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Molecular x-ray- and electron-scattering intensities
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Various results concerning molecular x-ray- and electron-scattering intensities are presented. (i)

Directional elastic intensities for H2 and N2 are calculated and a qualitative explanation for the re-

sults is given. (ii) The differences between the usual elastic intensities for x-ray and electron scatter-

ing from nonvibrating but freely rotating diatomic molecules, and the fully elastic intensities for
scattering from the J=O state are examined for H2 and N2. The usual elastic intensities are
rigorously shown to be greater than the fully elastic ones and the differences are correctly mimicked

by the independent-atom model. (iii) Polarization functions are found to be important in the
restricted-Hartree-Pock description of the total and elastic intensities. A counterintuitive ordering of
basis-set effects on one- and two-electron properties is found and explained in the case of H&. (iv) It
is shown that, in two-electron systems, a quantity closely related to the Coulson-Neilson Coulomb
hole function can be extracted from experimental x-ray-scattering intensities. Both these quantities

are displayed for H2. (v) An analogous procedure in the many-electron case is shown to yield the in-

tracular projection of the statistical pair-correlation density.

I. INTRODUCTION

The Wailer-Hartree' elastic (I,"i') and total (I,"') x-ray-
scattering intensities are given by '

p'I; (p)/I, =I,"'(p)/I. i+tr(p)+tr„, (p),

and

I,",'(p)/I„=( F(p) ~')

I,""(p)/I, i
——X+2K (p ),

where I, is the characteristic Rutherford constant, and the
electron-nuclear (cr„,) and nuclear-nuclear (o.„„) interfer-
ence terms are given by

o„,(p) = —2+Z&Re(F(p )exp( i p R—~ ) )
where the angular brackets denote the spherical average

(G(p, )) =(4') ' fG(p)dQ (3)

„„(p)=gZ Z j (plR„—R I) (10)

p is the momentum transfer, I,i the Thomson factor, X
is the number of electrons in the target molecule, and Har-
tree atomic units are used here and throughout this paper.
Moreover, the form factor is given by

F(p)= fp(r)exp(ip r)dr (4)

in which p(r ) is the one-electron charge density while

K(p)= f P(u)jo(pu)du,

where jo(x)=x 'sinx and P(u) is the radial intracule (in-
terelectronic distance) density defined in terms of the
spinless electron pair density 1" [with K(X —1)/2 normal-
ization] by

in which the sums are over the nuclei with charges Zz and

position vectors R~, and Re( . ) denotes the real part
of( . )

The above elastic intensities relate to the usual experi-
ments where rotational energy differences are unresolved.
The appropriate expression for the fully elastic intensity
for electron scattering from the J=0 state of a diatomic
molecule was given recently by Kayos, Monkhorst, and
Szalewicz, and the analogous expression in the x-ray case
is easily obtained. Thus

If 1(p )/I. i = l
(F(p ) ) I

'

These x-ray intensities are closely related to the elastic
(I',i ) and total (I,' ) electron-scattering intensities in the
first Born approximation. Thus

P Iei (P)!I,=I (e|)PI/, i+o„,(P)+tr„„(p)

p'If. i(p)/I, =
i (F(p ) ) —tr, (p)

~

'

=If &( )pI/, |2o„(p)Re(F(p))+[tr„(p)]'

in which
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(13)

Various results concerning these molecular x-ray-
scattering and high-energy electron-scattering intensities
are presented in this paper which is laid out as follows.
Methodological details such as integration techniques and
descriptions of the wave functions used are outlined in
Sec. II. Directional elastic x-ray-scattering intensities for
H2 and N2 are given in Sec. III which also provides a
qualitative understanding of these quantities. In Sec. IV,
it is shown mathematically that the usual elastic intensi-
ties are not less than the fully elastic ones, and numerical
results are presented which indicate that the differences
between these intensities can be correctly mimicked by the
independent-atom model. Section V deals with basis-set
effects on the various intensities. Section VI shows how a
quantity closely akin to the Coulomb hole can be obtained
from x-ray-scattering intensities for two-electron systems.
This is illustrated for H2 using theoretical intensities. In
Sec. VII, it is shown that in many-electron systems, x-ray
intensities can be utilized to obtain a quantity that con-
tains a mixture of information about the Coulomb and
Fermi holes. The main results are summarized in Sec.
VIII.

II. METHODOLOGICAL DETAILS

Vibrational averaging effects have been neglected
and attention will be restricted to the ground states of H2
and N2 at the experimental values of their equilibrium in-
ternuclear separations R, . The self-consistent-field (SCF}
wave functions used for H2 were the double-zeta (DZ)
function of Snyder and Basch constructed from (4s)
Gaussian-type orbitals (GTO's) contracted to [2s], and the
extended-basis (EB) function of Huang et al. ' constructed
from (5s, lp) GTO's contracted to [3s, lp]. The DZ func-
tion of Snyder and Basch constructed from (10s,5p)
GTO's contracted to [4s,2p] was used for N2. Moreover,
some of the intensities for the EB function for Nz con-
structed from Slater-type orbitals (STO's) by Cade and
Wahl" are available from the work of Epstein and
Stewart. '

The internuclear axis is aligned with the polar (z) axis,

III. DIRECTIONAL ELASTIC X-RAY INTENSITIES

The elastic x-ray-scattering intensities for Hq and N2 in
three directions are shown in Fig. 1. A qualitative under-
standing can be obtained by noting' that F(p) is a one-
dimensional Fourier transform of the charge density p(r)
projected onto the direction of the scattering vector p.
Thus F(pe ), the form factor in the bond direction
(8=0), can be expected to oscillate because the projection
of p(r) on the bond axis oscillates. Similarly F(pe„), the
form factor perpendicular to the bond (8=m./2), can be
expected to be diffuse because the projection of p(r) onto
the x (or y) axis is sharply peaked. A sharper and semi-
quantitative understanding is achieved with the help of
the independent-atom model (IAM) which assumes that
the molecular density is the simple sum of the spherically
averaged atomic densities centered at the equilibrium posi-
tions of the pertinent nuclei. For a homonuclear diatomic
A2 with the origin at the center of mass and the internu-
clear axis aligned with the polar axis, the IAM predicts

F&&M( p ) =2' (p )cos( p R„)
=2f„(p )cos [(pR,cos8) /2], (15)

where f~(p) is the atomic form factor. Thus in the bond
direction 8=0, Eq. (15) reduces to

F1~M (pe, ) =2f& (p )cos(pR, /2)

and the origin is at the center of mass. Hence the D
symmetry of the charge density ensures that F(p ) is real,
even, and independent of the azimuthal angle. The spheri-
cal average (3}simplifies to

1

(G(p))= f G(p)d(cos8), (14)

where 8 is the polar angle of p. Directional form factors
F ( p ) were computed analytically in the standard
manner, ' and the spherical averages (14) were carried out
by Gauss-Legendre quadrature. The radial intracule den-
sities required were taken from our earlier work' and the
Fourier-Bessel transform (5) was carried out using a nu-
merical technique developed previously by two of us. '
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FIG. 1. Elastic x-ray-scattering intensities in three directions. Bond direction corresponds to 0=0 .
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and in a direction orthogonal to the bond 8= m/2, it yields

FIAM(pe )=2f~(p) . (17)

Since the form factors for the H and N atoms are mono-
tonically decreasing functions, ' the IAM expressions
(15)—(17) are in harmony with Fig. 1.

IV. DIFFERENCES BET%EEN ELASTIC
AND FULLY ELASTIC INTENSITIES

(18b)

where equality holds in the case that F(p ) is spherically
symmetric. Naturally, Fig. 2 is in accordance with in-
equalities (18), with greater differences being seen in N2
with its more anisotropic I' (p ). The differences are
greater in the electron-scattering case and do not fall off
with increasing p as they do in the x-ray case.

Since the effect of rotation is primarily controlled by

The differences between the elastic and fully elastic x-
ray- and electron-scattering intensities are shown in Fig. 2.
The Schwarz inequality enables one to conclude that

(18a)

the molecular geometry which is properly accounted for
by the IAM, one might expect that these differences be-
tween elastic and fully elastic intensities would be correct-
ly predicted by the IAM expressions that are applicable to
homonuclear diatomics:

[ ei'(p) —f,'i(p)]/I, i ——[fz(p)] [g(pR, )],
p [I~i (p) —If,i(p)]/I, =[fg(p) —Z„]g(pR, ),
in which

(19)

(20)

g (x)=2+2j0(x)—4[j0(x/2)] (21)

The IAM differences are also shown in Fig. 2 and it can
be seen that they do mimic the true molecular differences.
Note that g (x)-ax for small x, and g (x)~2 in an oscil-
latory fashion as x~ oo. Moreover, the atomic form fac-
tor f„(p)-Zq+bp for small p, and f„(p)-dp for
large p. Thus the IAM difference (19) in the x-ray case
increases as p at small p and decays to 0 as p at large

p. Such behavior is seen in Figs. 2(a) and 2(c). In the case
of electron scattering, the IAM difference (20) increases as

p at small p and, because of the nuclear-nuclear interfer-
ence contributions, it approaches 2Z& in an oscillatory
manner at large enough p. In Figures 2(b) and 2(d), the
differences indeed approach 2 and 98, respectively, for H2
and N2.
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V. BASIS-SET EFFECTS

Figure 3(a) shows the differences between the

I,"1'(p)/I, i values computed from the EB and DZ func-
tions for H2. Clearly, polarization functions are needed to
obtain accurate results at the restricted Hartree-Fock
(RHF) level. This effect is most pronounced in the bond
direction. The volume element sinO damps this effect in
the spherically averaged I,"1'(p,)/I, i as illustrated in Fig.
3(b). The latter also shows basis-set effects on I,"'(p)lI, i

and cT„,(p). Of course, the sum of the basis-set effects on
o.„,and the x-ray intensities constitute the basis-set effects
on the corresponding electron intensities [cf. Eqs. (7) and

(8)]. Figure 3(b) indicates that in Hz basis-set effects on
the one-electron property I,']' are about twice as large as
those on the two-electron property It"'. This runs counter
to ones intuition until it is realized that it is an artifact of
the RHF approximation for the ground state of a two-
electron system. In this very special case one has

I HF( r 1 r2) =
l

4t( ri)4( r2)
~

pHF( r1)pHF(r2)/4 (22)

where p(r)=2
~

P(r)
~

is the RHF charge density arising
from the RHF orbital P(r). It follows that, for a two-
electron system described by a RHF wave function,

(23)

0
0 2 4 6 8 10 12 14

pj//-1

0
0 2 4 6 /1 B 10 12 14

and, consequently,

I 1'( p, B, ) Iei ( p ~B2)=2[I—/"'( p,B1 ) I,"'(p, B2)], —
FIG. 2. Differences between the elastic and fully elastic x-

ray- and electron-scattering intensities for H2 and N2 (note the

changes in scale). , calculated using molecular wave func-

tions; —0 —Q, calculated in the IAM. (b) ———represents

the double difference (Ao.EB—Ao ~~M).

where 8& and 82 denote two different basis sets. Figure
3(b) shows exactly the behavior predicted by Eq. (24).
Naturally, this behavior does not persist for many-electron
systems even in the RHF approximation. Figure 3(c)
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FIG. 3. Basis-set effects on various intensities. (Note the changes in scale. }

shows that, in line with ones intuition, basis-set effects on

I,"' are roughly equal to those on I,"l' for N2. Evidently po-
larization functions are needed to obtain a RHF level
description of these intensities for Nz. This agrees with
the work of Hirota, Terada, and Shibata' who found that
polarization functions were necessary to obtain accurate
RHF values of the elastic electron-scattering intensity for
N2 but not for H20. For all practical purposes, the basis-
set effects on the fully elastic intensities are the same as
those for the usual elastic intensities.

VI. COULOMB HOLES FOR TWO-ELECTRON
SYSTEMS

It follows that the quantity

c(u) = (u /n )f p M(p }j0(pu )dp,

where

~(P}=It (P}/Icl —2 —
2 Iel (P}/Icl

[is a projection of c( r „r2) defined by

c(u)= fc(r„r2)5(u —
~

rl —r2~ )drldr2.

From the definition (6), it is apparent that

bP(u)= f [l,„(rl, r2) —I Hp(rl, r2)]

(29)

(30)

(31)

It has long been known ' that experimental values of
X(p}, trivially obtainable from experimental values of
I,"'(p) and Eq. (2), can yield an experimental radial intra-
cule density through the inverse of Eq. (5):

P(u)=(2u /m) f p'E(pj)0(pu)dp . (25)

This P,„(u) [where the subscript ex designates experiment
or exact as appropriate] could then be used along with a
calculated RHF PHP(u) to construct the Coulomb hole
function of Coulson and Neilson

(32)

bP(u) =c(u)+e(u)/4, (33)

where

e(u) = f [p,„(rl)P,„(r2)—PHF(rl)PHp(r2)]

X&(u —
I
rl —&z

I
)drldr~ (34)

Combining Eqs. (22), (27), and (31) with (32), it obtains
that

bP(u)=P, „(u)—PHP(u) . (26) The Miler-Plesset theorem ' ' suggests that

1,„(rl, r2) =p,„(rl)p, „(r2)/4+c (r l, rq) (27)

then the exact analog of the RHF expression (23) becomes

I,"'(p, ) /I, l

In the special case of two-electron systems, the simple
structure of the RHF pair density (22) makes it possible to
obtain a quantity closely akin to the Coulomb hole (26) by
a direct inversion of purely experimental or correlated
values of the elastic and total x-ray-scattering intensities.
If one writes the exact analog of the RHF expression (22)
as

p„(r)=pHp(r) . (35)

EP(u)=c(u) . (36)

It is obvious from the above discussion that, for two-
electron systems,

c(u) =P,x(u) PHIpM(u} i (37)

Moreover, only two-electron systems are of concern in the
present context, and approximation (35) has been verified
computationally for He, H2, ' and H3+. Hence
e(u)=0 and

=2+ —,I,"l'(p )/I, l

+2fc(rl, r2)exp[ip (rl —rq)]drldrq . (28)

where PHlPM(u) is the radial intracule density of
Henderson's independent-particle model which calls for
the lowest energy single determinant wave function that
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yields the exact charge density p,„(r ).
The x-ray intensities that Bentley and Stewart corn-

puted from the Davidson-Jones natural orbital expansion
of the Kofos-Roothaan wave function were inverted to
obtain the c(u) shown in Fig. 4. The latter also shows
b,P(u) based on a P,„(u) obtained by inversion of the
Bentley-Stewart I,"', and our' PH„(u). c(u) is seen to be
nearly identical to bP(u), and both are qualitatively simi-
lar to AP(u) for atomic helium. ' The radius of the
Coulomb hole is 1.675ao in H2 and 1.06ao in He; the
charge moved by Coulomb correlation is 0.070e in Hz and
0.047e in He. This shows that Coulomb correlation has a
greater range and effect in H2 than in helium.

e-

C)
2--

p~ Q
I

X
Q 2

I'

3 4
u/o

VII. A MEASURE OF ELECTRON PAIR
CORRELATION IN MANY-ELECTRON SYSTEMS

It is natural to ask whether Eq. (29) can be generalized
to many-electron systems. Unfortunately, no measure of
the Coulomb hole can be extracted by such a procedure.
However, a measure of the combined effects of the
Coulomb and Fermi holes can be obtained because Eq.
(27) is a special case of our definition of the statistical
pair-correlation density

-8--

FIG. 4. Coulomb correlation in H2.

experiment is complementary to the prescription ' for ob-

taining r from experiment.

c(r],&p) =Dp(r], r2) —D](r])D](r2), (38)
VIII. SUMMARY

M(]M ) =2[I,"'(]u )/I, ] N (N —1)—N 'I,"](]u—) /I, ]]

&&N '(N —1)

(39)

where S(p) is the incoherent scattering function

S(p) =I,"'(p)/I, ]
—I,"]'(]L])/I,] . (40)

Thus it is seen that the intracular projection (31) of the
statistical pair-correlation density (38) can be obtained
from purely experimental data. The nature of the projec-
tion (31) precludes the calculation of any statistical corre-
lation coefficients ' from c(u). However, an angular
correlation coefficient ~ for atoms can be obtained from
experimental intensities as shown recently by one of us. '

Hence the prescription given here for obtaining c(u) from

where D~ and D2 are the unit normalized one- and two-
electron densities, respectively. A little algebra shows that
Eqs. (29) and (31) hold, in general, if c (r], r2) is interpret-
ed via Eq. (38) and M is defined by

The main results presented in this paper are (i) a quali-
tative explanation, Eq. (15), of the anisotropies of the elas-
tic x-ray intensities shown in Fig. 1; (ii) the rigorous in-

equalities (18) which state that the usual elastic intensities
are not less than the fully elastic intensities; (iii) the nu-

merical demonstration in Fig. 2 that the differences be-

tween the elastic and fully elastic intensities can be
correctly simulated by the independent-atom model A, ; (iv)

Fig. 3 which shows the importance of including polariza-
tion functions in the basis set when these intensities are
calculated; (v) Eqs. (29) and (30) which show how a quan-

tity closely related to the Coulomb hole for a two-electron
system may be obtained from x-ray scattering intensities,
either theoretical or experimental; (vi) the Coulomb hole
for H2 shown in Fig. 4; and (vii) Eqs. (29) and (39) which
show how a measure of the combined effects of the
Coulomb and Fermi holes may be obtained from either ex-
perimental or theoretical x-ray-scattering intensities.
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