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Perturbation-theory calculation of hyperfine structure in muonic helium
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The lowest-order correction in the hyperfine splitting of muonic He due to excitation of the ef-
fective (p-He) nucleus is precisely evaluated numerically. The result is hv~ ———45.670{8) MHz, in

agreement with previous approximate analytic calculations. The mass-polarization correction to the

hyperfine splitting is found to be Av& ——0.0785(2) MHz. The total perturbation-theory value for the

hyperfine splitting is Xv=4464. 3(1.8) MHz, which is consistent with experiments at the Swiss In-

stitute for Nuclear Research and at the Clinton P. Anderson Meson Physics Facility at Los Alamos.

I. INTRODUCTION

Studies of hyperfine structure in one-electron atoms
have provided precise confirmations of quantum theory.
In hydrogen, deuterium, and heavy atoms the hyperfine
structure is quite accurately described by quantum electro-
dynamics with the assumption that the nucleus is point-
like. The composite structure of the nucleus is then a
small correction based on parameters that account for the
static distribution of nuclear charge and magnetization.
The muonic helium atom, which consists of a helium nu-

cleus, a negative muon, and an electron, is nearly hydro-
genic. The helium nucleus and muon form a small inner
atom with effective Bohr radius a„=(m, /2m~)a„where
a, is the Bohr radius for the electron. This leads naturally
to a theoretical description of the atom where in zeroth
order the nucleus-muon system is regarded as pointlike,
and structure corrections are treated as perturbations. In
this approach excited states of the loosely bound nucleus-
muon system make an important contribution to the hy-
perfine structure, in addition to the effect of the static dis-
tribution of charge and magnetization. From this point of
view the muonic helium atom provides a system with
known interactions in which we can study the effects of
the composite structure and excited states of the effective
nucleus on the hyperfine splitting.

The perturbation-theory approach has been applied
within the context of the nonrelativistic Schrodinger equa-
tion that accounts for the dominant part of the hyperfine
splitting. This approach can be generalized to give a
quantum electrodynamic formulation for muonic helium
that provides a consistent basis for the calculation of rela-
tivistic and radiative corrections. '

In this paper we examine the lowest-order excited-
muon-state contribution to the muonic helium hyperfine
structure. In previous work this quantity was calculated
approximately analytically as a power series in m, /m„by
making plausible assumptions. Here we confirm the va-
lidity of the approximations made in the analytic calcula-
tion by carrying out a complete numerical evaluation of
the lowest-order excited-muon correction. The result im-
proves the accuracy of the perturbation-theory evaluation
of the muonic helium hyperfine structure and suggests

that a more precise calculation based on this approach is
feasible. The nonrelativistic mass-polarization correction
to the hyperfine structure is evaluated with the same
method. The calculation is described in detail in Secs.
II—IV and in Sec. V the results are compared to other cal-
culations and to experiment.

II. FORMULATION

To evaluate the hyperfine splitting we divide the
Schrodinger Hamiltonian for the helium nucleus, muon,
and electron into a zeroth-order part (units in which
A'=c = 1 are employed here)

and perturbations

(2)

and

Vq. V, .
P?l

(3)

In Eqs. (1)—(3), x& and x, are the coordinates of the
muon and electron relative to the helium nucleus, and
M„=m„m~/(m„+m~) and M, =m, m~/(m, +m~) are
the reduced masses of the muon and electron relative to
the nucleus. The nonrelativistic ground-state hyperfine
splitting in muonic He is given by

3 mpme
(4)

where g is the ground-state eigenfunction of H =Ho
+5V+5M.

In zeroth order in 5V and 5M, the eigenfunctions of Ho
are products of hydrogenic eigenfunctions for the muon
and electron g„' „' =p&„1(,„,where g„„denotes the (Z =2)
muon state and ,„1tde tneos the (Z=1) electron state.
The eigenvalues of Ho are the sums of the hydrogenic
eigenvalues E„'„' =E&„+E«. With the approximation

g& ——g, =2, the zeroth-order hyperfine splitting is
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3 mneme
(5)

It is convenient to divide the first-order correction in 5V
into two parts, corresponding to the intermediate-state
muon in the ground state

b,vf=hvp
M, M,

16 .+
3

M, Mp
ln

Mp M,

The ground-state-muon correction

Mp

M,

2
M,

64 Mp

(12)

is known accurately as

3 mneme
(0) ) ( (0)

All @II I ~yI ~(0))
E(o) E(o)

or in excited states

3 mneme
(0) ) ( (0) „,)

n (~0), EO, O
—En, n

n'

The first-order mass correction has a contribution only
from intermediate states in which both the muon and elec-
tron are excited to I' states

An approximate analytic calculation of b,v( has given the
result

Av) ——AVF

+0 M,
ln

Mp

M,
(13)

where S~&2 ——2.8+0.2. Amusia et al. have independently
calculated a similar expansion for the hyperfine splitting.
Their results are consistent with Eqs. (10)—(13). An accu-
rate numerical evaluation of iv) and hv& is described in
the following sections.

m
&y.".'I ~(-„—-., )

3 mneme
(0) ) (0)

0&,"'
I

&M
I

&(o) )
n (&0), EO, O En, n'
n' (&0)

III. EVALUATION OF hv)

hv( ——

In coordinate space, we have

f d-. , f d-., f d-. ,y„'.(-.,)y,'.(-., )

Thus the total first-order correction is

4v) ——bv f+hv(+Av)

An elementary evaluation yields the zeroth-order term

pn X 3 en' 3 pn 2 en' 1
X .(~p) E„o+E.o Ep. E«— —

n'

M,
Av0 ——hvF 1+

—3

(10) &2i
po(x2)g, p(xi) . (14)

where

8 a(aM, )
Av =—F 3 mneme

To facilitate the evaluation of (14), the summation over
two-particle intermediate states is factorized into single-
particle Coulomb Green's functions by means of the iden-
tity'

p, n X3 en X3 p, n X2 en X )

„( p) E„o+E.o—Ep.—E-
n'

1 +' oo pn 3 p,n 2 en' 3 en'

2ni ~ —~ ~ „„,z (E„„E&p) z—+(E« —E,o)—
7

8+g oo

dzG„( x3, x2,E~p+z)G, ( x3, x (,E,o z) . —
2~g 8 —g oo

(15)

Figure 1 shows the singularities of the integrand in Eq.
(15). The constant a is chosen such that the contour of in-
tegration passes between the two poles corresponding to
the lowest two values of Ez„E&p. —

n =0 and any n' vanish when integrated over z, since
there are no singularities to the right of the contour in this
case. Hence the summation in the integrand can be ex-
tended to all n and n' The Green'.s functions in (15) are
given by

(Q( 2AM~ (16)

For this choice of contour, terms in the integrand with

P„x2)f„(x ()
G x2, xi~z E„—z
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ImZ G (x2, x1,z) = Q G1(X2,x1,z) Y&~(x2) Y&~(x, ),
l, m

(19)

with radial Green's functions GI that satisfy the equation

ReZ

1 1 d
X2

2p x2 dx2

1(l +1) ZQ —z GI(x2, x1,z)

5(X2 —x, ) . (20)
1

X2X )

FIG. 1. Contour of integration and singularities of the in-

tegrand in the complex z plane for Eq. (15). The dashed line is
the contour of integration, the crosses and double lines represent
the discrete and continuous spectrum of the electron, respective-

ly, and the solid circles and triple lines represent the discrete and
continuous spectrum of the muon, respectively.

Construction of the radial Green*s functions by well-
known methods yields

p I'(1+1—v)
G1(X2,X1,z) = M„1+1g2(2cx( )

cx2x1 1 21+2)

and they satisfy the equation X W, 1+1g2(2cx ) ), (21)

1 2 ZQ
V2 — —z G(x2, x1,z) =5(x2 —x1),

2p x2

with p=M& and Z =2 for the muon, and p=M, and
Z=1 for the electron. The Coulomb Green's functions
are expanded in eigenfunctions of angular momentum

where M, b(x) and W, b(x) are the Whittaker functions,
c =(—2pz)'~ with Re(c) &0, v=Zatu/c, and x &

=min(x1, x2), x &
——max(x1, x2). Substituting Eqs. (15)

and (19) into (14) and integrating over coordinate angles,
we obtain

a+i oo oo
&

ooI . dz I dx3X 3 I dx2X 2 dx1x 1fpo(x3 )feo(x 3 )
3mmmp e

0 0

X g G~1(x3~x2,E+Q+z)Ge1(x3~x1~Eeo —z)
1=0

1
X (
I+1 &1Q fpo(—x2)f o(X1) (22)

where the functions f„o and f,o are the zeroth-order
ground-state radial wave functions for the muon and elec-
tron

I

The recursion is initialized with the approximation

r„L (z) =z, (26)

fo(x) =2(Zap) e (23)
where

M;2+3m«)r„(z)=
M, 1+1g2(z)

(24)

From the recurrence relations among the M 1+1~2(z) one
has

To calculate numerically the radial Green's functions in
(22) for a given range 1&L, the Whittaker functions in
(21) are generated recursively in the index 1. For numeri-
cal stability the functions M are calculated in the direction
of decreasing 1, and the functions W are calculated in the
direction of increasing 1. For the functions M we define

L =max! L, [Rez/2] J + [Rez/20]+ 15 . (27)

The accuracy of successive r, i(z) for decreasing 1 im-
proves initially, such that the error in r, i(z) for all
relevant values of v and z is less than 1 part in 10, as was
determined by varying L . The r, 1(z) with 1&L then
give the M, 1+1&2(z) up to a common constant factor.
This constant is fixed by calculating M„»~2(z) by numeri-
cally evaluating an integral representation for the func-
tion, as described in Appendix A. For the functions 8'
we define

1 1 v
r 1 1(z) z 21(1+1)

+ (1+1) —v r 1(z) .
4(1+1)'(21+1)(21+3)

(25)

~~,l+3n(z)
u„ i(z) = ~,1+1m(z)

and from the recurrence relations among the 8'„1+1&2(z),
one has
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2(l + 1)(21+1) 1 v

1+1—v z 21(l + 1)

+ — . (29)21(21+1) u„i,(z)

oo oo

++1= ++I+ g FI
1=0 I =0 l =6+1

(30)

I't ——G„t(X3,X2,E„p+z)G,t(X3,X ),E,p z)—
IX &X,+, —~(0

X) X1
J

(31)

I =[2max(lc, lxz lcp IX3 Ic. Ixi Ic. Ix3)]+»
(32)

The initial value u „p(z) is obtained by numerically
evaluating integral representations for 8', ~3(z) and

~„3~2(z), as described in Appendix B.
The summation over 1 in the integrand of (22) is carried

out in two parts:

E2((L +1)lnr )
—1 (34)

and the exponential integral function E2 is numerically
evaluated by known methods. The accuracy of this
method of calculating the sum was checked by comparing
the results to the results obtained with the cutoff I. re-
placed by 21. —10 or L, +100 for a representat1ve sample
of the variables x ~,x~,x3,z. The method appears to be ac-
curate to better than 1 part in 10 based on this compar-
Ison.

Numerical integration over x~,xz, x3,z in Eq. (22) is
carried out as follows. Integration over z is replaced by
integration over t where

z =2a M„[~+i (t 1)]—
and our choice of

(35)

with r = (x; /xk ) . The sum over 1 is approximated by
writing

00 r3'

l. +( (1+1/2) ~+'~2 (y+1/2)

with c = [—2(E p+z)M ],Rec & 0 and c = [—2(E p—z)M, ]'~2, Rec, ~0. The first sum on the right-hand
side of (30) is evaluated exactly according to the preceding
discussion. The second sum is approximated as follows.
Each term in the sum is replaced by its asymptotic form.

Al for large 1 (for x; &xj &xk)

MMp p
I

I I -AI ——— (33)
xtxk (1+1/2)

is consistent with the inequality in (16). We thus have

hv', = f dth(t),

h(t)= f dx3 f dX2 f dx/U(X3yx2yx]yt) (38)

4 2 2 2 3
—2aM z3 —aM z3 —2aM z2 —aM~z&

U{X3 X2,x „t)= — a (aM„) 13vpx 3x 2X jt
'jT

&(Re g G„&(X3,x2,E„p+z)G,I(x3,X ~,E,p
—z)

l=0

lX(
l0

X1
(39)

For large values of the coordinates or Imz, the radial
Careen's functions are given approximately by

p g —c~Z2-
Gt(X2,x i,z)— e

cx2X1
I

x
(40)

Hence, for large Imz, or small t, the integrand in (38) has
sharp peaks at x1 =x3 and x2 =x3. hl add][tlon, the cutoff
L in (32) grows as t ~0, increasing computer time and
storage requirements for evaluation of the sum over /. In
view of these facts, the function h (t) is evaluated with two
different methods depending on whether O~t ~0.05 or
0.05 ~t (1.

For the region 0.05 ~ t ~ 1, the integration over
x3,x2,x1 is divided into six regions according to the rela-
tive magnitude of the three coordinates: x3 ~X2~X1,
x 3 (x 1 Q x2, etc. Then, for example, in the region with

I

x3 ~x2 &x1, new variables of integration y =x1,
r )

——X2/x 3, and r2 ——x3/x2 are introduced giving

00 Z) Z2f dx, f dx, f dx, U(x„x„x,, t)
ao 1 1

0 dyy dr~r~ dr2U(r, r2y, r,y,y, t) .
0 0

(41)

For large y we expect the asymptotic form of U to be
given approximately by

(42)

A = aM, +a(2M&+M, )r
& r2+ 2aM„r,

+Re(c„)r~(1 —rz)+Re(c, )(1—r&r2),
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as suggested by (39) and (40). This asymptotic form was

verified numerically. Integration over y is facilitated by
additional changes of variables

f, dy g (y») = ~ f, dy g (y /~)

= —f dy g (Ry /2 )

are replaced by the corresponding free Green's functions
—CX2 )

6(xz, xi,z)~6' '(xp, xi,z}=
27T X2 I

(47)

with c as defined below Eq. (21). The fact that this re-
placement gives the leading behavior at small t (large

I
z

I
) is suggested by counting powers of z in the expan-

sion

where E. =5 and

+—f dy g((R +y)/A ), (44) 1 1 1 1
V + 0 ~ ~

H —Z Hp —Z Hp —Z Hp —Z

g (y) =y U(rir2y, riy y, t) . (45)

The first integral on the right-hand side of (44) is evaluat-
ed by 8-point Gauss-Legendre quadrature, and the second
integral is evaluated by 8-point Gauss-Laguerre quadra-
ture. ' The integrals over ri and r2 in (41) are each
evaluated by Gauss-Legendre quadrature with 18 points
for 0.05&t&0.1 and 16 points for 0.1&t&1. The coor-
dinate integrations in the other five regions, xi & x i &x2,
etc., are evaluated in analogous fashion.

For 0 & t & 0.05 the function h (t) in Eq. (38) is replaced
by a function h~(t)+b, h(t) that closely approximates
h (t). The function h„(t) is constructed so that

where H =Hp+ V, Hp is the free-particle Hamiltonian,
and V is the Coulomb potential. Written in terms of the
full Green's function 6(z) and the free Green's function
6' '(z), the expansion is

6(z)=6"'(z)—6"'(z)V6'"(z)+ (49)

The second approximation is based on the fact that for
large Imz, the quantity c in Eq. (47) has a large real part
and so the free Green's functions are strongly peaked
when the two coordinate arguments are equal. Thus, for
large Imz, the leading contribution to the integral in (14)
comes from the region x, =x2- x3, and we expect the re-
placement

hg(t)
hm =1 (46) 1 po( x2W' 0(xi)~1 pO( x3)4 0( x3)

with two simplifying approximations in h (t). First, the
Green's functions for the electron and muon in Eq. (15)

to be valid for the leading term. The validity of these ap-
proximations is more fully justified in Ref. 1. Combining
Eqs. (14) and (15) and making these replacements we have

h~(t) =—
X3I

160, M, Mp C+X32 e 31"t f dx& f dx2 f dxi
I 1(tpo(x3)

I I Ceo(xi) I3' PlqPlp X32 X2) X)

With the aid of the identity
—CX3 )e 4~ 1

X3)X2) g X322
(51)

the coordinate integrations in (50) are eliminated, with the
result that

n M, M
hg(t) = AvF "Re 1

CqCp(C~ +Cp )

s(4s+c, )

chic~(2$+ce )

(52)

where s =2aM&+aM, . Numerically, the function h~(t)
is quahtatively similar to h (t). The fractional difference
between hz(t) and h (t}approaches zero as t~0, with typ-
ical values of 20% at t =0.5 and 4% at t =0.1. The
remainder hh (t) is evaluated by fitting a third-degree in-
terpolation polynomial to the calculated values of
h (t) —hz(t) at the points t =0, 0.05, 0.09, and 0.12. The
end-point value is b,h (0)=0, since h (0)=hz (0)
= —303.21 MHz.

The integral over t in Eq. (37) is evaluated by Gauss-
Legendre quadrature with the above methods of calculat-
ing h (t). The results are shown in Table I where the re-
sults for hvi are tabulated as a function of the number of
integration points X employed in the integration over t.

The numerical uncertainty in 4v~ is estimated by in-
tegrating the pointwise uncertainty in the values for h (t).
In the range 0. 1 & t & 1.0, the calculation of h (t} is
designed at each stage to give an uncertainty of less than 1

part in 10, which corresponds to an error of 0.005 MHz
in hvi. This accuracy is confirmed by observing the sta-
bility of h (t) while varying the number of terms in the
summation over I, varying the number of integration
points in the evaluation of the functions M or 8; or vary-
ing the number of integration points in the coordinate in-
tegrations. For 0.5&t &1.0, the errors in h(t) are much
less than 0.005 MHz. For 0.05 ~t ~0.5, an independent
error estimate for h(t) is made by comparing the exact
values of hz(t) given by Eq. (52) to the values obtained by
the method employed to calculate h (t) numerically, with
the appropriate changes to give hz(t). The changes are to
replace v by 0 in the radial Green's functions and to re-
place the arguments of the wave functions by x3 in Eq.
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TABLE I. Numerical results for Av&.

Number of
integration points X

6
8

10
12
14
16

—43.1346
—45.3567
—45.7640
—45.7172
—45.6796
—45.6708
—45.6702

(39). This comparison gives the numerical error in the
evaluation of hz(t), which is expected to be of the same
order of magnitude as the numerical error in the evalua-
tion of h (t). In the range 0. 1 & t & 0.5, the error in the nu-
merical evaluation of h~(t) is less than 0.005 MHz. For

0.05 & t &0.1, the error in hz (t) increases as t decreases, to
a value of about 0.035 MHz at t =0.05. To estimate the
uncertainty in b,h (t) in the range 0 & t & 0.05, third-degree
polynomials are fitted to the upper and lower estimated
limits of the calculated values of h (t) —hz(t) at t =0.05,
0.09, and 0.12, with b,h (0)=0. The integrated error esti-
mate is 0.008 MHz, so the result of the calculation is
hvt ———45.670(8) MHz.

Two additional consistency checks on the calculation
have been made. For the 12-point integration over t, the
calculation was done by the above method with the con-
tour of integration over z in (22) shifted so that ~=0.174
[see Eq. (35)]. The result for b,v', agrees with the previous
result within 1 part in 10 . Also, a numerical calculation
of b v; was done with the same approximations as are
made in the analytic calculation of Ref. 2. This numerical
result agrees well with the analytic result.

IV. EVALUATION OF Avi

The mass-polarization correction in coordinate space reads

bv( ——— f dx3 f dxz f dx&g„p(x3)l(t, p(x3)

n' (&0)

XX2 'X
~ 7/l&p( X2)gep( X ] ) (53)

where the substitution

~ 2 ~ 1

fop�

( x 2 ) (('e 0( x
~ ) =2D M&Me x 2 x 1 Pleo( x 2 ) Pe 0( x 1 )

has been made.
Proceeding in analogy with the treatment in Sec. III, we obtain

1

Ave f dt h'(t), ——

where

(54)

(55)

)&Re[6&](x3 x2 E~p+z)Ge](x3 xt Eep —z)]

In (56), only radial Green s functions with l = 1 contribute, considerably simplifying the calculation.
For 0. 1 & t & 1.0, the coordinate integration in (56) is evaluated with the appropriate 22-, 8-, and 8-point quadrature

method for integration over the variables r], r2, and y, respectively, as defined in Sec. III.
For the range 0 & t &0.1, a function h&(t) that approximates h'(t) is constructed by making the approximations

described in Sec. III to construct hz(t):

32aM M —C X32 —C X3)

hg(t)= 2
" t f dx, f dx, f dxi

~
@go(x3)

I I
geo(x3)

~

Re3' Pl~m~m~ X3)

which yields

(57)

512
hg(t) = bvF

16

Vl~t S Ceca SCeCp(2$ +Ce ) SCeCp(2$ +C~) CeCp(2$ +Ce+Cp )

32$ 2$ (2S +Ce +Cp )

4 4ln
CeCp (2$ +Ce)(2S +C~)

(58)
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TABLE II. Numerical results for hv~ .

Number of
integration points N hv) {MHz)

0.078 87
0.078 53
0.078 52

where s =2aM&+aM, . For 0&t &0.1, h'(t) is approxi-
mated by hz(t)

The numerical uncertainty in the calculated values of
h'(t) is estimated with the methods described in Sec. III.
The error in the value of h'(t) at t =0.1 is thus estimated
to be 0.00001 MHz, and the errors in h'(t) for 0. 1 & t & 1

should be smaller. The difference between hz(t) and h'(t)
at t =0.1 is 0.002 MHz, and this difference decreases as t
decreases. Hence, approximating h'(t) by hA(t) in the re-
gion 0&t &0.1 introduces an error smaller than 0.0002
MHz.

The results of evaluating the integral in (55) by Gauss-
Legendre quadrature are shown, as a function of the num-
ber of integration points, in Table II. The result is
hv~ ——0.0785(2) MHz. An estimate of the order of mag-
nitude for b,v& can be carried out analytically, yielding
Av& -hvF(M, /m&)(M, /Mz)' =0 04 MH. z, which is
consistent with the numerical result.

V. CONCLUSION

The results of this calculation are bv~ ———45.670(8)
MHz and»& ——0.0785(2) MHz. The calculated value of
hv~ is in agreement with and more accurate than the ap-
proximate analytic result in Eq. (13). The results of non-
relativistic perturbation theory for the hyperfine splitting
in muonic He are summarized in Table III. These num-
bers are based on the constants E. =3.289 842)& 10
MHz, a '=137.0360, m&/m, =206.7686, and m~/m,
=7294, which yield hvF ——4516.91 MHz. The uncertain-
ty from the uncalculated second order in perturbation
theory hv2 is estimated to be of order
»p(M, /M&)»(M&/M, ).' The total nonrelativistic re-
sult for the hyperfine splitting is 4453.8(1.2) MHz. This
can be compared to the result of Huang and Hughes,
4455.1(0.3) MHz, based on a variational calculation, " and
to the result of Drachman, 4450 MHz, obtained by a
Born-Oppenheimer approximation method' and by a
variational calculation in which the contact interaction is
replaced by an equivalent global operator. '

The main correction to the nonrelativistic result is due
to the lowest-order anomalous magnetic moment of the
electron and muon that together shift the hyperfine fre-
quency by bvF(a/m)=10. 5 MHz. Relativistic and
higher-order radiative corrections, both of order Avoca,
are not included here. The corresponding uncertainty is
estimated to be 0.6 MHz. The total hyperfine splitting in
muonic He, based on perturbation theory, is
b,v=4464. 3(1.8) MHz. This value is consistent with our
previous result, »=4462. 6(3.0) MHz, the result of
Huang and Hughes, b,v=4465. 0(3) MHz, " and the result
of Amusia et al. , b v=4462. 9 MHz.

The theoretical values are in agreement with the mea-
surement of » in a weak magnetic field made at the
Swiss Institute for Nuclear Research (SIN)
»=4464. 95(6) MHz, ' and with the results of the mea-
surement of b,v in a strong magnetic field made at the
Clinton P. Anderson Meson Physics Facility at Los
Alamos (LAMPF) b v=4465. 004(29) MHz. '
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APPENDIX A

We employ the integral representation

I (21 +2)= r(i+t+ )r(i+t —)

where

(Al)

1I= dt t' "(1 t)'+"e~—
0 (A2)

I =(e lw) f du(u/w) +"(1—u/w)' "e

and write

(A3)

to evaluate numerically the function M„t+~~2(w) for the
range of parameters relevant to this calculation. This
range lies within the boundaries 0 & Rev & 1.2;
I =5; Rew &0. For 0&Rew &8, the integral in (A2) is
evaluated by 12-point Gauss-Legendre quadrature. For
8&Rew &18, the substitution t =u'~ is made in (A2),
and the integral over u is evaluated by 12-point Gauss-
Legendre quadrature. For Rew & 18 and Imw&0, we in-
troduce a new variable of integration u =w (1—t) in (A2):

TABLE III. Perturbation theory results for the hyperfine fre-
quency.

MHz

I=(e /w) f du(ulw)'+ (1 u/w)' —e "+e,
(A4)

hvp ——4483.38
b,v f= 16.02

hv) ———45.67
hvj ——0.08
Av2 ——+1.2

total 4453.8{1.2) MHz

where

ooe= —— du(1+u/w) +"(—u/w)' "e
w

(A5)

The integral in (A4) is evaluated by 10-point Gauss-
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Laguerre quadrature. The correction e is smaller than the
main integral roughly by a factor exp( —Rew), and its
contribution is neglected in the evaluation of M~ i+i~2(w)
with an error less than 1 part in 10 .

APPENDIX 8

To evaluate the function W„i+i~2(w), we employ the
representation

18'„t+ ig2(w) =
I (1+ I —v)

where

(81)

J= f ds (s/w) "(1+s/w) +'e (82)

The relevant parameters are within the range
0&Rev&1.2; I =0, 1; Rew &0. For 0&Rew &0.35, we
write

s+1 l —v l+v

1+ +s+1
W

I (l—+v—) '+ e '+" -.
W

(83)

The first integral on the right-hand side of (83) is evaluated by 10-point Gauss-Legendre quadrature, and the second in-

tegral is evaluated by 10-point Gauss-Laguerre quadrature. For Rew & 0.35, an additional term is extracted:

J= 1+I (1+l —v) (I+v)(1+l —v) (I+v)(l+v —1)(l+l —v)(2+l —v)
l —v N 2w

+fds
l —v

s s1+—
W

l+v
s (1+v)(1+v —1) s
w 2 N

2

f ~d s+1 l —v 1+v

1+ s+1 s+1—1 —(l +v)
N M

(1 +v)(l +v —1) s +1
2 N

2

e —(s+1) (84)

The integrals are evaluated as in (83). In the final calculations of b,v&, the number of integration points in the evaluation

of 8'„t+i~q(w) was taken as 5 instead of 10 to reduce the computation time. It was found empirically that this reduc-

tion did not affect the result within the desired level of precision (1 part in 10 ).
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