.g e2iQt
JE

(19)

Making the rotating-wave approximation involves
neglecting the terms in the second matrix on the right-
hand side (rhs) of Eq. (19) which are varying quickly com-
pared with the Rabi frequency. Under conditions typical-
ly encountered in laser spectroscopy experiments, these
may be reasonably neglected since they produce only a
small perturbative effect giving rise to the Bloch-Seigert
shift. The time evolution of the atomic system is dom-
inated by the terms in the first matrix on the rhs.

When we come to consider matrix elements of U(t) be-
tween two degenerate energy levels of an atom, we will ob-
tain a form for U analogous to that in (19), with each ma-
trix element in Eq. (19) replaced by a matrix which cou-
ples one set of degenerate levels to another. In order to
derive U for a pair of degenerate hyperfine states F;,F~
coupled by an incident radiation field, we express the di-

pole operator D in terms of the first-ranked basis tensor
operators O~(i,j ) defined in Eq. (7).

Noting that,

has been taken as real by an appropriate choice of phase.
In writing Eq. (23), we have adopted the convention that
state I'; has a lower energy than state I'J,' were the situa-
tion reversed, there would be a corresponding reversal in
the coefficients [i.e., eq~( —1) e-] multiplying the basis

operators.

IV. DERIVING THE LIOUVILLE EQUATIONS

The results of Sec. III can be generalized to allow one to
obtain the Liouville equation for a multilevel atom in-

teacting with one or more radiation fields. Each atomic
level i is characterized by total angular momentum F; and

is (2F;+1)-fold degenerate. Each radiation field of am-

plitude
I

8',i I, polarization e(i j), and frequency Q,i is

assumed to be nearly resonant with the i-j transition.
While equations of the type of Eq. (23) are easily written
for an arbitrary multilevel system of the type described,
we immediately restrict our discussion to the level scheme
of Fig. 3. In this scheme, levels b and c are coupled by the

field 8'b„ levels c and d by the field 8',d. Level a is not

coupled by the fields and acts as a sink only; consequently,
off-diagonal density-matrix elements of the form p~(a, j)
(j =b, c, or d) can be neglected.

A. The radiation coupling terms

It is again convenient to adopt a field interaction repre-
sentation. In analogy with Eqs. (17) and (18), one can in-

troduce a matrix exp(iTt/A') that generates the appropri-
ate transition to the rotating frame. For the level scheme
chosen, T is a diagonal matrix with elements

y -y(d-c)
1

D 8: g ( 1)qDqe
I

8 (20) y(d-c)

where Dq form the components of an irreducible tensor of
rank 1 and the eq are defined by

(21)
f ~/Mr

y(c

y(c-a)

and e=(e„,ez, e, ) is the complex field polarization vector
defined by

we can rewrite the atom-field interaction as

FIG. 3. Specific level scheme considered in this work. Each
level a (a=a, b, e,d) is characterized by an angular momentum
F and is (2F + 1)-fold degenerate.
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T = Tbb ————,
'

A'(Qb, +Q,d ),
(25)

(26)
K', Q', r,s

T„=—,
'

R(Qb, —Q,d ), Tdd = —,
'

R(Qb, +Q,d ) .
In the rotating frame, the Liouville equation may be writ-
ten

p Q(f,g) = i —(Tgg Tff—)pQ(f, g)
-KK

+ g LQQ (f,g;r, s)pQ (r,s),

where the first term on the rhs gives the precession at the
field frequency. We have omitted writing the tildes on the

p~ terms, but the field interaction representation is to be
understood.

The atom-field interaction Hamiltonian is a direct gen-
eralization of Eq. (23) and may be written

1

U= —g g ( —l)»GJ{e (ij )O»(i j)+(—1) 1 ' [e-(i j)]*O»(j,i) j,
q =—1 i,j =b, c;c,d

where

(27)

(2v'3)

By a direct application of Eqs. (7) and (12) one can easily calculate
KK'

[L' QQ'(fig iris)]atom-field

=—[3(2K'+ 1)]' ( —1)

(28)

x g( —1)»
i,j =b, c;c,d

EE' 1

Gije (i,j) (K,Q ~K', Q', l,q) 'F F F 5f„5;,5jg'
q f

EK' 1
(K,Q~i, q;K, Q) F F F 5„5,,5,,

r f s

E K'
+(—1) ' ' Gij[a (ij)]'-(K,Q ~K', Q', l,q) 'F

E—(K,Q ~

l,q;K', Q')

1

F '5f 5i'5gf
E' 1

F 5g, 5Jf5;„f s
(29)

B. The "free-precession" terms

The free atomic Hamiltonian Ho may be written as

Ho ——gE;+2Fi+ 1 00(i, i)

and it follows immediately from Eqs. (7) and (12) that

(30)

KK'
[L QQ (fg;r, S)]decay yfg5fr5gs5KK'5QQ' i (32)

I

field is, of course, well known. The corresponding rates
for decay between spherical tensor density-matrix ele-
ments have been presented by Dumont and Ducloy.
We shall briefiy summarize the results which are relevant
to the system under consideration here.

Spontaneous emission leads to decay terms of the form

L QQ(f g r s)]H, =l~gf5fr5gs5KK'5QQ'
KK' (31) where

where

co~ = (Eg Ef ) IA . — (31')

1

yfg 2 (yf+yg)

yf gy(f ~i ), ——
(33)

(34)

Note that these free-precession terms will combine with
those appearing in Eq. (26) to give a frequency detuning
precession for the off-diagonal terms.

C. The spontaneous decay terms

In the Introduction, it was stated that this article would
be concerned with atomic systems in which spontaneous
relaxation was the dominant damping process. The calcu-
lation of spontaneous decay rates between degenerate
atomic states using the method of the quantized radiation

[I- QQ (f,g;r, s)];.=y (r f )5fg5~5KK 5QQ

where

(35)

and y(f~i ) is the spontaneous decay rate from state f to
state i The sum . in Eq. (34) is over all states i to which
state f decays.

There can also be an "in" term resulting from states be-

ing populated by spontaneous decay from higher-lying
states. The Liouvillian matrix elements for this contribu-
tione are
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source term for po(r, r); the corresponding source term for0

the population is (2E„+1)' A,

(36)

We note that E and Q are conserved in all these decay
processes.

D. Incoherent pumping and transit-time effects

E. Equations for density-matrix elements

Equations (26), (29), (31), (32), (35), and (37) may now
be combined. Before doing so, it is convenient to simplify
the notation somewhat. We define

G=, G'=G~, Ged

It is often convenient to consider the system as open
rather than closed. Additional loss terms can be simply
included in the y; terms introduced above. Source terms,
representing some incoherent injection of atoms into the
system can be included by adding a term of the form

I
CO=CO&b, CO =COdz

(38)

~r ~fr ~gs ~KK'~QQ'~KO~QO (37)

to the rhs of Eq. (26). It should be noted that A,„ is a

so that unprimed variables refer to the b ctrans-ition and
primed ones to the c dtran-sition. Moreover, we define a
column vector u with elements

u =(p(a), p(b), p(b, c),p(c, b), p(c),p(c,d), p(d, c),p(b, d), p(d, b),p(d)), (39)

where, for brevity, we have defined

p(i) =p(i, i) . (40)

I

and the Liouville equation takes the vector form

U=Lu+ A, (42)

A, =(A, (a), A, (b),0,0, A, (c),0,0,0,0, A, (d)) (41)

Note that each element" in vector u is itself a vector
containing components having the various allowed values
for K and Q, determined by the multipole structure of the
levels involved. Similarly, the incoherent pump matrix
may be written

where L has contributions from the atom-field interaction
and the free-precession and spontaneous-decay terms.
Moreover, the field-precession terms A' '(Tff Tzg) ap-—
pearing in Eq. (26) have been incorporated into L. Expli-
citly, one finds

p g(a) = —y,pg(a)+y (c~a)pg(c)+A, ,5~o5go,

g(b)+y (c b)pg(c)+~b4o5go
Fb+F~ KK q 2Fb+q+K —K+ & KK'q K'

+iG g [(—1) ' '(~ )'A, bb pg (b,c)—( —1) ~~A&bb pg (crab)] i

K', Q', q

(44)

pg(c) = y,pg(c)+y —(d~c)pg(d)+A, ,'5~o5go

q

q

(45)

I

p g(d) = ydpg(d)+Ad—5~o5go+iG'g[( —1) " ~@~A,gg pg (d, c) ( —1) ' —(e' )"A,dd pg (c,d)],
q

p g(b, c)= —(y~ + iA)pg(b, c)+iGQ I ( —1 )
'

E~[A~~ pg (b) —( —1 ) + 'A, b, pg (c)]J

q

+iG'g[( —1) ' (e' )*Ay,„~pg (b, d))-,
q

(47)
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pg(c, d)= —(y +ih')pg(c, d)+lG QI( —I) ' ' 'e,'-[A d 'pg (c}—( —I) +'Ad d Pg'(d)]I
q

q

(48)

p Q(b, d) = —[ye+i(5+ 5')]pg(b, d)+i+( —1) ' ' [(—1)" Ge, A,~&'pg (c,d)+ G'e,'A«, 'pg (b,c)],
q

pg(g, f)=( 1) —f ' pg(f, g),

(49)

(50)

where

and

Afgpg ( —1) +'——[ 3(2K' +1}]'

E E' 1
&&&EgiKQ'lq&'FFF' ~

(51)

(52) t.u+A, =O . (53)

l

detuning of the pump field, assuming that the probe field
is weak enough to be treated in lowest-order perturbation
theory.

Before outlining the perturbation solution, it is con-
venient to perform some algebraic manipulations on Eqs.
(43) and (46). The steady-state equations for the density-
matrix elements may be written as

These equations have the same basic structure as those for
the nondegenerate case.

V. STEADY-STATE SOLUTIONS

In this section, we describe a procedure for obtaining
the steady-state solutions of Eq. (42) and calculate the
upper-state population as a function of the strength and

I

From Eq. (43), one immediately notes that the steady-state
solution for pg(a) is

A 5KO5QO y (c~a)pg(c)
pg(a) = (54)

Ya 3 0

With this solution, we can omit p(a) from our u vector.
It is also useful to solve Eq. (46) in the steady state and
obtain

~ g 1 K' K
pQ(d) g[( 1 ) E Aqdd pg'(d-, c}—( —1 ) (e )A«d pg-i(c, d)] +kd(yd ) 5K05go

q C (55)

If Eq. (55) is substituted into Eq. (45) and pg(c) is set equal to zero, one finds

pg(c)=0= —y,pg(c)+ Ad+A, , 5KO5gp
~ K K y (d~c) p p

yd

q

+iG'g I( —1) ' (s' )'[Ad„g y(d ~c)—(yd ) '( —1)'+ A,ddg]pg (c,d)
q

1 K' K—( —I)'~'-[( —1) ' Ad«' —y (d~c)(yd) '( —1} 'A.dd']pg(d, c)I . (56)

Equations (44), (56), and (47)—(50) with p Q
——0 are the steady-state equations which must be solved. They can be written

schematically in the form

I 'u+k '=0, (57)

where u is now the vector

u =(p(b), p(b, c),p(c, b),p(c),p(c,d), p(d, c),p(b, d), p(d, b),p(d)), (58)
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A,
' is given by

A, '=( A, '(b), 0,0, A, '(c),0,0,0,0, A. '(d)); '0 B1 0

TABLE II. Structure of matrix B. Each ~ indicates a
nonzero matrix element.

A, '(b) = A, (b),

A, '(c)=A, (c)+[y (d c)lyd]A, (d),

A, '(d}=A, (d),

(59)

28 0
0 Bt3

B3

and L ' is the matrix composed of the various matrix ele-

ments apearing in Eqs. (44), (56), and (47)—(50}. Each ele-

ment of the u and A,
' vectors are themselves vectors in

Liouville space (i.e., p(b) is composed of the (2Fb+1)
elements p~(b) (0&K&2Fb, E&Q—(K), p(b, c) of the
(2Fb+1)(2F, +1) elements pg(b, c) (

~
Fb F,

~

(—K
& )Fb+F, ~, —K&Q &K); A, '(b) of the (2Fb+1)' ele-

ments A~(b)=Ab5x05go [all but (2Fb+1) of the elements
are zero]; etc. ) while the matrix elements L(f,g;r, s) are
themselves matrices [i.e., L(b;b, c) is a (2'+ 1) by
(2Fb+1)(2F, +1) matrix with elements L~~ (b;b, c);
L(b,c;c,d) is a (2Fb+1)(2F, +1) by (2F, +1)(2Fd+1)
matrix with elements Lgg (b,c;c,d); etc.].

From Eqs. (44), (56), and (47)—(50), one can deduce that
the matrix L' can be written in the form

b

b, c
c,b
c

c,d
d7c
b, d
d, b

c,d

0
0
0
0

d, c

b, c

b, d

0

0
0

c,b

d, b

I.'=3 +i6'8, (60)

where A has the block diagonal form shown in Table I and
B the block off-diagonal form shown in Table II. (The
matrix elements of A ), A q, A 3 and B ), B q, B 3 are listed

c,d d, c

A 01

20 A

0 0 A 3

b, c c,b

TABLE I. Structure of matrix A. Each ~ indicates a nonzero
matrix element.

explicitly in Appendix C.)
Perturbation solution for iveak fields. In the limit of a

weak probe field one can solve Eq. (57) in a manner that
parallels the solution for the nondegenerate case. ' The
only difference is that elements of u are now vectors (in-
stead of scalars) and matrix elements of the A and B ma-
trices which comprise L' are now matrices instead of sca-
lars.

As in the nondegenerate case, one assumes a solution

Ai ——

b
b, c
c,b

in) (n) (G )n (61)

and equates various orders of G' in Eq. (57). In this pa-
per, we calculate the upper-state density-matrix elements
p~(d) to second order in O'. Therefore we set

c,d
d~c
b, d
d, b

c,d d, c b, d

~ (0)+~ (1)+~ (2)u=u +u +u
and using Eqs. (60) and (61), find

u "'=—iG'A '8 u
(0)

(62)

(63)

(64}

(65)

Given the structure of the L ' matrix, it is convenient to
separate the u vector as

u =(u)~ u2y u3)

where u&, u2, and u3 are the vectors

(66)
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u) ——(p(b), p(b, c),p(c, b), p(c) ),
u2 (p——(c,d), p(d, c),p(b, d), p(d, b) ),
u3=p(d) .

It is now fairly straightforward to carry out the calcula-
l

~ (p) ~
~ (p) ~ (p)

u = —A A, =(u), 0 u3 ),
where

(68)

tions in Eqs. (63)—(65). Taking into account the form of
A,

' and A we first calculate

p' '(b)=u) (b)= —[A, '(b;b)A, '(b)+A ( '(b;c)A, '(c)],

p
' '(b, c)=u) (b,c)= —[A ) '(b, c;b)A, '(b)+A ) '(b, c;c)A, '(c)],

p' '(c,b)=u) (c,b)= —[A ) '(c, b;b)A, '(b)+A ) '(c, b;c)A, '(c)],

p
' '(c)= u I '(c)= —[A, '(c;b)A, '(b)+A ) '(c;c)A, '(c)],

p ' '(d) = u3 (d) = —A 3
'1, '(d) = A, '(d)/yd .

(69)

c =( c), c2, c3)=Bu (70)

Formal expressions can be written for the inverse matrices
which appear in Eq. (69); these terms include the satura-
tion effects of the strong field. Rather than list these ex-
pressions (which are somewhat unwieldly), we shall simply
assume that computer solutions have given us values of
u ' ' as a function of pump-field amplitude 6 and
atom —pump-field detuning b, .

Having obtained u ' ', we form the product

l

Finally, the second-order contribution to u is given by

~ (2) .~~ ~ —1 ra~ (1) t ~ (2) ~ (2) ~ (2)i
U = —LGm nu =(U ],U2, U3 /

where

(2) .
.GA —B ( )U) = —l I )U2

~ (2)
U2 =0

G'A -'B t-")
U3 — ~ 3 3U2 ~

(74)

(75)

and find
(p) (o)

c)——0, c2——82U) +B3U3 p c3—0 .

Using this result and Eq. (64), we obtain

where

u )
' ——0, u2 ———tG'A 2 'c2, u3 —0

(72)

(73)

Therefore, to second order in the probe field, the upper-
state density-matrix elements are given by

~(d) ~(0)+~(2)

(G')'Bt ~ —) B -„(o)+B -„(o))
Xd Xd

(76)

The matrix (A 2)
' may be easily calculated and the

matrix operations implicit in Eq. (76) can be carried out to
obtain

p(d) = ~ '(d)/rd [(G')'/~d](B—3(d;c,d)[q„~,d+A, (c,d;b, d)A,'(c,d;b, d)] )-
X [sled [Bp(c, d;c)p

' '(c)+B 3(c,d;d) p
' '(d)]+A 2(c d;b, d)B 2(b, d;b, c)p 'o'(b, c) I

+B 3(d;d, c)[7)bd7)«+3 2(d, c;c)A 2(d, c;c)]

X jrjbd[B2(d, c;c)p (c)+B3(d, c;d)p ' (d)]+A 2(d, c;d,b)B2(d, b;c,b)p (0)(c,b)I ),
(77)

where

d
——y,d+i 6',

lbd 7 bd+i(~+~ ) ~

In this form, the expression for p(d) is closely related to
the analogous expression obtained in the nondegenerate
case.

The method of calculation is as follows: For a given
value of 6 and 5, the matrix A] is inverted so that values
of p

' may be obtained; then, the upper-state density-

l

matrix elements p~(d) are found by performing the neces-
sary matrix manipulations of Eq. (77). Results are
presented in Sec VI

VI. APPLICATION OF THE FORMALISM

The formalism developed in the previous sections can
be used to derive theoretical expressions for probe absorp-
tion line shapes which can then be compared with experi-
mental profiles. For laser fields interacting with an atom-
ic vapor confined to a cell, it is necessary to average Eq.
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(77) over the atomic velocity distribution. In this work,
we consider the somewhat simpler situation of laser fields
interacting with an atomic beam, for which no velocity-
averaging is needed. For the atomic-beam —laser-field in-
teraction, we explore the effects of optical pumping and
saturation in systems of three degenerate atomic energy
states, doubly excited by an arbitrarily strong pump field
and a weak probe field, using different arrangements of
the polarizations of the two fields.

We will thus use the formalism to describe the behavior
of a beam of atoms entering and passing through an ar-
rangement of two laser fields, so that the atomic beam and
the two laser fields are mutually perpendicular to each
other. The atoms are in their ground state when they
enter the interaction region and we wish to calculate the
average distribution of upper-state population for atoms at
all stages of transit through the laser fields. This might be
monitored experimentally, for example, by observing
fluorescence from the uppermost level. We may model
this essentially dynamical system by finding the steady-
state solution of Eq. (57), when A.

' contains the rates of
creation or entry of ground-state atoms into the beam, and
the diagonal elements of L' include a damping term
representing the loss of atoms are they pass out of the
path of the laser fields. A subtle assumption is implied by
solving Eq. (57) in this manner, which is that atoms have
an equal probability of disappearing from the beam at any
point along the path of transit through the laser fields,
rather than just at one point of exit. This is clearly un-
physical, but it may be easily shown that for y, /I, & 10,
where y, is the rate of spontaneous decay of level c (see
Fig. 3) and I, the rate of exit of atoms from the beam,
the solution of the steady-state problem with a homogene-
ous decay rate I", is approximately equal to that of the
time-dependent problem of interest. In this limit, the
solutions obtained by this method will demonstrate the
characteristics of saturation and optical pumping in the
systems we are modeling, and provide useful insights in a
more concise and less time-consuming way than by the
time-dependent calculations that would otherwise be re-
quired.

We will assume that the atoms effectively enter the two
fields simultaneously; and that any variation of I, with
velocity can be neglected, so that no velocity-averaging
over the final spectrum is necessary. We will also assume
that the field strength of the two lasers is constant over
the cross-sectional area of illumination, and that relaxa-
tion between the atomic states takes place by spontaneous
emission only.

We have chosen to apply the formalism to a manifold
of three degenerate atomic hyperfine states b, c,d, with to-
tal angular momentum quantum numbers Fb ——1, F, =2,
and E~ ——3, in order of increasing energy, respectively.
For our primary purposes here, we will not consider a
lower state a (see Fig. 3) into which the atom can be
pumped by spontaneous emission from state c, but will
concern ourselves with the pumping processes within the
manifold b, c,d only. However, we will provide a brief dis-
cussion of the effect of a fourth level, a, at a later stage.

We are then seeking to describe how the population of

the atomic state d changes as the atoms enter and pass
through the region of illumination of the two laser fields.
We calculate the steady-state population N(d) as a func-
tion of probe detuning b, ' for various values of (1) pump-
field strength G, (2) relaxation parameters y„y(c~b),
and y(c —+a), (3) pump-field detuning b„and (4) pump-
and probe-field polarizations. For a given pump-field de-
tuning b„pump-field strength parameter G, and pump-
field polarization, a computer solution of Eq. (68) pro-
vides values for p 'o'(c), p

' '(d}, p
' '(b, c), and p

' '(c,b).
These quantities are then substitutied into Eq. (77} from
which one calculates the final-state density-matrix p(d) as
a function of probe-field detuning and polarization. [The
A and 8 matrices needed in Eqs. (68) and (77) are given in
Appendix C.] In all the calculations, the atoms are as-
sumed to enter the interaction region in an unpolarized
ground state. All frequencies are given in units of the in-
verse transit time I,.

In order to calculate the transition matrix elements for
the three-level manifold of states introduced above, we
have considered them to be part of a set of electron fine-
structure states of Na. Thus the three-level system may
be more completely labeled 3Si ~2 (F= 1)~3Pi ~i(F=2)::".D3/2 (F=3). The series of curves in Figs.
4(a)—4(e) show the distribution of population
N(d) = i/7po(d) in the uppermost level d [4D (F=3)], for
a circularly polarized pump field held on resonance
(b, =0) as a function of the probe-field detuning b, ' for
several values of G. We have taken (in units of I, )
A,~ ——A,, =0; A, i, =V 3 (corresponding to unit population in
state b in the absence of all fields), y& ——0, and
y, =y(c —+b) =y~ ——50. The probe field is linearly polar-
ized and its strength parameter 6' is chosen such that per-
turbation theory is valid. In particular, a value
G /y, y,~-3.889&&10 (&1 was assumed leading to
values for the upper-state populations shown in Figs.
4(a)—4(e). This value for G' corresponds to a laser power
density of order 1.0 W/m; the upper-state population
varies as 6 in the perturbation limit. It may be seen in
Fig. 4(a) that with a value of pump-field strength less than
the relaxation rates, the population in the uppermost level
has a single-peaked, Lorentzianlike distribution. Howev-
er, as the pump field is increased, we see that this struc-
ture first separates into two peaks [Fig. 4(c)] due to the
Rabi splitting, and later [Figs. 4(d) and 4(e)] separates into
six clearly distinguishable peaks This effect is explained
by the fact that the magnitude of the Rabi splitting of the
upper resonance depends linearly upon the product of the
pump-laser-field amplitude and the matrix element for the
pump transition. Since the lower pair of levels (F= 1,
F =2) are irradiated by circularly po.arized light the
pump laser effectively drives three transitions, with dis-
tinct matrix elements, between them. For example, if the
selection rule AM=+1 applies, then the field will drive
the following three transitions: (F= 1, M = —1)
—»(F =2, M =0), (F =1, M =0)~(F=2, M =1);
(F=1, M =1)»(F=2, M =2). Calculation quickly
shows that it is the last of these three which has the larg-
est transition matrix element. Therefore, as the pump
field is increased, the presence of three transitions leads to
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planation of the differences in the intensities of the Rabi
lobes in Figs. 4(d) and 4(e), as opposed to their position,
depends upon the effects of optical pumping between the
lower level b (I' = 1) and the center level c (F=2). As we

have seen, the circularly polarized pump field induces
transitions with AM=+1 between b and c. However,
when the atom is in state c, spontaneous emission may
lead to its decay back down to b, and since the tensor
quantities p~(c) decay diagonally "into" their counter-
parts p&(b) [see Eqs. (35) and (36)j, indicating that relaxa-
tion processes will occur with selection rules EM=0, +1.
The net effect will be a transfer of population, by stepwise
optical pumping, along the series of degenerate levels (if
say EM = + 1 for the radiative process) towards the F =2,
M =+2 level. We have seen that pumping on the (F=1,
M =1)~(F=2, M =2) transition leads to the most wide-

ly displaced Rabi lobes and since there is a tendency for
population buildup in the (F=2, M =2) level by optical
pumping, this will lead to increased population transfer to
the uppermost level d at these lobe frequencies, i.e., the in-
tensity of the outer Rabi lobes is enhanced with respect to
the others by the optical-pumping effect. Certain proper-
ties of the saturation of level c may be seen in Figs.
4(c)—4(e). Note that the intensity of the split lobes does
not increase with increasing field strength. The popula-
tion of level c is already saturated by the pump field in
Fig. 4(c); further increases in G serve only to increase the
Rabi splitting. It is also interesting to note that the peak
intensity in Fig. 4(b) is greater than that in Fig. 4(e). At
the pump-field strength of Fig. 4(b), saturation of level c
is not complete, but interference effects between "step-
wise" and "two-quantum" excitation processes lead to a
larger intensity.

The intensity ratio of the lobes depends upon the
pump-field strength, the rates of spontaneous relaxation
and the upper-state Clebsch-Gordan coefficients. The ef-
fect of a reduced spontaneous-decay rate is clearly seen in
Fig. 5, which is drawn with y, =10, but other parameters
the same as in Fig. 4(e). The difference in intensity of the
various Rabi lobes is not as marked as in Fig. 4(e). This
feature can be explained by noting that, in the strong sa-

turation limit, the ratio of population in the M =2 sublev-

el of state c (which drives the outer lobes), to the total
population in that state, varies from —,

' to 1 as y, /I,
varies from a value much less than unity to a value much
greater than unity.

In Fig. 6, we show the spectrum of population distribu-
tion in level d when optical pumping does not occur. This
(artificial) condition of no optical pumping is simulated by
neglecting the spontaneous emission from level c into level

b and considering level c to decay entirely into level a [see
Fig. 3). In the calculations, all other parameters are un-

changed from those used to obtain the curve shown in Fig.
4(e). In Fig. 6, we see that the position of the Rabi lobes

remains unchanged. However, since no optical pumping
has occurred, the outermost lobes are no longer the most
intense. At this level of the pump field, all of the active
degenerate levels in c are saturated to the same population,
and it may easily be shown that the intensities of the Rabi
lobes now vary in proportion to the transition strengths
between these levels and those in d (F=3) to which they
are connected by the linearly polarized probe field. The
fact that the peak intensities are lower than those shown

in Fig. 4(e) is due to the loss of population to level a.
The case of a nonzero pump-field detuning, and no op-

tical pumping, is shown in Fig. 7. As in the 6=0 case
(see Fig. 6), six resonances may be seen, but the symmetric
nature of the solution is lost. The precise positions of the
resonances in this strong-field case may be calculated us-

ing the equations in Appendix A.
In Fig. 8 is displayed the distribution of population in

level d when both pump and probe transitions are irradiat-
ed with radiation having the same direction of linear po-
larization. It is seen that in this case only two Rabi lobes
appear on either side of the original resonance for large
values of the pump field. This is a consequence of the
fact that when linearly polarized radiation is applied, the
pump transition (I' = 1~I' =2) has three components
(M =0, +1) as in the circularly polarized case, but now
two of them (M =+1) have identical transition strengths
and so induce the same amount of Rabi splitting on the
probe transition. In this case, the effects of spontaneous

40
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FIG. 6. Artificial suppression of optical-pumping effects by
taking y(c~b) =0. All other parameters as in Fig. 4{e).
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emission out of c into b do not lead to an anomalously
large value for one of the transitions relative to the others,
since optical pumping produces only a slight buildup of
population in the M =0 substate of level c. In the satura-
tion limit, the ratio of the population of the M =0 sublev-
el of state c (which drives the outer lobes) to the total pop-
ulation in that state, varies from —, to 0.6 as y, /I, varies

from a value much less than unity to a value much greater
than unity.

The case of an elliptically polarized pump field and a
copropagating linearly polarized probe field is illustrated
in Figs. 9(a)—9(e) for a I& ——1, F, =Fd ——2 three-level sys-
tem with no optical pumping. The probe field is polarized
in the x direction and the pump field's polarization is
specified by the angle

All graphs are drawn in the strong-field limit. For a=0'
(collinearly polarized), two peaks are seen (four peaks
would normally be seen, but selection rules for the upper
transition suppress one pair of resonances). For elliptic
(a=22.5' or 67.5') polarization, or circular polarization
(o.=45'), six resonance peaks are seen. The positions of
two of these peaks are fixed, while the positions of four of
them vary with the pump polarization, all other parame-
ters held constant. Finally, for cross-polarized fields
(a =90 ), two of the peaks coalesce into the fixed peaks so
that a total of four distinct peaks occur. A method for
predicting the positions of the resonances is given in Ap-
pendix B using a dressed-atom approach to the problem.
Note that the resonance positions in Figs. 9(a) and 9(c) are
identical with those in Figs. 8 and 4(e), respectively, since
it is the pump-field amplitude and polarization which
determines these positions. Since level c is saturated by
the pump field, the relative peak heights of the resonances
are determined by the Clebsch-Gordan coefficients associ-
ated with the c-d transition.

Returning to the case of a circularly polarized pump,
and with the same field strengths and relaxation rates used
in Figs. 4(e) and 6, we show in Fig. 10 the spectrum of
population in the upper level d when we include a second
ground-state level a to which atoms in state e may decay
by spontaneous emission, as shown in Fig. 3. This situa-
tion differs from that of Fig. 6 in that level c decays into
both levels b and a rather than into level a alone. Bearing
in mind the Na manifold mentioned above, we have used
the 3SI~2 (F =2) hyperfine level as the second ground
state in this case. After atoms are excited from 3SI&2
(I' =1)—+3P~~2 (F =2), they may decay spontaneously to
either 3SI&2 (F =1) or 3S»2 (F =2) as determined by the
branching ratio given by standard theory. Examination of
Fig. 10 shows that the positions of the Rabi lobes are
identical to those in the circularly polarized cases
represented by Figs. 4(e), 5, and 6, where the pump-field
strength is the same. However, the intensity ratio of the
lobes is different from that of either Fig. 4(e) or Fig. 6, al-
though the total rate of spontaneous relaxation from level
c is the same. Some elements of the stepwise optical-
pumping effect, leading to buildup of population in the
M =+2 level of the 3P&&2 (E =2) state, are still apparent.
The most widely displaced Rabi lobe is still the most in-
tense, but the effect is much reduced. The optical pump-
ing of state c has been reduced owing to the fact that the
system is no longer "closed"; population from the
M = —1 and M =0 substates of level b no longer transfer
all of their population to the M =1 substate, since some
population is lost to level a along the way. The overall
population of level b (and, consequently, that of level d) is
greatly reduced owing to the fact that a population of or-
der y, /(y, +I, )=1 is transferred to level a (leaving a
steady-state population of order I, /y, «1 in level b) by
the combined processes of laser pumping and spontaneous
emission. The ratio of the Rabi lobe intensities is inter-
mediate between that shown in Figs. 4(e) and 6. It may be
noted that level a can become polarized as a result of the
optical-pumping process. Under certain experimental
conditions, it may prove convenient to monitor this polar-
ization.
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may vary with time) interacting with atomic systems in
which relaxation processes can be neglected.
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APPENDIX A: SOLUTION
IN THE STANDARD REPRESENTATION
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FIG. 10. Modification of optical pumping when level c has

two decay channels. All other parameters as in Fig. 4(e).

VII. CONCLUSION

By using the methods of saturation and coherent tran-
sient spectroscopy for three-level systems, one is able to
obtain Doppler-free line shapes from which values for
various parameters of physical interest may be extracted.
In this paper, we have developed a theory which can be
applied to problems in which a pump laser field drives a
transition between levels "1"and "2'* while a probe laser
field drives a coupled transition between levels "2" and
"3." Each "level" (1, 2, or 3) was assumed to consist of a
number of degenerate or nearly degenerate substates so
that the theory could be applied to "real" systems.

Although the present calculation was somewhat re-
stricted (laser fields of constant amplitudes, a single velo-
city subclass of atoms, a "weak" probe field, no collisional
relaxation}, the formahsm is applicable to a wide range of
problems involving steady-state or transient laser fields.
Moreover, the theory can be extended to include collision-
al effects, enabling one to analyze experimental results
such as those obtained recently ' in an experiment in
which optical pumping and collisions modify the line
shapes observed in the 3S~3I'~4D excitation of sodium.

A density-matrix (rather than amplitude) formulation
must be used to incorporate relaxation processes (such as
optical pumping) into the calculation. The irreducible
tensor representation adopted in the text will prove partic-
ularly useful when the relaxation phenomena (spontaneous
emission, collisions) possess some type of spherical sym-
metry; in that case, the equations governing the relaxation
take on a particularly simple form in the irreducible ten-
sor basis. However, as noted in Appendix A, there may be
cases in which the standard (m-basis) representation offers
some advantages over the irreducible tensor one.

Finally, it should be noted that our approach differs
from that recently proposed by Morris and Shore. Their
calculation of state amplitudes in two-level degenerate sys-
tems involves a choice of bases which reduces the problem
to an analytically soluble form; their method is applicable
to fields of constant polarization (but whose amplitudes

E(i) ( geini+ g ee ini)— (Ala)

and levels c and d by the field

E i(r) ( g iein t+ g 'ee 'in't)— (A lb)

where the Doppler-shifted frequencies Q and Q' are relat-
ed to the radiation field frequencies QL, and QL, by

Q=QL, —k.v, O'=QL, —k 'v . (A2)

The propagation constants k and k' are defined by
k =Ql. /c and k'=Ql /c, and v is the atomic velocity.
The (complex) field amplitudes are written in the form

(A3)

where e and e' are now complex unit vectors subject to
the restrictions

k-e=O k '.e'=0

The irreducible tensor notation is particularly useful in
problems involving relaxation, since symmetry considera-
tions reduce the number of relaxation parameters which
enter to a minimum. However, if there is no collisional
coupling between magnetic substates, it may prove advan-
tageous to use the standard representation rather than the
irreducible tensor one. For example, consider a transition
Ji~J2 (Ji &Ji) induced by linearly polarized radiation,
in which optical pumping is not present. In the standard
representation, this problem reduces to a set of (2J&+1)
individual two-level problems between states (Ji,m) and

(Jz,m}. On the other hand, no such reduction into two-
level subspaces is possible in the irreducible tensor nota-
tion, owing to the linear combination of magnetic sub-
states which appears.

The standard representation is particularly useful when
(1) radiation fields coupling the various levels are either
circularly or linearly polarized and (2) no collisional relax-
ation is present. In this appendix, we use the standard
representation to obtain a steady-state solution to the
three-level problem subject to the above restrictions. It
should be noted that this appendix is essentially self-
contained.

The three-level system under consideration consists of
levels b, c, and d, having total angular momenta Fb, F„
and Fd, respectively. Each level actually consists of
(2E+1) degenerate magnetic substates. As viewed in the
atomic rest frame, levels b and c are coupled by the radia-
tion field
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It is still convenient to express the interaction potential
U= —D (E+E') in terms of components of irreducible
tensor operators of rank 1 as

D+ i ——+ (D„+i'),— 1

2

Do ——D, .

(A6)

U(t)= ——,
' [(—l)qD

i

8' ie' '

+( —1)q D ~

i

8' '
i

e' ']+H.c. , (AS)

where q can be equal to —1, 0, or 1, q' can be equal to
—1, 0, or 1, and the irreducible components of D are de-
f111ed by

The fact that q and q' each are restricted to a single value
implies that the radiation fields are either linearly or cir-
cularly polarized. In the form (AS), it is an easy matter
to calculate the necessary matrix elements appearing in
the Schrodinger equation.

In terms of a field interaction representation to be de-
fined below, the equations of motion for the density-
matrix elements (in the rotating-wave approximation) are

Bp (b)
Bt ybp (b)+A (b)5 + g yg (c~'b)pzz (c)+iG +qp +q (c b) iG +qpm +q(b c)

Bp (c)
yp —(c)+A, (c)5 ~ + g g yg' (a~c)pzz (a)+iG q p q (b,c)

Bt ™ m
a=b, d p,p'

(A7a)

Gm' —q, m'Pm, m' —q(C&b)+tG m, m+q'Pm+q', m'(d&C) tGm', m'+q'Pm, m'+q'(C&d) &

ap„.(d)

Bt ydp (d)+A, (d)5 + g yg (c~d)pzz (c)+iG q p q (c d) iG q p q (d c)

Bp (b, c)
qbcPmm'(b&c)+ Gm, m+qPm+q, m'(c) Gm q, m'p' m, m' q—(b) — m', m'+q'Pm, m'+q'(b&d) &

(A7c)

(A7d)

Bp (c d)
9cdpmm'(c&d)+tGm, m+q'Pm+q', m'(d) tGm' q', m'pm, m'—q'(c)+iGm— q, mpm —q, —m'(b&d) & (A7e)

Bn (b d)Pmm' ~ ~ ~ t

at
gbdPmm''(b&d)+iGm, m+qPm+q, m'(c&d) tGm' q', m'Pm, m'—q'(b&C) &—

p (a,p) =[p (p,a)]' . (A7g)

The various terms appearing in these equations are as
follows. (1) The variables p are defined by the field-
interaction representation,

yg (a~a')= —', (2F +1)(—1)

X ( l, m —p i Fcci&m;Fc»p )

p(b, c)=p(b, c)e'~ ', (A8a) X(i,m —p iF,m';F, p')y(a~a'),

p(c,d) =P(c,d)e'~

(b d) (b d)el (iiQ+P 0 )c

(A8b)

(A8c)

The quantities p and p' can take on the values of +1 to
indicate the type of three-level system under considera-
tion. For the upward cascade (co,b & 0, cod, & 0), p= p'= 1;
for the V configuration (co,b &0, cod, &0), p= —1, p'= 1;
for the A configuration (co,b & 0, cod, & 0), p= 1,
p'= —1. (2) The quantity y (a=b, c,d) is the decay
rate out of state a. (3) The quantity yg (a—+a') is the
rate at which spontaneous emission creates p (a') from

pzz (a). Explicitly, one finds

( —1) '
/

I'
i
(F„m'[Fb,m;l, q)(biiDiiic)
2(2F, +1)'"r

=6' ~ = ( —1) ' '(F„m'
i Fb, m; l,q )

X [3/(2Fc+ 1)]' 6, (A10a)

(A9)

where y(a~a') is the spontaneous-decay rate from state
a to state a' and p is a shorthand notation for ( —p). (4)
The field-strength parameters 6 ~ and 6' ~ are defined
by
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"
I

@' '
I

«+a m '
I
F m '1 q &(c I ID

'I ld &

2(2Fd + 1)

and

~ = f1—
I
. b I

(A13)

= ( —1) ' (Fd, m' IF„m;i,q&

X [3/(2F, +1)]'"G' . (A lob)

A simple inspection of Eqs. (A7) will reveal that

pm (a) is equal to zero unless m =m'. This result is a
direct consequence of our restricting the incident fields to
be either linearly or circularly polarized according to Eq.
(A5). Thus we may set

abc ='ytc+'p~

'rl, d =y,d+iP'b. ',
g~ ——yt, d +i (pb +p 'b, '),

where

yap= T(ya+y p)

(A 1 la)

(A 1 lb)

(Al lc)

(A12)

(5) The Am(a)'s are incoherent pumping terms

[A, (a)=(2F +1) ' =(2F +1) '~
A, ]. (6) The quanti-

ties ri«are defined by

p (a) =n (a)5 (A14)

where n (a) is the population of state F . Moreover, it
is apparent that the fields only couple the triplet of levels
(Fb,F, m+q, Fd +q+q). Were it not for spontaneous
emission back into the levels, the problem would be re-
duced to a set of separate three-level problems. The terms
involving y(a~a ) provide coupling between these vari-
ous subsets of levels.

A steady state s-olution to Eqs. (A7) may now be readily
obtained. First, Eqs. (A7d) and (A7e) are formally solved
to yield

pm, m+q(b~ ) qbc [tGm, m+q[ m+q( ) nm(b)] iGm+q, m+q+q'pm, m+q+q'(b~d) I

pm+q, m +q+q'(cid) 7lcd I EGm +q, m +q+q'[ m +q+q'(d) nm +q(c)] + lGm, m +qpm, m +q+q'(bi ) I

(A15a)

(A15b)

When these solutions are substituted into Eqs. (A7a) —(A7c) and (A7e) one finds that p(b, d) is given in terms of the pop-
ulations by

pm m+q+q (b, d)=(rttdR qq ) '[ —(T'qq )'[nm+q+q (d) nm+q—(c)]+(Tm'qq )*[nm+q(c) nm(b—)] j

and that the populations satisfy the coupled equations

(A q Bqq )nm(b—) —(A q Bmqq )n—m+q(c) Bqq nm+—q+q (d) gypsum(c~—b)nz(c) =k (b),
p

(A q B
qq )n +q(c) (A q

B qq')n (b) B qqn +q+q(d) g gyg~+q +q(a~c)np(a)=A (c)
a=b, d p

(A~+B )n + + '(d) B qq'n (b) B qq'(c) gy +q+q +q+q'(c~d)nt, (d)=A (d)
p

(A15c)

(A15d)

(A15e)

(A15f)

where

R q'=g~+(rib, /rice)Smq+(ncd/rib ) mqq'

S q=(rib, ) '(Gm, m+q)

Smqq' ( lcd ) (Gm +qim +q+q
~l

Smqq: ( 'Q bc ~ ~m, m +q ~m +q, m +q +q
'

cd bc
Smqq': ('abc /'lcd )Smqq

bc e bcT,q =(rib, /rid )S qq

cd e cd
Tmqq' = ( lcd /Qcd )Smqq

bb
~mq =yb+Smq+Smq ~

bc =S q+S q,

(A16a)

(A16b)

(A16c)

(A16d)

(A16e)

(A16f)

(A16g)

(A17a)

(A17b)

(A17c)

~mq 7c+Smq+Smq ~

X(Tm'qq +T~«)']+c c ~

cbmq=Smq+S q

mqq,
—[ mqq

—(Rmqq') '(Smqq +Smqq')

X(T'"qq )*]+c.c. ,

(A17d)

(A17e)

(A17f)

(A17g)

(A17h)

(A17i)

(A17j)
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gdd

. dd i bd —f cd cd
Bmqq' = l~mqq' (Rmqq' } ~mqq'( mqq' } ]+c c.

Bmqq' l~mqq' (Rmqq' } ~mqq'

X(T qq
+T'"qq )"]+c.c. ,

dc bd —1 cd bc
Bmqq' = (Rmqq' } ~mqq' ( Tmqq' ) +c.c.

(A17k)

(A 171)

(A 17m)

(A17n)

neglected, the equations reduce to (2F' '"'+1) sets of
three coupled equations for the populations
[nm(b), nm+q(c), n +q+q (d)).

If the probe field is weak, the results simplify consider-
ably. First, one can approximate R~qq by

Rmqq —rlbg+(ql~/rl, d )Smq =Rmq . (A18)

Next, one can solve Eqs. (A15d)—(A15f) with a trial solu-
tion of the form

Equations (A15)—(A17) represent a solution to the
steady-state problem. Since Eqs. (A15d)—(A15f) are cou-
pled, they must still, in general, be solved numerically.
However, since these equations involve level populations
only, the maximum number of equations to be solved has
been reduced to 3(2F™n}+I). If the y(a —+a') terms are

I

n (a)=n' '(a)+n' '(a), (A19}

where nm '(a) is a solution to zero order in G' and nm '(a)
is a solution to second order in G'. Substituting Eq. (A19)
into (A15d)—(A15fl and using Eqs. (A16)—(A18), one
finds that the n' '(a) are determined by

P

a=b, d p

(A20a}

(A20b)

(A20c)

(A2la)

P

while the n' '(a) are obtained from

Amqnm (b) Aqnm+—q(c) gy~gm
—(c~b)nz (c)=Bmqq nm (b) Bmqq nm—+q(c)+Bmqq n +q+q (d},

P

A qn +q(c) Aqnm (b)— ggy—~g+q +q(a~c)nz (a)=B qq'n +q(c) B qqn (b)+B qq'n +q+q (d)
a=b, d p (A21b)

A~n +q+q (d) gyg~+q+q'm+q+q(c~d)np (c)= B qqn +q~q'(d)+B qqn (b)+B qq'n +q(c)
P

(A21c)

Equations (A20) and (A21) are analytically soluble if
the y(a —+a') terms are ignored. In this limit, the prob-
lem has been reduced to a set of independent analytically
soluble three-level problems involving a strong pump and
weak probe field. Even if the y(a —+a') terms are re-
tained, analytic solutions are sometimes possible (see
below). Equations (A20) and (A21) along with Eqs.
(A15a)—(A15c) represent a solution to the three-level
problem for a strong linearly or circularly polarized pump
field acting on the b-c transition and a weak linearly or
circularly polarized probe field acting on the c-d transi-
tion.

To end this appendix, we solve Eqs. (A20) and (A21) for
the case discussed in the text. Specifically, we calculate
the level d population for the upward cascade level config-
uration. For the upward cascade, yg' (c~d)
=y~gm (b~c)=0, and Eqs. (A20c), (A21c), and (A17k)

I

I

give the upper-state population (correct to second order in
G' ~ }

n +q+q(d)= 1—
dd

Bmqq ~m+q+q (d }

Vd yd

n' '(a)=N (a)+5n' '(a), (A23)

where N (a) is the level population in the absence of all
fields, Eqs. (A22) and (A20) can be recast in the form
[making use of Eqs. (A17)]

(A22)

where nm '(b) and nm+q(c) are solutions of Eqs. (A20). If
we write

n ~q+q (d) =X +q+q (d}+
I 2

1 (Gm+q, m+q+q' }

yd [&~&cd+(G m+qm) l

X g~[& +q(c) —& +q+q (d)]+ rj~+ vP~ 5n' +q(c) +c.c.
2 Vbc

(A24)



1254 C. FEUILLADE AND P. R. BERMAN 29

where N~(m) and 5n~ '(m) satisfy the equations

2

Xb+Xc+
rbr. I n~ I

5n (c)
2yb, (Gm, m+q)'

yb[—N +q(c) N—(b)]+ gy (c~b)5n~ (c),

(A25a)

ybN (b) g—yg (c~b)Np (c)=A, (b),
P

y N +q(c) g y~g+q +q(d~c)N&(d) A +q(c)
P

(A25b)

(A25c)

N +q+q(d) A~+q+q(d)l (A25d)

Equation (A24) is reminiscent of theories in which

optical-pumping effects are neglected. Optical pumping
modifies the weights of the line shapes arising from the
various (Fb,F, +q, Fd +q+q ) subsystems, but does not
significantly affect the resonance positions. If there is no
incoherent pumping of levels c and d, one may reduce

Eqs. (A25) to

N +q(c) N +q+q(d) 0
2

ybyc rtbc I (piXb+Tc+ 5n +q(c)
2rb. (G, +q)'

(b)+ g y~g+q +q(c~b)5n~ '(c) .

(A26)

(A27)

Equation (A27) is easily solved for either a linearly or cir-
cularly polarized pump field. The upper-state population,
determined from Eqs. (A24), (A26), and (A27), was used
to check computer solutions that were obtained using the
irreducible tensor representation.

APPENDIX 8: POSITION OF THE RESONANCES
FOR ARBITRARY POLARIZATION

USING A DRESSED-ATOM PICTURE

For a strong pump field of fixed detuning 5, the num-
ber of resonance peaks which appear as the (weak) probe-
field detuning 6' is varied depends on the F values of the
various levels and the polarizations of the pump field.
The position of the resonances is a function of the detun-
ing b, and the pump-field strength. Those features are
clearly seen in Figs. 4 and 6 for an F=1~F=2~F =3
system. Six resonances appear for a circularly polarized
pump and four resonances for a linearly polarized pump
field. In this appendix, we present a method for predict-
ing the number and position (but not the strengths) of the
resonances for an arbitrary pump-field polarization, pro-
vided that the pump field is strong (

I
G

I
))all decay

rates).
A dressed-atom picture (DAP) is used to obtain these

predictions. This DAP ' is not the conventional
one' ' in which the radiation fields are quantized; how-
ever, for the problem at hand (strong pump field and weak
probe field incident on a three-level system) both ap-

(b, +b.') = —co;, co; =F.; ifi, (Bl)

where the pulse and probe detunings, 6 and 6', are de-
fined by

4=Q —co=QL —co —k.v,
6'=Q' —co'=QL —co' —k 'v (B2)

In effect, the "dressed" energy of state d is equal to
fi(b, +6') —and resonances can occur when this dressed

energy is equal to one of the dressed energies fico; of the bc
subsystem.

In the atomic rest frame, the Hamiltonian for the bc
subspace may be written as H =Ho+ U, where Ho is the
free atomic Hamiltonian (eigenvalues 0 for state

I

b ) and
hco for state lc)) and U is the atom-field interaction
given by [see Eqs. (A4) and (A5)]

U(t) = —7' g ( —1)qDqe
I

8'
I

e +H.—c.
q

(B3)

[see Eqs. (A6) for a definition of the irreducible tensor
components Dq', the eq components of the field polariza-
tion vector are defined in an analogous manner]. If the
state vector for the subsystem is expressed as

I y& =ab(t) b &+a.(t)e '"'I c & (84)

then, in the rotating-wave approximation, the probability
amplitudes ab(t) and a, (t) evolve according to

i ia ir(t)= g (H, +U) ttati(t),
I3=b, c

where matrix elements of Ho and U are given by

&,Fb m
I
ap IFb m') =0

(F„m
I
Hp I

F„m ' ) = —A'b, 5

(,Fb, m
I

U IF„m') =(F„m'
I

U
I

Fi„m')

= —iil g G +qeq,
q

(B5)

(B6a)

(B6b)

(B6c)

proaches give identical results for the probe absorption
line shape. The DAP is used to obtain the position of the
resonances; calculation of the relative strengths of the res-
onances is somewhat more involved and is not included in
this appendix.

Our calculation is similar in nature to a dressed-atom
calculation for magnetically degenerate systems given by
Cohen-Tannoudji and Reynaud. They calculated the
resonance fluorescence spectrum emitted by a "two-level"
system driven by a linearly or circularly polarized pump
field; we calculate the position of resonances in the probe
absorption spectrum of a three-level system for an arbi-
trarily polarized strong pump field and a weak probe field.

We consider the upward cascade (b~c~d) between
levels of angular momenta Fb, F„and Fd, respectively.
The zero of energy is chosen such that Eb ——0, E, =fico,
and Ed ——A'(to+to'). Resonance positions are obtained us-

ing a DAP by writing down the Hamiltonian for the bc
subspace in a field-interaction representation. If the
eigenvalues of this Hamiltonian are denoted by E;, then
possible probe absorption resonances can occur when
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where 6 ~ is defined by Eq. (A10a). All effects of relax-

ation are neglected in Eq. (85) since the DAP is useful for
predicting resonance positions only if the relaxation rates
are small compared with either

I
b,

I

or
I
6

I
.

Once eigenvalues of the matrix co defined by

co=H/A=(HO+ U)/A (87)

are found, resonance positions can be predicted using Eq.
(81). It might seem like a formidable task to diagonalize
the (Fb+F, +2)X (Fb+F, +2) co matrix, but certain gen-
eral results can be noted.

Linear or circular polarization If e. q is chosen equal to
any one of the values 5q ~, 5q 0,5q &, the field is either cir-
cularly (q =+1) or linearly (q =0) polarized. In that case
the co matrix breaks into a number of distinct 2X2 sub-
matrices and the diagonalization is trivial. One finds
eigenvalues

c(om, q)= ,' I
——b,+[6 +4(G +q) ]'/ I,

with

0(0.( DO (810b)

one can represent the general state of elliptical polariza-
tion for a field propagating in the z direction. In this case,
one must diagonalize the full matrix co. Careful inspec-
tion of the co matrix allows one to extract at least some of
the eigenvalues. For example, if F, =Fb+ 1, co; = —6 is a
double eigenvalue. Similarly, if F, =Fb, co; = b, and co; =0
are eigenvalues while, if F, =I'b —1, co;=0 is a double
eigenvalue. The existence of these eigenvalues and the
corresponding eigenstates imply that the number of possi-
ble resonances is unchanged from the case in which the
pump field is linearly or circularly polarized.

To obtain the position of the resonances, one must diag-
onalize co [defined by Eqs. (86) and (87)] with eq given by
Eq. (810). Although the diagonalization must, in general,
be done numerically, analytic solutions are sometimes pos-
sible. For example, if Fb ——1, F, =2, and b, =0, one finds

and resonance positions at

5' = —6—co(m, q)

m = Fb, ~ ~
—~, +Fb (88)

(89)

(811)
~i,2=+

I Gii I
/v 2,

~3,4, 5,6=+ (I» '"
I 611

I

x [7+5(
I

&i
I
+

I
&'-i

I

——"
I
&i&-i

I

')'"]'"

(1+a)
E'+) =+ eo——0

[2(1+ 2)]ij2
(810a)

which is in agreement with the resonance positions deter-
mined from the denominator of Eq. (A24). It can be
shown that there are always 2(Fb+F, ) resonances possible
irrespective of whether F, =Fb+ 1, F, =Fb, or F, =Fb —1.
(If F, =Fb+1 or F, =Fb an additional resonance, corre-
sponding to linear absorption at b, '=0, also occurs if level
c is incoherently pumped). For 6=0, some of these reso-
nances may coalesce.

Elliptical polarization. By choosing

Equation (811) gives the positions of possible resonances
for a three-level system in which a strong pump field
drives an F=1—+2 transition and a weak field probes a
coupled transition. As such, it correctly predicts the reso-
nance positions shown in Fig. 4(e) (e~ ——1,e i

——0—
circularly polarized pump field; Fb,F„F~=1,2, 3), Fig. 8

(ei ——e i ——1/V 2—linearly polarized pump field;
Fb,F„Fd 1,2,3), ——and Figs. 9(a)—9(e)
[a=tan '

I
(e&+e i) /(ei —e i)

I
elliptically polarized

pump field; Fb,F„F~=1,2, 2).

APPENDIX C: MATRIX ELEMENTS FOR TABLES I AND II

Prescriptions for calculating the eleinents (which are submatrices) of the matrices A and 8 appearing in Tables I and II
are given as follows:

[A i(b '»]gg = yb4tr 5gg-KK'

I

[A i(b;b, c)]gg ——( —1) ' '
[ [A &(b;c,b)]gg I' = —

I [A &(»c'»)]g g I

q

[A, (b, c)]gg y(c~—b)5xx 5gg,
[A i(b, c;b,c)]gg I [A )(c,b;c,b)]gg ——I*=—(yb, +id. )5xx 5gg,

I

[A i(b, c;c)]gg ——( —1) ' "
I [A ~(c,b;c)]g g, I'= —

I [A i(c;b,c)]g g I"

(Cl)

(C2)

(C3)

(C4)

(C5)

[Ai(c c)]gg = —y.4x5gg
KK'

[A2(c,d;c,d)]gg ——[ [A2(d, c;d,c)]gg I' = —(y,q+i 6')5' 5gg, (C7)
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[A2(c,d;b, d)]gg ——( —1) '
I [Ap(d, c;d,b)]g g, j*

= —I[A2(b, d;c,d)]ggj'= —( —1) ' ' I[Aq(d, b;d, c)]g,gj'
Fb+Fg+E' E+—t ~ ~ ~Ir's

q

[A2(b, d;b, d)]gg ——[[A2(d, b;d, b)]gg'j ——[ys~+t (b+b')]51rlr 5gg,
[As(d'd)]gg = —r~4vc &gg

KK'

[B,(b, c;b,d)]gg ———( —1) ' [[B,(,b;d, b)]gg. j'
F F= I [B2(b,d;b, c)]g g j'= —( —1) ' [B2(d,b;c,b)]g.g

b+ dg( ~

PARKED
q

q

F
[B,(c;c,d) ]gg ———( —1) '

I [B) (c;d,c)]gg, j*

(CS)

(C12)

(C13)

[Bs(c,d;d)]gg ———( —1) '
t [B3(d,c;d)]g g, j*

q

(C14)
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