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Scattering-theory sensitivity analysis for spatial Hamiltonian variations
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An expression for the functional-derivative sensitivity density of the scattering matrix in parame-
ter space is derived. This expression can be used to assess the effect on scattering observables of
varying space-dependent quantities in the Hamiltonian (e.g., the interaction potential or the free-

target portion of the Hamiltonian). This work represents the most general formulation of elementa-

ry sensitivity analysis for quantum scattering problems, and its use is demonstrated by a few sample
calculations.

I. INTRODUCTION

Sensitivity analysis is a computational tool which yields
information about the dependence of a system of equa-
tions on a relevant set of parameters. It has been applied
to the study of quantum-mechanical scattering, ' chexnical
kinetics, and reaction-diffusion problems as well as a
variety of engineering systems. A sensitivity analysis re-
quires the solution of a system of linear equations (i.e.,
differential, integral, algebraic, etc.) for the components of
the solution gradient in parameter space; the components
of the gradient are referred to as the sensitivity coeffi-
cients. This interpretation is valid for systems in which
the parameters are constant, i.e., do not vary with space or
time. If the parameters are, themselves, functions of
space and/or time, the components of the gradient become
functional derivatives and are referred to as sensitivity
densities.

A functional sensitivity analysis has been formulated
for reaction-diffusion equations. In this paper we will
consider a similar treatment for scattering theory in which
the parameters" are either the intermolecular potential,
the internal Hamiltonian, or portions of these operators.
By this approach it becomes possible to map out the
manner in which the Hamiltonian influences the scatter-
ing matrix. Knowledge of this mapping would immedi-
ately lead to an understanding of the way in which various
collision cross sections and other observables are related to
the structure within the Hamiltonian. Concerns such as
these arise under a number of circumstances in atomic
and molecular scattering. A common situation occurs
when the scattering potential is only approximately
known. Such potentials are often generated by a combina-
tion of ab initio and empirical information. Although cal-
culations based on such potentials may attempt to simu-
late a particular real system, the calculations should be
viewed strictly as a Inodel. An immediate, serious question
arises concerning the sensitivity of the generated cross sec-
tions with respect to various features or parameters in the
underlying potential function. Thus, the simplest use of

sensitivity techniques would be for the generation of an er-
ror analysis of the computed results. In this way one
could gain a quantitative measure for which cross sections
or observables are most reliable from the calculations. At
the other extreme there are situations where the potential
is believed to be known accurately and, again, a sensitivity
analysis could play a valuable role. In this situation the
sensitivities may be used as a means of physically analyz-
ing which aspects of the Hamiltonian are responsible for
particular cross sections or 5-matrix elements. This usage
and interpretation can, of course, also be applied in the
former case where the potential is not firmly known but is
understood to be a model designed for analysis. These
various circumstances are depicted in Fig. 1 where a given
region on a potential surface is shown to map principally
onto certain scattering matrix elements. In addition to the
potential as a focus of sensitivity analysis, one may also be
interested in sensitivity with respect to structure or pa-
rameters (e.g. , reduced masses) in the unperturbed target
portion of the Hamiltonian.

All the sensitivity issues raised in the previous para-
graph are addressed by what is sometimes referred to as
"elementary sensitivity coefficients. " This notation fol-
lows from the fact that these coefficients are the basic or
fundamental sensitivities generated by Hamiltonian varia-
tions. This paper concerns the theoretical formulation
needed to calculate elementary functional sensitivities of
this type. Beyond the elementary sensitivities one may
also calculate derived sensitivities ' ' which can be used to
address a variety of interesting physical questions. For
example, one could explore the interrelationship between
two different cross sections or perhaps the correlation be-
tween two regions on a potential surface in order to
preserve a given cross section. Questions such as these in-
volve an interchange of dependent and independent vari-
ables (i.e., cross sections for various parameters in the
Hamiltonian, etc )and the. y may be calculated by ap-
propriate algebraic or functional manipulation of the ele-
mentary sensitivities. Another example would arise when
it is desired to understand which physical aspects in the
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FIG. 1. A schematic illustration showing how variations in a

region of the potential can map onto variations in the scattering
matrix.

Harniltonian contribute to observable features in the cross
sections such as the location and amplitude of interference
extrema. These so-called feature sensitivities may again
be calculated by manipulating the elementary sensitivity
coefficients. In addition to these matters certain aspects
of sensitivity analysis may be useful for the design of ex-

periments and may aid in the understanding of inverse
scattering problems. The sensitivity coefficients of sig-
nificance here are essentially the inverse of the elementary
set; here, one would like to understand the sensitivity of
parameters describing features in the Hamiltonian with

respect to particular cross sections. The corresponding
gradients could again be generated by an interchange of
dependent and independent variables.

This paper will focus on the theoretical techniques
needed to calculate elementary functional sensitivity gra-
dients. The various interesting secondary sensitivity ques-
tions mentioned above are beyond the scope of this paper,
but the techniques discussed here should have immediate
use for those more refined questions of sensitivity concern.
In this regard it is worth noting that mathematically
parallel developments in chemical kinetics ' ' have already
considered many of the relevant secondary or derived sen-

sitivity questions, and some of the same techniques should

be immediately transferable to problems in quantum
mechanics. An important aspect of this work is that
functional sensitivity analysis is valuable even for those
cases in which the nominal values of the system parame-
ters are spatially constant. This is a significant point since
one may consider spatial variations around even constant
reference values; the previous formulations' of scattering
sensitivity analysis did not allow for such consideration.

Sensitivity analysis of quantum scattering problems is
complicated by the appearance of parameters in the
asymptotic boundary condition of the wave function. Be-
cause of the functional form of this boundary condition,
the gradient of the wave function with respect to these pa-
rameters becomes arbitrarily large at large scattering
distances —a result which is not physically meaningful. In
previous work" ' this problem was circumvented by cal-
culating gradients of the system "observables" (e.g. , ele-

ments of the scattering matrix or the cross section) rather
than gradients of the wave function. A similar approach
will be taken here. We will apply the methods of func-

tional sensitivity analysis to the calculation of gradients
of the scattering matrix.

In Sec. II, we will outline the derivation of the function-
al derivative of the scattering matrix with respect to any
parameter in the Schrodinger equation. Section III gives
explicit expressions for this sensitivity density for two ex-

amples. In one example, the parameters to be varied are
found in the interaction potential; in the second example,
the parameters are in the internal part of the Hamiltonian.
An exactly soluble model system is used to demonstrate
the theory and the calculated sensitivity densities are dis-

cussed.

II. THEORY

We will consider the effect of space-dependent varia-

tions of the parameters in the time-independent
Schrodinger equation:

r

V — [I;„,(r)+ V(r, R) —E] 4'(r, R) =0, (1)

where R is the scattering coordinate, r is the vector of
internal coordinates, H;„,(r) is the part of the Hamiltoni-
an specifying the internal degrees of freedom, V is the in-

teraction potential, E is the total energy, p is the reduced
mass, and 4' is the total wave function which is labeled by
i, a collective index for the incident internal state of the
scattering particles. For simplicity, only inelastic scatter-
ing will be treated here.

We assume that the total wave function 4' can be writ-

ten as a linear combination of basis functions which are
eigenfunctions of the internal Hamiltonian:

4'(r, R) = +$1—(r, Q)QJ;(R), (2a)

where

H;„,(r)gj(r, Q)=ejg~(r, Q), (2b)

(2c)

The scattering angles are 0 such that R= ( R,0 ) and

Vn is the angular part of the Laplacian. The Pz are there-

fore products, or sums of products, of the internal wave
function and the angular part of the scattered wave func-
tion and are labeled by j, a collective index specifying the
internal and angular momentum states. The sum in Eq.
(2a) runs over a complete set of functions and the coeffi-
cients gi, (R) satisfy the radial equation, given by

82

M +kJ QJ;(R)=QUJJ (R)gq, (R), (3a)

where

k)~= (E —e~ ),J g2 J

UJJ (R ) = Id r d fl $1 ( r, Q )[ V( r, R) —V'n]PJ ( r, Q ) .

(3c)
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Equation (3a) is therefore the coupled-channel formula-
tion of the scattering problem. A complete specification
of the solution to. (3a) requires the asymptotic boundary
condition which is of the form

(r,R). The parameters should be considered as operators
since they come from the Hamiltonian or portions of it.
Designating the reference value of the parameter ak as uk,
we add a small perturbation to each parameter:

lim f/, (R)= —5J;k;
' exp( i—k;R) cLk(r, R) =u/, (r, R)+5~/, (yk), (10a)

+k/ '
exp(ik/R)S//, (4a)

where S// is an element of the scattering matrix. To sim-
plify notation in the following treatment we introduce the
functions (their asymptotic limit)

f/+-;(R) —=5/, k; ' exp(+ik;R),

lim pz, (R)= fj., (R—) g f~k(R)Sk; .
8 —+ay k

(4b)

(4c)

We will derive an expression for the gradient of the matrix
S with respect to any parameter in the system. The first
step gives us an explicit expression for the scattering ma-
trix S in terms of Jost-type functions; these are Wronskian
matrices off +—and the radial wave function.

We now introduce a general solution to the Schrodinger
equation, which must be a linear combination of the in-
dependent solutions f/

g~(r, R)=gpj(r, Q)[f/k(R)ak;+ f/k(R)bk;] . (5a)
j,k

where yk is a vector of the coordinates upon which 5ak
depends and yk C {r, RI. The reference Ualue ak may not
depend on these coordinates but, for generality, we indi-

cate that ak may be a function of r, R. . The perturbation
5ak induces a deviation in the scattering matrix from the
reference matrix, indicated by S:

S=S+5S . (lob)

Substituting (9a) into (10b) one can show

5S=( S5J++5—J-)(3+) '. (10c)

X5~k(K, . . . , y~„),

The deviations 5S and 5J+—are actually total variationals
given by

M
5Q= Q JdyI

k=1 "5&k(yi,

Letting

r/'(r, R) =g/t/, (r, Q)p, ;(R),
J

as in Eq. (2a), we may identify

(5b)

where Q=S, J+, or J, yk —{y~, . . . , y I, and mk is

the number of coordinates in the set {r,RI upon which
5ak depends. The quantities 5Q /5ak are functional
derivatives. Substituting (11) into (10c) we arrive at an ex-
pression for the sensitivity density of interest:

p/, (R) =g[f/k(R)ak/+ ffk(R)bk/] .
k

(5c)

ln order to arrive at an expression for S we first calcu-
late the matrices a and b in (5) by forming the radial
Wronskian function:

J+-—Wz[f+ (R) LJ,(R)]=(f—+)
~R

— — P —. (6)
Bp &(f+—)

The Wronskian function, as defined in (6), is independent
of R. Substituting (5c) into (6) and noting that
p'z[f+, f+]=0, we find

a = —(2i) 'J+, (7a)

5~k(y'»

where

5~k(y i, ym„)

—S
5~k(yi . y' „)

5J (J+)
5&k(yI.

5L/, (R )= WR f +-(R),
5~k(yi k

b =+(2i) 'J

Substituting this result into (5c) we find

p(R) = —(2i) '[f (R)—f+(R)J (J+ ) ']J+ ~

(7b)
5f+-(R)

,/-(R)
5&k(yi

Comparing the asymptotic form of (8) with (4c) we con-
clude that

S=J (J+)

p(R) =(2i) 'g(R)J+ . (9b)

The gradient of S can be found by applying a small per-
turbation to each of the parameters. We designate the sys-
tem parameters by a vector a = {a/, . . . , aM ] where each
a; may be a function of one or more of the coordinates

(12b)

G(r, R)=
2 [H;„,(r)+ V(r, R)]+Vn, (13a)

We wish to express Eq. (12a) in terms of quantities
which are explicitly known. To do so, we return to the
Schrodinger equation and find expressions for the func-
tional derivatives of the wave functions which appear in
(12b).

First, let
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(13c)

e= E. (13b)
$2

Then, the Schrodinger equation may be written as
$2~i

(r,R) =[G(r,R)—8']W'(r, R),
BR

where ~ '( r, R) =R @'(r, R) or asymptotically ri'( r, R).
We expand the Schrodinger equation around the reference

system, designated again by a bar:

a'(r R)=X'(r R)+5m'(r, R), (14a)
M

G(r, R)=G(r, R)+ g
k=) &~k(yi, . , ym, )

$2~m E

(r, R)=[G(r,R) —5']~ '(r, R),
BR

(15a)

and to first order,

since G is a function of the ak. The derivative in Eq.
(14b) should be thought of as an ordinary derivative vary-
ing that portion of G controlled by ak with the other pa-
rameters held fixed. Substituting (14a) and (14b) into
(13c) and equating terms of equal order in the variation 5
we have, to zeroth order,

&&5&k(yI, (14b)
I

2
~ +

8 5W'(rR)
[
—

(
-) &]

5W'(rR) BG(rR)
~R' 5 k(y1 y „) 5&k(yl, . y', ) ~k(yl y

(15b)

where we have used Eq. (11)with Q =P . Finally, to obtain an expression for the functional derivative of the radial part
of the wave function we expand P ' and 5P ' in the complete set of basis functions PJ.(r, Q), which are also
varied around their reference values Pz(r, Q):

5F'(r, R) =QQJ(r, Q)FJ, (R), (16a)

(16b)

(17a)

5FJ'; (R ) 5FJ, (R )=g[PJ ~(R) (t'5~J]-
~R' 5&k(yI . ~

y' „) J
" " 5~k(yI, , y' „)

a2
J J gR2 J5'(4 ( +8' —Y )(R)A ( F (R)"J J&

5W'(r, R) =gpj(r, Q)5FJ;(R)++5$J.(r, Q)FJ;(R),
J J

where FJ, (R) may be eith. er PJ,.(R), fj. (R), or pj;(R). Substituting (16a) and (16b) into (15a) and (15b), multiplying both
~ ~

by P J ( r, Q), and integrating over r, Q yields the following desired expressions:

8 FJ;(R) =+9JJ(R)Fj, (R) O'FJ', (R), —
BR

where

+g fdr d QPJ. (r, Q) ' PJ(r, Q)FJ, (R)5(y& —y~) . . 5(ym —ym ),
+k yl) ' ~ ymk

(17b)

PJ J.(R)= fdr dQQ ( JQr)G( Rr)p ( JQr), (17c)

HIJ= fdrdQp~(r, Q), QJ(r, Q) .
5H;„,(r)

(17d)

This derivation makes use of Eq. (25) presented later.
We may use Eqs. (17) in evaluating the Wronskians in Eq. (12b). To do so, we first define

5p R
g k(R)= Wg f +—(R),

5&k(yi
(18a)

which is the first term of (12b). Taking the radial derivative ayaR of (18a) and using the definition of Wz [Eq. (6)], we
find
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5/r. ..a' 5p
~R' 5ak(yi, . 'y'. , )

&'(f +-) 5p

5ak(y'i.
(18b)

The radial derivatives in (18b) are given by (17a) and (17b) where Fj; =f ~;and-5F~; =5p. ~;. Integrating (18b) over R and
substituting the result into (12b) allows for the evaluation of (12a) after some algebraic simplifications (including the
symmetry assumption S;j =Sj; ):

5S;J 1
/WE2l

5f;„(R) 5f~n(»
, P„~(R ) —QS~kWg, P„j(R )

(y', , . . . , y'„)

—g fdr dRgq, (R)gq( rQ)

X $, (r, Q)fj(R)5(yi —y'i) 5(y —y' ), . (19)

With Eq. (19) we now have an expression for the desired
sensitivity density 5Sj /5ak in terms of known quantities.

Implicit in Eq. (19) is the evaluation of all quantities at
large R, since the scattering matrix is only defined
asymptotically. The functional derivatives 5fj /
5ak(yl, . . . , y~ ) may be evaluated directly at large

values of R since explicit analytical expressions for the fj.
are known there. The upper limit on the integral term is
also evaluated at large R. It will be shown below that the
R dependence of the Wronskian terms cancels with the R
dependence of the integral term, leaving a sensitivity den-
sity that is independent of R.

Equation (19) has a simple relationship to the result of
Ref. 1(b). In that work, an expression for the sensitivity
coefficient BS,j/Oak, where ak is a constant, was derived.
An integration of Eq. (19) over the range of
Iyl, . . . , y'

I reduces to the result of Ref. 1(b). We may

conclude, therefore, that

SlJ' S,Jdyl ' dy
~ak ' 5ak(y'i. ~ ~ ~ y' „)

Xp, (r ', &')17„(R'),

where 1(| is the adjoint of the matrix f. Defining

(21a)

for the case in which ak is not a function of
Iy&, . . . , y „I. Analogous expressions have been ob-

tained for chemical kinetic systems.
In Sec. III of this paper, we will evaluate Eq. (19) for

specific parameters ak and give quantitative results for a
particular model system. Before proceeding to this exam-
ple we consider a more general case involving variation of
the full interaction potential, i.e., V(r, R) as the parame-
ter. The first two terms of Eq. (19) are zero in this case.
The remaining integral term may be easily evaluated; the
result is

5S;J
2 g jP;q(R')Pq(r ', Q')]*

5V(r ', R') i A q g

+; (r ', R') =g[f,,(R')y, (r ', n ')]*,
q

%j (r ',R') =gPg(r ', 0')1(,j(R'), (21b)

we may express (21a) the following way:

6S;V P @w(~i R &)@R(~i R r)

5V(r R') iA
(21c)

&f;;(R ) 5k,.

~ j 5H;„,(r ')

The right-hand side of Eq. (21c) is analogous to the densi-
ty, but is generally not proportional to the density. Notice
that (21c) implies that uncertainties in the value of
V( r, R) in regions for which the wave-function product of
(21c) is small will have little effect on the outcome of a
scattering calculation (see Fig. 1). If V(r, R) is to be
varied in regions of space for which the wave-function
product of (21c) is large, the scattering matrix will be
more substantially changed. Quite naturally variations of
V at large values of R will have a substantial effect. In
many cases it can be more useful to consider the normal-
ized density 5S/5 ln V (or 5S/5 lnak ) since this will
weight regions where the potential is important. The gen-
erally oscillatory nature of (21c) clearly indicates that a
specific variation in Sj could be achieved by a wide
variety of potential alterations. This point has a direct
bearing on problems in inverse scattering theory.

Next we will consider the case in which the internal
part of the Hamiltonian H;„,(r) is to be varied. Varia-
tions in H~„,(r), or parameters characterizing H;„,(r), will
perturb the asymptotic form of the wave function. Conse-
quently, the first two terms of Eq. (19) will give a nonzero
contribution. They will be evaluated by explicitly taking
the functional derivative of f+ with respect to H;„,(r—).
The functional form of f +—is known only for large R, but
that is sufficient for our purposes. The scattering matrix
is determined for large R and we will evaluate the sensi-
tivity density (19) at large R also.

Noting that

5fj (R)

5H;„,(r) (22a)
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and using Eq. (46),

=(+iR ——,
' k J

')f;j(R )
5H;„,(r ') 5H;„,(r ')

(22b)

where

E'g~ =5)~EJ.

drdQ *; r, QH;„, r J r, Q (23c)

reduces the determination of the functional derivative of

f+ to —that of k. Defining the matrix k as

kj =5jk;,

Taking the functional derivative of (23a) with respect to
Hi„,(r ') yields

we may write

~ (1E—c)
]. /2

(23b)

6k,

5H;„,(r ') fi (k;+kj ) 5H,„,(r ')
(24a}

where

=fdr dQ P;(r, Q)H;„,(r) +P*;(r,Q)gj(r, Q)5 (r r')+— H;„,(r)gj(r, Q) (24b)

It can be shown, by following arguments similar to first-order perturbation theory, that

(25)

(26a)

For i =j, the first and third terms of (24b) cancel immediately [if Hi„,(r) is Hermitian], leaving

where A Iz is given by Eq. (17d) and it is assumed that the eigenvalues e; are nondegenerate for simplicity. Substituting

(25) into (24b) we find that

5e;~ =0 for i~j .
5H;„,(r '}

=fdQ P j(r ', Q)gj(r ', Q) .
5H;„,(r ')

Substituting this result into (24a) and then (22b), we arrive at

5 j(R)
2

(+&'R —, k& )fbi(R) f—dQQj"(r ', Q)gj. (r ', Q) .
5H;„, r' l

Equation (27) can be substituted into Eq. (19) which, after some simplification, yields

(26b)

(27)

5Sfj p
5H;„,(r )

Ta T
R d4v dpi 1 Wi — 1 —rdAj

Rg gal& dQ—P i(r ', Q)$((r ', Q)

g f dR'dQQ;i(R')P I(r ', Q)PI (r, Q)gi j(R) .
l I'

(28)

~P I =g~sivf ii +5iif II } .
9R

(29b)

This result is more complicated than that of (21c) corre-
sponding to a variation of the potential. This is a reflec-
tion of the fact that H;„,(r) affects the boundary condi-
tions as well as the scattering.

Equation (28) can be shown to be independent of R for
large values of R; a similar analysis can be done for Eq.
(21c). First, we evaluate the radial wave function and its
derivative at large R:

(29a)

I

Substituting (29a) and (29b) into (28) and taking the
derivative of (28) with respect to R we find

6S,~

5H;„,(r ')
=0 (30)

as expected. This result is not restricted to the parameter
variation of H;„,(r), but is rather a general result for the
variation of any parameter which perturbs the asymptotic
form of the wave functions [i.e., which appears in kj of
Eq. (23b)].

In Sec. III, we will consider a specific example which il-
lustrates the results of this section.
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III. AN EXACTLY SOLUBLE MODEL PROBLEM

The general formulation of Sec. II can be directly ap-
plied to complex close-coupling calculations. However,
since the theory is new, we choose to illustrate it with a
simple; exactly soluble model that has been examined be-
fore. This model will be used to illustrate some basic
features of the sensitivity formulas in Sec. II. The Hamil-
tonian for this model includes an interaction potential that
is independent of the angular variables:

Uo Villt(r) l
V(r, R)= (31)

0, R)a.
The potential V (r,R ) is a square well with one-
dimensional internal structure given by V;„,(r). It will not

I

be necessary to explicitly specify V;„,(r) in the calculation;
only matrix elements of V;„,(r) will be needed.

Since V(r, R) is independent of the angle 0, we may ex-
pand the total wave function as

P'(r, R)=—gX ( )Pi(8)f';(R),
R

(32)

H;„t(r)Xj(r)=ejX~(r) . (33)

Substituting (31)—(33) into (28) we arrive at the following
expression for the desired sensitivity density:

where Pi(0) are Legendre polynomials and X~ is an eigen-
function of the internal Hamiltonian [note that
pj(r, Q)=XJ(r)PI(0) where j'=(j,l) in the notation of
Sec. II]. The Xj are defined by

1 15s, -(2l+1)P . „, „, Rae. aek 1 aek —,— a0. k.R2 Xk(r )Xk(r )
a a

+ aR |1'kj+ I ski a k Pkikkj
2iA kk

k i
(34)

d2

dr

—L L&r&—
2 2

H,„,(r)=
'

L
Ir

I
&

2

(35a)

in units of fi /2p = 1, then

Both the radial wave function Iti;j(R) and the internal
basis functions Xj(r) appear in this expression. We have
chosen a system for which both can be found analytically.
If we choose H;„,(r) to be a square well describing the
molecular motion, the functions XJ(r) can be found im-
mediately. Letting

2

5H;„,(r')
—= g Xk(r')M (36)

where M;J- is a constant, complex matrix. Here we are
considering a system with just two open channels. The
sensitivity density 5S/5H;„, (r ) is a complex, symmetric
matrix. The real and imaginary parts of 5Sii/5H;„, (r'),
5SI2/5Hittt(r ), and 5S22/5Hi t(rtl') are shown in Fig. 2 as
a function of r'. Here we are taking the total energy
E =5, the potential range a =1, the internal Hamiltonian
range L =m, the channel wave numbers k ~

——2, k2 ——1, and
the coupling matrix elements U)( ——U)2 = U22 = 1.

It is sometimes of use to decompose the scattering ma-
trix into a modulus and phase

and

ej jm /L, j= 1,2, —.—. .

' 1/2

cos, j odd,
I
r (L/22 J&r

L L

(35b) Sij =
I
S'j

I
exP(i I,i)j, (37)

where Sj:—(S~Sj)' is the magnitude of the scatter-
ing matrix element and Il;j =tan '[Im(S~j)/Re(S j)] is the
phase of the matrix element. The functional derivative of
(37) yields the desired sensitivity densities of the magni-
tude and phase of the scattering matrix element:

Xj(r)
'

2
'

jIrrsin, j even,
I

r (L/2
L L

0,
I
r &L/2.

(35c) 5 IS;1 5S,"=
I S;j Re(Sij)Re

5H;„, r 5H;„, r

5S,J.
+ Im(S;j )Im

5H,„, r)
(38a)

The radial functions j can also be found analytically
as shown in Ref. 4. The resulting expression for tti' can
then be used to evaluate the sensitivity density
5S/5H;„, (r) in Eq. (34). We will consider a simple two-
channel scattering system in which the scattered waves are
s waves for simplicity (other partial waves may be similar-
ly treated). After some straightforward algebra (see the
Appendix for details) Eq. (34) reduces to

—= IS;j I
Re(S,j)Im

5H;„, r 5H;„,(r

5S;J.—Im(S;J )Re
5H;„, r)

Figure 3 shows (38a) and (38b) on the same range of
values as in Fig. 2. By comparing Fig. 2 with Fig. 3 we
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FIG. 2. Real ( ) and imaginary (4,—4) parts of the sen-

sitivity densities (a) 5S~) /5Hjgt(r) (b) 5S]2/5Hjgt(r), and (c)

5S22/5H;„, (r) for the model system of Sec. III as a function of
the dimensionless length r /L.

SS„/SH(„,( «)
(c)
O.'5

-3.40=-~.5 rL
Flax. 3. The sensitivity of the magnitude 5~Sij ~

/5H;„, (r),
(I ), and the phase 5&ij /5Hjnt ( r ), (4—4 ), given by Eqs.
(38a) and (381) for the densities of Fig. 2. [(a), (h), and (c) as in

Fig. 2.)

can see that, for example, the high sensitivity of the mag-
nitude of Sii [Fig. 3(a}] accounts for the large real part of
5Si i /5H;„, (r) [Fig. 2(a)]. The correspondence between the
sensitivity of the phase of Sii and the imaginary part of
5Sii/5H;„, (r) is not as simple. A similar result is found
for the other diagonal term S22 and for Sip.

The sensitivity of the scattering matrix to the interac-
tion potential is given by Eqs. (21a)—(21c). For this exam-
ple, the interaction potential is specified in Eq. (31) and
the wave functions in Eq. (35c) and the Appendix. Ele-
ments of the sensitivity density matrix are shown in Fig. 4
and are given by

2 2

g g*;k(R)Xk(r) QXt(r)pt/(R) . (39)
5V(r, R) 1=1

The diagonal term S22 shows the highest sensitivity to
perturbations of V and this sensitivity is largest in the re-
gion R & a [see Figs. 4(e) and 4(f)]. It is also largest in the
places where X2(r) is a maximum. Perturbing V(r, R) in
a region of r, R space where the second channel has a large
density will have a large effect on S22. The other diagonal
term S,i shows a similar effect but the sensitivity of S» is
highest near R =a. Again, a perturbation of V(r, R) in a
region of r,R space where the first channel has a large
density will result in a significant deviation of Sii. The

imaginary parts of both Si, and S22 are about twice as
sensitive to a perturbation of V as are their respective real
parts.

The off-diagonal terms of the scattering matrix show a
more complicated sensitivity. The real part of S]2 will in-
crease in response to a perturbation of V(r, R), while the
same perturbation will induce a decrease in the imaginary
part of Si2. The matrix S is symmetric, as is the sensitivi-

ty density matrix, so these same observations apply to S2i
as well. Qualitatively, the sensitivity of Si2 is highest
where the second channel has a large density. Some
dependence on the density of the first channel is expected,
but this dependence appears to be quite weak. In addition,
the sensitivity of Siq is highest in the region R & a as it is
for S„.

Some general comments can be made about the sensi-
tivity densities 5S/5H;„, (r) and 5S/5V(r, R) for the sim-
ple problem studied here; these comments will also apply
to other cases. First, the sensitivity densities tend to be
large where the wave function has large amplitude.
Second, the densities will be oscillatory, again reflecting
the nature of the wave function. This latter aspect intro-
duces the possibility of altering the potential in a local re-

gion around a point (r ', R') in such a way as to compen-
sate for the effects (on S) of a change in the potential
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around another point (r,R). The best way to investigate
this matter is through the deriued sensitivity density
5V( r, R)I5V(r', R')s which is a measure of the correlation
between points in coordinate space that preserve S or some
of the matrix elements of S. Derived densities similar to
this have been considered previously in chemical kinetics.
It remains for further research to explore these matters in
collision dynamics.

IV. CONCLUSIONS

The formulation presented in this paper represents the
first step in the derivation of a comprehensive sensitivity
theory for scattering. The discussion at the end of Sec. III
hinted at the broader aspects of sensitivity analysis, such
as the matter of derived densities. In practice, an entire
family of sensitivity densities (including the derived densi-
ties) exist; these are useful for addressing a variety of
physical questions about the scattering process. In a
manner similar to that used in chemical kinetics, the crit-
ical input to the calculation of these densities will be the
elementary densities discussed in this paper. Ultimately, a
complete map describing interrelationships between the
Hamiltonian and system observables may be generated. A.

more complete theory and further illustrations, all based
on the work in this paper, will be reported later.
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APPENDIX

With the expansion of the wave function given in Eq.
(32) we find the following radial equation:

T

8 k2 l(1+1) ~l ( )
A@2 J g2 J

Vo+Uq~'Qj~ g(R), R &a
J

0, A~a (A 1)

where kl is defined in Eq. (3b) and

Ull =
2 JdrXl(r)V;„, (r)X,'(r) .JJ (A2)

The asymptotic boundary conditions on Eq. (Al) are

lim Pl, (R)= —5@k;
' exp[ i (k;R —ln—.l2)]

FIG. 4. The real and imaginary parts of the sensitivity densi-
ties 5SJ/5 V(r, A ) for the model system of Sec. III. (a)
Re(5S~ I /5 V(r, 8 ) ), (b) Im(5S 1 & /5 V(r,8 ) ), (c) Re(5S&2/
5V(r, E. ) ), (d) Im(5SI2/5V(r, R ) ), (e) Re(5Sq2/5 V(r, R ) ),
and (f) Im(5S22/5V(r, A)). All surfaces are plotted with the
same scaling; the maximum plotted value is 1.7 units and the
minimum plotted value is —0.3 units. The r and 8 axes are in-
dicated in Fig. 4(a) and the ranges of values are
—0.5(r/I. &+0.5, 0&8 &2.0. All sensitivity densities are
zero for I r = —0 5, r =+0 5, all R ) and for t R =0, all rj.

+kj ' exp(kJR —l~!2)SJ; . (A3)

For open channels, i.e., E & ej, the appropriate outer solu-
tion (for R & a) is then

yl (R) 5 k —)/2k Rh(2)(k R)+k —)/2S!k Rh(1)(k R)

(A4)

where hI'"' ' are spherical Hankel functions.
To uncouple the equations in the interior region (R & a)
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we first define the wave-vector matrix k as in Eq. (23a)
and let P be a matrix which diagonalizes k —Vo U:

d~= PT(k —Vo U)P, (A5)

where d is a diagonal matrix. We next transform to a
new set of wave functions

g
/ pal

Then, the Schrodinger equation inside (R & a) is

8 d2 l(l+1) ~, (R)
~R2 j Rz

(A6)

(A7)

where dJ is a diagonal element of d . The open-channel
solutions inside (for E & eJ. , R & a) are then

Cijd~Rj)(dJR)~ dj & 0
R (A8)

where j) is a spherical Bessel function and i) a modified

spherical Bessel function of the first kind. The matrix C'
is obtained by matching the inside and outside forms of

the wave function [(A4) and (A8)] and its radial derivative
at R =a.

In matching the wave function and its derivative at
R =a it is convenient to introduce the following notation:

H()), (2) g k l (1),(2)(k )ji = ji ja 1 J

5j,djaj)(d)a), dj &0

S,,f,a),(f,a), d,'= f,'&0—

(A9)

(A10)

where we drop the l subscript for convenience of notation.
The continuity equations at R =a are then

H [2~@-'~2+H ~']k -'~2ST=P I C'
H"'k ' '+H"'k ' 'S =PI'C

(A 1 1)

(A12)

where a prime indicates the radial derivative of the Hank-
el or Bessel function evaluated at R =a. Equations (Al 1)

and (A12) comprise two simultaneous equations for the
matrices S and C and, hence, can be solved for both. Do-

ing so, substituting the result in (A8) and transforming
back to the original wave function we find the following
result for R & a:

(A.14)

with

P(R) =PI(R)[I( )]
—'Pr[H("(H")3 —H'" )

—'(H"' —H'"3)+H"']k —'~' (A13)

where 2 =P I'(a)[I(a)] 'PT and I(R) in Eq. (A13) is evaluated at an arbitrary R value rather than at R =a.
With (A13) we now have analytical expressions for all the quantities in Eq. (34). Substituting (A13) into (34) we arrive

at Eq. (36) where M~& is given by

2 2

g [Pk P),„C; Cj„( aI' I„' + ,—I' I„+ ,' I—I„' kka—I I„——2kk& „)],
2iA kk

Ji J jl ' J& J J&

(A15)

sin[(d —dn )a]
2(d —d„)

sin[(d +d„)a] 2d &0, d &0, d &d„
2 dm+dn)

1

2(d2 +f2)2 z [ f sin(d )[ape( xf—„a )+exp( f„a)]——d cos(—d a )[exp( f„a ) —exp( f„a )]j—, —

Iexp[(f +f.)~l —exp[ —(f +f.)~lj1 1

4 f.+f.

d~ )0, d„(Q

(A16)

I exp[ (f f„)a]—exp—[(f —f„)a]j, d —& 0, d„&0, d &d„

, [d a ——, sin(2d a—)], d &0, d„&0, d =d„

2 4dm
—exp(2d a) —exp( —2d a) —a, d &0, d„&0, d =d„.

E.

In (A14)—(A16) we have considered only l =0 terms as explained in the text.
If we consider also only two-channel systems, the matrices P and C can be written explicitly. Using the following no-

tation:
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k —V() U=
2k) —U( —U

—U k2 —U2
(A17)

and Eq. (A6), we see that the columns of P are simply the eigenvectors of k —Vo U. For a 2X 2 matrix the eigenvectors
are easily computed and we find

U U

[U +(kt —Ut —A() ]'~ [U +(kt —U) —A2) ]'
I'= 2 2kt —Ut —A, ( k ( —Ut —A, 2

[U +(k) —U( —At) ]'~ [U +(k( —U( —A2) ]'~

where A, „A,2 are the eigenvalues of k —Vo U and are given explicitly by

At 2 ———,(k) —U) +kg —U2)+ —,[(k) —U( —k2+ U2) +4U ]'

The matrix C is also a 2X2 matrix which is found in the course of solving (Al 1) and (A12) to be

( k —)/2[LI(2)+(H(2)' H(2)g )(H(1)g H(1)') —(H(1)]P

This expression involves the inverse of matrix

Q -=H")W —H(')' .

Since Q is 2X2, its inverse is simply

Qz2 —Q(2

det(Q) —Q2( Q))

where

k
Q,J —— ie ' g—P;kdkcot(dka )Pjk ik;5J, —

k=1

(A18)

(A19)

(A20)

(A21)

(A22)

(A23)

~(k]+k2)~
det(Q) =e [Pt ( d(cot(d (a )P2( +P)2d2cot(d2a )P22][Pztd t cot(d) a )P) (+P22d scot(dna )P)q]

2 2

d cot(d a)P
k=1 m=1

(A24)
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