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The bound-state wave function of a single nonrelativistic particle is written as F exp( —6), where

F contains the nodal information and is restricted to be a polynomial and 6 is the negative of the

logarithm of the wave-function envelope which contains the spectral information. As a perturba-

tion is turned on, both F and 6 respond, but the response in 6 can be absorbed in F. A perturbative

expansion on F and the energy leads to a hierarchy of inhomogeneous differential equations which

resemble Gauss s law with a variable dielectric constant. If the perturbation is of polynomial form,
one reasonably expects polynomial solutions for the perturbative corrections to F in this hierarchy.
This method is used to obtain the first-order wave-function correction for the hydrogenic 2S and

280 states in a multipole field and their corresponding multipole polarizabilities. In the dipole case,
the method is modified to treat degenerate mixing. Then the first-order correction to the wave

function for an arbitrary hydrogenic bound state with azimuthal quantum number m =0 in a large-

order multipole field where neither degeneracy mixing nor first-order energy shift occurs and its

corresponding multipole polarizabilities are calculated in closed forms.

INTRODUCTION

The calculation of multipole polarizabilities of atomic
states falls under the general category of atomic sum
rules. An elegant method for such calculations was first
suggested by Dalgarno and Lewis. ' From the point of
view of perturbation theory, one may identify the
Dalgarno-Lewis method as writing the first-order pertur-
bation correction to the wave function as a scalar function
times the unperturbed wave function. This scalar func-
tion is then obtained as the solution to a multidimensional
inhomogeneous differential equation. Direct attempts to
obtain the perturbative corrections to the wave functions
as the solution of inhomogeneous multidimensional dif-
ferential equations were made earlier by Schrodinger, Po-
dolsky, and Sternheimer. For multielectron atoms, the
Z-expansion method for calculating atomic polarizabilities
and shielding factors was introduced by Dalgarno and
Stewart. This method was later extended by Cohen '

and by Cohen and Drake ' to the calculations of the di-
pole polarizabilities of the lithium and sodium isoelectron-
ic sequence and the dipole hyperpolarizabilities of S-state
atoms and ions in the first two rows and the multipole po-
larizabilities of the helium isoelectronic sequence.

In this paper we are basically concerned with the wave-
function corrections of hydrogenic bound states in mul-
tipole fields and their multipole polarizabilities. To obtain
the corrections to the wave function we first write the
bound-state wave function of a single-particle system as
Fexp( —6). F contains all the nodal information of the
wave function and is restricted to be a polynomial. 6 is
the negative of the logarithm of the wave-function en-
velope and contains the spectral information. As a pertur-
bation is turned on, both I' and 6 will respond. However,
any response in 6 can be absorbed in the response in I' by
expansion of exp( —6). If, on the other hand, one absorbs
all the corrections to Fexp( —6) in 6, one recovers the

logarithmic perturbation-expansion method. " But the
fact that F may contain zeros makes this not applicable
for excited states. Hence, for excited-state perturbation
problems, it is more convenient to absorb the corrections
to G in F. As we shall show in Sec. I, if the perturbation
is in the form of a polynomial, one reasonably expects po-
lynomial solutions for the corrections in F. A perturba-
tion expansion on F and the energy leads to a hierarchy of
multidimensional inhomogeneous differential equations
that have the saine form as Gauss's law in electrodynam-
ics but with a variable dielectric constant. ' *' Should
degeneracy occur in the unperturbed problem, the present
method needs modification and additional bookkeeping of
the degeneracy index. One needs to start with a basis that
diagonalizes the first-order perturbation matrix. If the de-
generacy is lifted in first order then the complete first-
order correction to the wave function is determined by the
second-order equation, as is the case in ordinary degen-
erate perturbation theory. ' In Sec. II we apply the
presently developed perturbation method to obtain the
first-order correction to the wave function of the hydro-
genic 2S state in a static multipole field, ' and hence the
multipole polarizabilities. In Sec. III we repeat the calcu-
lation for the 2P& state. In Sec. IV we consider the Stark
effect on the lowest-lying excited hydrogenic states with
azimuthal quantum number m =0. Here the degenerate
version of the present method must be used. We calculate
the first- and second-order corrections to the wave func-
tion in spherical coordinates and obtain perturbation
corrections to the energy to the fourth order. In Sec. V we
show that the nondegenerate version of the present
method may still be used to obtain "sum rules exclusive of
degenerate-state contributions" by suitable use of projec-
tion operators. In Sec. VI we consider the wave-function
and energy corrections of an arbitrary hydrogenic bound
state (with azimuthal quantum number m =0) in a large-
order multipole field such that neither degenerate mixing

1034 Q~1984 The American Physical Society



MULTIPOLE POLARIZABILITIES FOR HYDROGENIC BOUND STATES 1035

nor first-order energy shift is involved. We give the first-
order correction to the wave function and hence the mul-

tipole polarizabilities in closed forms. Then in the Appen-
dix we show how the energy shift of an atom in a rota-
tionally invariant state, when subjected to an external po-
tential, is related to the static multipole polarizabilities
given in sum rule form by Dalgarno. '

I. PERTURBATION METHOD
FOR MULTIDIMENSIONAL SYSTEMS

We consider the nonrelativistic Schrodinger equation
for the bound states of a multidimensional single-particle
system

r

Hg= Ho+ g A, 'V;(r)

=[——,
' V' + V(r)]g

reasonably expects solutions in polynomial form. If the
total potential V(r) is sufficiently smooth, the stationary
bound-state wave function can be written' as

P( r ) = F ( r )exp[ —6 ( r )], (1.4)

where both F and 6 are regular functions. F(r ) contains
the nodal structure of the wave function and is restricted
to be a polynoinial. 6(r), which may have very compli-
cated structure, is the negative of the logarithm of the
wave-function envelope and thus contains spectral infor-
mation about the state g. The overall normalization of
the wave function can be absorbed as an additive constant
in 6 or as a multiplicative factor in F. In terms of the
functions F and G, the Schrodinger equation (1.1) is
transformed to Ricatti form and it involves the n

dimensional gradient of 6 only. Hence the overall addi-
tive constant in G is uniquely determined by the normali-
zation. On using the transformation expressed in Eq. (1.4)
in Eq. (1.1), we obtain

V F 2VF'V—G F(V 6——VG. VG)=2F(V —E) . (1.5)

H, = ——,V'+ V,(") (1.2)

such that 7 is the n-dimensional Laplacian operator and
that r is an n-dimensional position vector. In the usual
Rayleigh-Schrodinger perturbation theory, the wave func-
tion f is expanded in a power series of the coupling con-
stant

From the structure of Eq. (1.5) one observes that if the po-
tential terms V;(r) are given by polynomials, the restric-
tion that F(r) is a polynomial and the fact that E is a
number presumably expandable in a power series in A, im-
ply that if one expands both F and 6 power series in A, ,

F= gA, 'F;

(1 3) and

(1.7)
and the corrections to the wave function are obtained as
solutions to inhomogeneous multidimensional differential
equations. Since the wave function is generally a compli-
cated mathematical function, there is no reason to expect
that solutions to P; are of simple form.

In this paper we present a modification of the usual
Rayleigh-Schrodinger perturbation theory whereby one
can obtain solutions to the wave-function corrections via
multidimensional differential equations for which one

I

V F) 2VFi. VGO 2—VFO. VGi —F—i(V Go —VGOV60) —Fo(V Gi —2VGo VGi)=2FO(vi Ei)+2Fi(VO ——Eo) .

then F; and 6; (i ) 1) would have polynomial solutions.
The zeroth-order equation corresponding to Eq. (1.5) is

VzFO —2VFO VGO —Fo(V'Go —VGO V60)

=2FO( Vo —Eo) (1.8)

and is presumed solvable, i.e., all of Fo, 60, and Eo are
known. The corresponding first-order equation is

(1.9)

It is quite apparent that there is too much freedom in this equation to allow for the unique determination of F~, Gi, and
Ei. However, upon using Eq. (1.8) in Eq. (1.9), Eq. (1.9) can be reduced to

V' (Fi —FoGi ) —2V(FO —FOGY ).V'Go —(Fi FOG, )(V' 60 —V—GO. VGO) =2(Fi —FOG i )( Vo —Eo)+2FO( Vi Ei ) . —

(1.10)

which upon multiplication of both sides by exp( —260)
reduces to

V [ [FoV (F] —FOGi ) —(Fi —FpGi )VFO]exp( —260) J

=2FO( Vi Ei )exp( —26O) . — which is the same as ordinary perturbation theory. With(1.12)

On multiplying Eq. (1.10) by Fo and again making use of Eq. (1.9), we have

FpV (Fi FpGi ) —2FO V(F] FOG—i )' V GO+(F)——FOG i ) (2 VFO V Go —V Fo) =2FO( Vi Ei)—(1.11)
l

From this E~ can be obtained by integrating both sides of
Eq. (1.12) and making use of Green's theorem,

Ei ——J ViFoexp( 260)d r= J Vigod—r, (1.13)
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Ei thus obtained, Eq. (1.10) becomes a multidimensional
differential equation for the function (F) F—pG) ). If the
first-order correction Gi to the logarithm of the wave-
function envelope 6 is of polynomial form, then
(Fi F—oG) ) will have a polynomial solution since F is re-
stricted to be a polynomial. We also note the following re-
lation:

(Fp+ AF) )e ' ' = [Fo+ A (F) F—oG, )]e (1.14)

and

Pp =Fpexp( —6), (1.15)

1i =Fexp[ —6 —E(A, )]

g i('F; exp[ —6 —K(A, )]

(1.16)

where K(A, ) is the additive constant to 6 that is complete-
ly determined by normalization. Then the unperturbed
version of Eq. (1.5) is

to first order in A, . This is equivalent to saying that al-

though both F and G respond to the perturbation to first
order in A, , the response in G can be absorbed in F as if the
logarithm of the wave-function envelope 6 stays constant
in the presence of the perturbation. Similar statements
can be made about the corrections of higher order in A, .
Hence, one comes to realize that even though both F and
G get disturbed by the perturbation, to any finite order in
perturbation theory, any disturbance in G can be absorbed
in F by expanding exp( —6). On the contrary, since F
contains the nodal structures, the disturbance in F cannot
be absorbed in 6 if we want both F and G to remain regu-
lar as the perturbation is turned on. Thus, one can insist
that as the perturbation is introduced, only F will respond.
By keeping VG fixed, we are retaining as much as possi-
ble the inforination about the unperturbed wave function
for the perturbed one. Based on the above arguments, we
shall keep G constant in all perturbative calculations and
write

On multiplication of both sides by exp( —2G), this further
reduces to

V. I[V(F;/Fp)][Fpexp( —26)]J

V =V+ g F(V; J. E;,)—/Fo
j=1

(1.20)

as the effective ith-order perturbation for i )2. With this
identification, Eq. (1.19) can be written in the general
orm

V [Q() V( F;/Fo)]=2(V E;)tg, —i) 1 . (1.21)

On integrating over all of the n-dimensional space and us-

ing the divergence theorem and the fact that gp vanishes
at infinity, we have

E;= V r, i)1. (1.22)

With E; thus found, F; is determined by the multidimen-
sional differential equation (1.21). The factor (F;/Fp) in
the left-hand side of Eqs. (1.19) and (1.21) can be identi-
fied as (g;/gp) on multiplying both numerator and
denominator by the same factor exp( —6) and ignoring
the order-by-order renormalization constant E(A, ). This is
possible since only the gradient of G enters into the
Ricatti-type equation (1.5) and E(A, ) is purely an additive
renormalization constant to G. In this case, one must
identify the normalization used at the end of each pertur-
bation step in the usual way, namely, either require
(Po

~
P; ) =0 for all i or require the partial sum of the per-

turbative series of the wave function be normalized to uni-

ty, that is,

2Fp g F~( V; J E; —
J ) exp( —2G) (1 19)

j=p

which resembles Gauss's law in classical electrodynamics.
However, one may not directly borrow the solution from

electrodynamics because the left-hand side of Eq. (1.19)
cannot be written as the Laplacian of a scalar function.
Hence Eq. (1.19) is Gauss s law with a variable dielectric
constant. ' ' Equation (1.19) is in hierarchical form and
each equation in this hierarchy is isomorphic to the first-
order equation upon the identification

V F() 2VFo VGo —F—o(V G —VG'VG) =2Fo(Vo —Eo) ~

( q(N)
~

q(N) ) (1.23)
(1.8')

where
where Fp G, and Ep are known, and we have replaced Gp
by 6 since we are keeping G fixed. On expanding the en-

ergy in power series in A,

y(N) y pic (1.24)

E =gA'E;, (1 17) Then Eq. (1.13) can be rewritten as

V'[eo V(e/eo)] =2( V'"—E.)eo . (1.25)
and using this and Eq. (1.16) in Eq. (1.5), we obtain the
equation for the perturbation correction to any order,
which, on multiplication by Fp on both sides and making
use of Eq. (1.8'), becomes

For i = 1, this can be identified with the equation obtained
by Hirschfelder et al. ' Except for the ground state
where the wave function does not contain any zeros, the
factor (F;/Fp), or equivalently (f;/Pp), is singular at the
nodal points or nodal surfaces of the unperturbed wave
function in cases of excited states. Thus, in general, in the
procedures where one identifies f;/go as a scalar function
4;, one does not expect to obtain regular function solu-

(1.18)
j=p

F()V F; —2F() VF;.V 6+F;(2VF() VG VF())—
i —1

=2Fp $ F~(V; J E~ J)—
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tions to 4;. However, by turning to Eq. (1.18) rather than
Eq. (1.25) one has better hopes of finding regular solutions
for F;. In a sense this is equivalent to saying that since
one expects f; to be singular at the nodal surfaces of fp,
one may as well guess the solution for f; to be F;/Fp.
Nevertheless, even if one has the option to choose to solve
either Eq. (1.18) or (1.25), in practice it is the equation in
the form of (1.18) that is easier to solve. This is particu-
larly true if the perturbations V; are given as a sum of
multipole terms and the unperturbed functions Fp and 6
can be expanded in terms of a finite number of spherical
harmonics. The latter requirement is met in all bound-
state problems arising from an initial "unperturbed" cen-
tral potential. The former is usually the case in most
atomic calculations of interest. Then F; can be expanded
in spherical harmonics and the projections of Eq. (1.18) on
different spherical harmonics become coupled ordinary
differential equations whose source terms are polynomials.
In this case one reasonably expects polynomial solutions
for the function F;. The method presented here is appli-
cable, but not limited, to hydrogenic problems. Great
simplification occurs when 6 is a function of the radial
distance r only. Here, the projection on each spherical
harmonic manifold decouples from other projections, re-
sulting in ordinary second-order differential equations.
This is true in hydrogenic problems and is expected to be
true for all unperturbed central force problems.

%"e have argued in the above that any perturbative
correction to G can be absorbed in F by expanding the ex-
ponent. In realistic situations where the total physical po-
tentials, including the perturbation, vanish at infinity, the
logarithm of the wave-function envelope G is determined
by its asymptotic behavior, which in nonrelativistic prob-
lems goes like V'2mEr. Thus one can use this asymptotic
property to adjust G. For example, let us assume that one
has successfully carried out the present perturbation
scheme to order N, i.e., one knows E; and F; for
i =0, . . . , N. One defines

N g l N6' '= pa', &2mE, r 1+ +WE,
0 BA, o i=1

(1.26)

where in realistic problems we expect

G(0) G

and then defines an adjusted F' ' through the relation

(1.28)

up to order N, where the exponential factor on the right-
hand side is expanded in power series and truncated at N
and then I" ' is determined by comparing powers of A, on
both sides.

Should degeneracy arise in the unperturbed problem, as
in the nonrelativistic hydrogenic problem without spin,
the present method needs to be modified. For simplicity
we shall assume that V; vanishes for i ) 1 and that degen-
eracy is lifted in first order. In the case of an unperturbed
central potential that vanishes asymptotically, as in the
hydrogenic problem, G is spectroscopically determined.
Hence the degenerate states can be chosen to have the
same G. On denoting the degenerate states with a super-
script a (a= 1, . . . , g, where g is the degree of degenera-
cy), the wave function and its energy can be written as

g =F exp( —6)

A, 'F; exp( —6), (1.29)

E = gA, 'E; (1.30)

where

Ep ——Ep ——Ep for a,P=1, . . . , g (1.31)

E (
——(a

i Vl
~
a )&(P

~
V~

~
P) =E ) for a@P . (1.32)

In writing Eq. (1.32) we have assumed that we have
chosen suitable orthonormal combinations of the degen-
erate states to diagonalize the perturbation matrix and
that degeneracy is lifted in first order. ' Equation (1.8')
can be rewritten with the degeneracy index

V Fp 2VFp. VG =F—p[2(Vp —Ep)+V 6 —VG. V 6]
(1.33)

and Eq. (1.18) can be rewritten as

i —1

FpV F; 2FpVF; .VG —F; (V Fp 2VF—p. VG)=2F—(~ )FpV) —2 g FJ FpE; 1 2FpFpE;—
j=1

(1.34)

where Eq. (1.33), with a~p, has been used. On multiplication of both sides by exp( —26), the degenerate analog of Eq.
(1.19) can be obtained:

i —1

V [(FpVF; FPVFp)exp( —2G)]=—2 Fp F; &V] —$ Fg E; J FqpE; exp( —2G) . —
j=I

(1.35)

Equation (1.35) allows us to determine the amount of mix-
ing of Fp into F; . First, we notice that any Fp is a homo-
geneous solution to the differential equation (1.34). In-
cidentally, the same is true in the nondegenerate case. But
here the mixing is completely determined by the normali-

t

zation of the perturbed wave function. Let us, for the mo-
ment, choose our normalization so that

(FP ~F; ):—(gP g; )= J FpF; exp( 2G)d r =5;p—
(1.36)
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and assume that a particular solution, F, to the inhomo-
geneous differential equation (1.34) has been found such
that

(F(o ~~E )=0 for P=l, . . . , g .

The correct ith-order correction to F is written as

F; =F( + g br(i)F( .
y(&a)

(1.37)

(1.38)

(1.39)

The coefficients br(i)'s are determined by the ith-order
equation' in the hierarchy of Eq. (1.35) by integrating
both sides. Using Eqs. (1.36) and (1.32) and the fact
(Fo!~Fo ) =5 p, one obtains

i —1—g br(j)E; (+& —J F V&F)exp( 26)—d r
j=1

br(i) =

Vi Q—r(r'P(, 1~1, (2.1)

and

6 =r/2 (2.3)

Fo =(2—r) „,Io.2(2)'/

Then the first-order correction to the energy is

E( —— V($2sd r2S 3

(2.4)

where Qr, ( is just a number and P( is the 1th-order Legen-
dre polynomial and L & /. We write the solution F1 in the
form

F1 —— 1 0

2[2(21+1)]'~',~2 Ru(r) I'(, (2.2)

where Ru(r) is a polynomial. For the metastable 2S state
of hydrogen, we have

Thus, Eq. (1.34) together with Eqs. (1.37)—(1.39) and the
normalization condition (1.36) will determine F(. If the
normalization is chosen to be different from Eq. (1.36),
then an appropriate amount of F0 must be mixed into F;
An example is given in a later section.

where

AI —— '
(L +3L+4)Q~o .

(L +2)!
8

(2.5)

(2.6)

II. METASTABLE H ATOM IN A MULTIPOLE FIELD

In this section we consider the metastable hydrogen
atom in a static multipole field' by using the technique
developed in Sec. I. Since Eq. (1.19) is linear in the func-
tian F(, the present method applies even to the situation of
a linear combination of static multipole fields where one
simply has to superpose the solutions for the individual
multipole. If the initial linear combination of multipoles
contains a dipole field, the degenerate method discussed at
the end of Sec. I must be used. We shall consider this sit-
uation in a later section.

We consider an initial perturbation of the farm

r Ru+Rur (2 r)+Ru[—r —1 (1 + 1)]

=2r'(2 r)QI—((r' ~&5(o), (2.7)

where the prime indicates a derivative with respect to its
argument. We next seek a power-series solution for Rzl ..

RI.(= g(( (2.8)

On substituting Eq. (2.8) into (2.7) we obtain the following
indicial equation:

On substituting Eqs. (2.1)—(2.6) into (1.18) for i =1, we
obtain

(n +1+1)(n —1)((„'—(n —2)a„' (
——2Qu[25„~+2 —5» g+3+3+5(o(5„3—25„2)] . (2.9)

For 1=1 a polynomial solution for RI( cannot be found.
This is due to the dipole mixing of the degenerate 2S and
2P states, giving rise to unnormalizable solution for the
perturbed wave function. The exclusion of this degenerate
mixing by use of projection operator is discussed in a later
section. For /&1 a polynomial solution can be found:

2Qu
L+2

I

and

and

(L +2)!(L 2+ 3L +4)5(o

2QI( (L +4)1+
(

(L +3L —2)5(2,

a„=0 for all other n (2.10)

2Qu(" —2)' (L +1+2)!(L—1+1)!
(n +1+ 1)!(n—1)! L f

X
(L +I +3)(L —1+2) —2L+1

for L+1&n &1+5(2+35(o

The unperturbed solution F0 is a solution to the homo-
geneous equation. The mixing of Fo in F;(i & 1) is deter-
mined by the normalization condition. Once F1 is ob-
tained, F2 can be found from the solution to Eq. (1.18), to-
gether with the normalization condition. The higher-
order corrections are obtained by solving indicial equa-
tions similar to Eq. (2.7).

The static 2 -order multipole polarizability for an atom
in the state

~ P) is given by Dalgarno'6 in the sum-rule
form
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Eo" Eo-(n) (P)
(2.11)

Thus according to Eq. (2.1), the static 2 order multipole
polarizability (L & 2) is

8
a

center of atom

(2.13)

and repeated indices are summed over. A proof of Eq.
(2.12) is given in the Appendix.

According to Eqs. (1.20) and (1.22), the second-order
energy shift is

E, = IF Fo, V e )px( 2G)d'r . — (2.14)

where Eo"' is the unperturbed energy of the state
~

n).
The expression on the right-hand side of Eq. (2.11) can be
identified as the second-order energy shift Ez~' for the
state

~ P) multiplied by —2 due to the interaction ex-
pressed in Eq. (2.1) for L =1. Thus the static 2 -order
multipole polarizability of metastable hydrogen can be ob-
tained by finding E2 for the case L =l by using the
method discussed in Sec. I. In general, the second-order
energy shift, when an atom in a rotationally invariant
state

~
P) is subjected to an external electrical potential P,

is related to the 2 -order static multipole polarizability in
the following way:

2L
~st, )

= g —,—',,
~
a, , a,,e(0)

~

', , (2.12)
L

where

(2s) 4 (2L —1)!(L+2) (4L4+123+7L2 7L——4)
(L —1)

(2.17)

This agrees with the static limit of the dynamic multipole
polarizability of metastable hydrogen previously evaluated
with the frequency-dependent Coulomb-Green's function
method

III. HYDROCsENIC 2Pp STATE
IN A MULTIPOLE FIELD

and

62P (3.1)

In this section we repeat the calculations in Sec. II for
the hydrogenic 280 state. To minimize the notation we
henceforth drop the subscript m =0 for the azimuthal
quantum number. Again, we consider an initial perturba-
tion of the form V) expressed in Eq. (2.1). For the 2P
state we have

For L =1, L )2, according to Eq. (2.10), we have

„c 2 2 4(L +2) 8(L +2)
L +1 L (L +1) L (L —1)

(2.15)

2P r 0
1/22(6)

The first-order energy correction is

E, = I V)grad r

(3.2)

Substituting Eqs. (2.15), (2.2), (2.4), (2.3), and (2.1) for
L =1 into Eq. (2.14), we obtain

L+4!(V'1/35(o+ &4/155(z)
3

1/2

2.(2L —1)!(L+2) (4L +12L +7L 7L 4)
(L —1)

(2.16)
I

(3.3)
On using Eqs. (3.2) and (2.1) and spherical harmonics ad-
dition rules, we have

L+1
F2PV = 3

2(6)' ' 2l+1

1/2 1/2
(1+1)'

(21 + 1)(21+3) (21+1)(21—1)

1/2
0

YI (3.4)

(1+1)'
(21 +1)(21+ 3)

F2P
8(21 +1)

We therefore seek the solution of F( in the form
' 1/2 1/2

l2

(21 + 1 )(21 —1)

1/2

Si. i Y( (e(l —2) (3.5)

where 8 is the usual step function. Upon substituting
Eqs. (3.3)—(3.5) into Eq. (1.18), we have

I

where we have dropped the subscript L, l from R and S.
Then on writing R and S in power-series expansions

r R"+r (2 r)R'+[r —(1+2)(1+1)]R—

i. +3 (L +4)! 35 (3 6)
12

and

r S"+r (2 r)S'+ [r —1(1—1)]S—

R = ga„r"

S= gb„r",

(3.8)

(3.9)

g +3 (L +4)! 35=2r
12

r 5„, (3 7)
we obtain the following indicial equations and their corre-
sponding solutions for a„and b„:
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(n + I +2)(n —I —1)a„(—n —2)a„1——25„~+3—(I. +4)! (3.10)

and
(L +4)1

(n + l)(n —I + 1)b„(—n —2)b„,= 25„L +3— '
5125„3 e(l —2) (3.11)

whose solutions are

—2(n —2)! (L +I+4)!(L—I +1)!
(n +I+2)!(n —I —1)! (L +1)!

0 otherwise
(3.12)

and

—2(n —2)! (L +I +2)!(L—I +3 ' e(l —2) for I —1+25 (n (L +
b„= (n+I)!(n —I+1)! (L+1)'

0 otherwise .
(3.13)

Again for I =1 no polynomial solution can be found for R. The reason is the same as that in the 2S case where the di-
pole interaction causes a degenerate mixing. Having obtained the first-order wave function, one may proceed to calcu-
late the multipole polarizability (L & 2)

r

2P (2L +4)!
2(2L +1)'

(2L+5) (L+1) L 2(L+2)(L+1) 6L
(L + 1) (2L +3) (2L —1) L (2L +3) (2L —1)

+ 6L '(2L +2)!8(L—3)
(L —1)(2L —1)(2L + 1)

(2L +3) 2

L (L —2)
(3.14)

where the second term without the square bracket has
contributions from multipoles beyond the octupole. This
is because the quadrupole interaction produces a nonzero
first-order energy shift for the 2P state, which in turn
causes the recurrence relation in the indicial equation
(3.11) to terminate earlier. I

+
&
=

1y2 (
I

2S &
+

I

2P & ),
(2)1j2 (4.2)

I

states: the 2S and 2PO (designated 2P for short) states.
According to the discussion in Sec. I, we choose suitable
combinations of the degenerate states that diagonalize the
perturbation matrix:

IV. FIRST EXCITED STATES OF HYDROGEN
IN A DIPOLE FIELD

In Secs. II and III, we have explicitly avoided the dipole
perturbation

and in accordance with Eq. (1.4)

g —+(r)=F—+exp( —6)=F—+exp( r/2) . —

To zeroth order the functions Fp are given by

(4.3)

V) ——rP) . (4.1) 1 r 1Fp
—— — 1 ——Ypp+ rY(p4(3)1/2

(4.4)

This is because this particular interaction causes mixing
among the degenerate 2S and 2Pp states, making it neces-

sary to use the degenerate method discussed at the end of
Sec. I. The dipole interaction causes no degeneracy diffi-
culty for the 2P states. It is well known that the hydro-
genic Stark effect is separable in parabolic coordinates and
high-order perturbative corrections to the energies of ex-
cited states have previously been given. ' However, as
an illustration of the degenerate method, we shall carry
out our perturbation calculation in spherical coordinates
for the m =0 states. The perturbation in Eq. (4.1) does
not mix them with m&0 states. Under this restriction
(m =0), the degenerate subspace is spanned by only two

The first-order corrections to the energies are

E( =+3 a.u. (4.5)
and the first-order corrections F~ are obtained by first
finding the special solutions F1 to Eq. (1.34) for i =1
such that F&

—is orthogonal to Fp in accordance with Eq.
(1.37). Equation (1.34) can be written in the equivalent
form

V Fp 2VF; VG —F; [2(—VO Eo)+V G —V—G VG]
r

FP 1V; —g FJ E; ~
. (4.6).

j=p
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On writing the solution to Eq. (4.6), for i = 1, as

Fi =Fi + g br(i)F(,
y (~a)

one obtains after some straightforward calculations

F1————, + 1 Y10 3 YOO 2 3

4 (3)1/2 3
(r —30r)+ (6r r——12+6r)

2Y2o
+ 1/(r+6r)3(5)1/2

(4.7)

(4.8)

where

F, =-+ (r 6r—18—r +36)+ (r —26r)
12

6{5)1/2
(4.11)

Knowing the first-order correction to the wave functions,
one can calculate the second- and third-order corrections
to the energies

The projections of F1—on Yoo and Y1o have previously
been obtained by Cohen, ' and that on Yzo has been ob-
tained by Cohen and Drake. ' The coefficients br(1) are
then found according to Eq. (1.39):

E2 =&No Vigi~&

= —84 a.u. (4.12)

b+(1)= —b+(1)= —4 (4.9) =+1560 a.u. (4.13)

f~ ——F 1 exp( r/2), — (4.10)

Thus, the first-order Stark-effect corrections to the lowest
excited hydrogenic state with m =0 under the normaliza-
tion condition &00 I

((, & =o, a«
Next, we proceed to calculate the second-order correction
to the wave function subject to the normalization condi-
tion &go I g2 &=0. Using Eqs. (4.11), (4.12), (4.5), and
(4.1), the right-hand side of Eq. (4.6) is found to be

+ + + +F i (Vi E i
—
)—F—P E2———

12
(r 3r —8r 198—r +39—6)+ (r 3r 44r —}-

6{5)1/2+, (9r —51r —90r +90r)+,/2 (r +6r ) .
60(3)'/' 10(7)'

(4.14)

The special solutions to Eq. (4.6) for i =2 are found to be F2 ——F2 —+ 176Fo (4.18)

R
s(7)'" " 3(s)'"O+ Y2O

S T+ 1/2 Y10+—
YOO

30(3)
(4.15) g &q;Iq;, &=o, 1&0,

j=0
(4.19)

Instead of choosing the normalization &g; I $0 & =0 for
i&0, one may choose to normalize the corrections as

where

Q = —( ,'r + , r +14r——),

R = —( , r +r 1Sr —9—0r ), —

S = —( ,'r +4r 9r 43—50r), — —

(4.15')

(4.15")

(4.15'") and

+ +fr=fr (4.20)

where a bar has been written above the wave function to
indicate a different normalization. Under this normaliza-
tion, we have

T= —( , r + , r +llr ——66r ——1686r +3372} . (4.15"")

$2~ =F2 exp( r/2), —
where

(4.21)

b+ (2) =b+ (2) = 176 .

Using thi snorm. alization E3 can be found:-
E3 =&to Vifz &

Fo V1F2 exp( r)d r—
= I Fo V1F2 exp( r)d3r—

(4.16)

The coefficients br(2) are then found according to Eq.
(1.39):

F2
——F2 —574Fp (4.22)

Ea =&41
I
{Vi Ei )

I P2 & E2 &4z I fo & i (4.23)

where the wave-function corrections are normalized ac-
cording to Eq. (4.19). Direct substitution of Eqs. (4.23),
(4.21), (4.20), (4.11),{4.12), and {4.5) into Eq. (4.23) yields

It is well known ' ' that one can calculate the
(2i+1)th-order energy correction if one knows the ith-
order correction to the wave function. For example, the
fourth-order energy correction is given by

=+1560 a.u. (4.17) E4 ———257 856 a.u. (4.24)

in agreement with the result expressed in Eq. (4.13) and This is in agreement with the value given by Alliluev
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et al. The present example of the Stark effect on the
lowest m =0 hydrogenic excited states should have illus-
trated how the present method applies to degenerate per-
turbation problems. To our knowledge, perturbative cal-
culation to this order has never been done in spherical
coordinates for this particular problem.

u = —2 f Fp FI 'rP)exp( r—)d r

—=~' (S)+~' (P), (5.6)

where a (S) and a (D) are the contributions from the S
state and D state portions of F') ' in Eq. (5.4). A direct
calculation leads to

V. SUM RULES EXCLUSIVE QF
DEGENERATE-STATE CQNTRIBUTIQNS

a (D) =208 a.u. (5.7a)

A reason why Eq. (1.18) cannot be used in degenerate
perturbation theory is simply that degenerate-state contri-
butions in the Green's function lead to vanishing energy
denominators. Proper choice of linear combinations of
the degenerate states that diagonalize the perturbation Vi
ensures that such singularities would not occur. Similar-
ly, one can argue that by multiplying V& with projection
operators so as to exclude degenerate-state contributions,
finite perturbative correction to the wave function should
be obtained, even without first going to a basis that diago-
nalize V&. In this case, one replaces V~ by

a (S)=8 a.u. ,

yielding

a =216 a.u. ,

(5.7b)

(5.7c)

F~ + (F(2s) +F(2P) )1 (2))/P 1 — 1 (5.8)

in agreement with earlier calculations. I'"'i —calculated in
Sec. IV are related to I"~ ' and I"~ "'

by

V)~V] = V) 1 — g ~
y)(y

~

y (&a)
(5.1) VI. ARBITRARY HYDRQGENIC BQUND STATE

IN A LARGE-QRDER MULTIPQI. E FIELD

where the sum over y is taken over the degenerate sub-

space. ' Following the arguments that precede Eq.
(1.29), one chooses to have the same 6 for all the states in
the degenerate subspace. Then an analog of Eqs. (1.18)
and (1.34) for i = 1 can be obtained:

—2&F' 'V'6 —F') '[2(Vp —Ep)+726 —V'6 VG]

=2 V) Fp —g' &)'
I V)

I
)' &F$

y

where the first-order correction is indicated by I'& ', the
bracket around cx indicating that degenerate-state contri-
butions are excluded, and that the sum g' is taken over

the entire degenerate subspace, including the state cx.

Once again, the unperturbed function Fp is a solution to
the homogeneous equation and the particular solution
must be chosen to be orthogonal to it.

For the hydrogen 2S and 2Po states under an electric di-

pole perturbation, one finds, on choosing 6 to be r/2,
after some straightforward calculations, that '

In this section we consider an arbitrary hydrogenic
bound state (n, A, ) with principal quantum member n, an-
gular momentum quantum number A, , and azimuthal
quantum number rn =0 in the presence of a large-order
multipole field

V, =r I'(,L (6.1a)

where by large order we mean I, )I & n +A, so that the in-
teraction V) in Eq. (6.1a) neither causes a first-order ener-

gy shift nor a mixing among degenerate states. The cases
considered earlier in Secs. II and III for a hydrogenic 2S
state in a quadrupole or higher multipole field and that
for the hydrogenic 2P state in an octupole or higher mul-
tipole field both fall into the general category considered
in this section.

For an arbitrary hydrogenic bound state (n, A, ), we have

(6.1b)

F', '=, (r —30r) I',
2(6)1/2

(5.3) Fp =X(n, A) —
,g( —(n —1,—1),2A, +2,2rln),

n

(6.2)

(3)1/2
(6r r —12+.6r) Fpp— —

2 3 2 1

(15)
i

2(6))/& (r +6r ) Ppp (5.4)

1 (n +A, )!
(2A, +1)! (n —A, —1)!2n

1/2 3/2
2

From these results the static dipole polarizability of the
hydrogenic 2S and 2I' states can be obtained:

a s= —2 f Fp FI 'rP)exp( r)dr—in a normalization factor for the state (n, A, ), and g(a, P,x)
is the confluent hypergeometric function. Since we re-
strict ourselves to I & n +I,, there will be no first-order en-
ergy shift. Using Eqs. (6.1b) and (6.2), we find

=120 a.u. , (5.5)
2PFaA, .P6nA, y2Flt)j,

( 1 )F+~
I"

(6.4)
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and so we can divide Fo from both sides of Eq. (1.18). Henceforth, we drop the suPerscriPt nA, .The right-hand side

(rhs) of Eq. (1.18) then becomes

n —I,—I (g+ 1 lI)k
2FOVI =2 — N(n, A, )

'k
2 r + +"g a.(l A, )Y.
7l

J ' J
J

(6.5)

where Pochhammer*s symbol (a)k is defined as

(a)k =—I (a +k + 1)/I (a + 1) (6.6)

and

(6.7)

is the usual coupling coefficient between Yk and P~ and

I A, j
000

is the usual 3-j symbol. We seek the solution for FI in the form

FI ——N (n, A) g Rl ( r)al (l,l ) Yj (6.8)

Then Eq. (1.18) becomes

82
r (rR ) —j(j+1)R-J

A

2r2 8 2(n —1) 2 "-"-' (~+ I —&)k
RJ + rR) ——2

n dr ' n ' n k 0 (2&+2)k
1.+A, +k+2

n
(6.9)

To solve Eq. (6.9), we expand Rz(r) in power series:

Rf(r)= pa~&r" .
P

Then Eq. (6.9) is transformed to the following indicial equation:

n —A. —I (g+ 1 n)k
(p+j+ 1)(p j)a&~ — —(p n—)al„ —

I ——2
n " '

n „, (2A, +2)k

The marvelous thing about Eq. (6.11) is the fact that it is linear so that

gJ—n —A. —I 2 (g+ 1 pg)k
A, +k

n (2~+2)„

Putting Eq. (6.12) into (6.11),we find

~ J(p+j+1)(p—j)al& k ——(p n)a& —
I k =25& I. +k+k+2

(6.10)

k
2

~lx, l. +A, +k+2 ' (6.11)
Pl

the solution to a„can be sought in the form

(6.12)

(6.13)

which is an indicial equation whose form we have encountered in Secs. II and III. The solution to a„k In Eq. (6.13) can
be written in a comPact form, after incorporating the fact that 1)n +A, and n & k+ 1:

2(p n)!(-,' n)™x'k ~+I (p..„k+1+j)!(p..„k—j)!
(p+j+1)!(p—j)! (p,„k n+ 1)!—for j(p(p, „k

0 otherwise,

@max k=L'+~+ ~+k ' (6.15)

Putting Eqs. (6.8), (6.10), (6.12), and (6.14) together, we get the first-order correction F I .

1+k n —I,—I 2 (g+ 1 n)k I.+it+ I+k
F, =N(r, A, ) g al(l, A, ) YZ g — g aZ kr" .

k =0 " (2~+2)k (6.16)
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Knowing Fi, we can calculate the following sum rule:

I&n
Sl","=—g, L &1& n+A, .E (6.17)

In terms of I'0, Fi, and 6, the sum rule can be written as

SL,i = f FOF&r P~e d r (6.18)

which can be put in the final form

(A, +1 n), —(A, +1 n—)k
aj„k

(2k+ 2) (2k+ 2)k 2

X[aj(l,A)X(n, A)] (p+v+A+L+2)!,

(6.19)
where the summation ranges for j, k, and p are the same
as those in Eq. (6.16) and the summation range for v is the
same as that in k. The 2 polarizability for the nA, state
where L & n +A, is given by —2SI L .

VII. SUMMARY REMARKS

In this paper we have suggested a modification of the
usual Rayleigh-Schrodinger perturbation theory for the
bound states of a multidimensional single-particle system.
This consists of a perturbation expansion on the nodal
part of the wave function, leaving the gradient of the loga-
rithm of the wave-function envelope intact as the pertur-
bation is turned on. It is suggested that adjustment to the
wave-function envelope be made after the perturbation
calculation has been completed up to a desired order. The
adjustment is based on the expected relation between the
logarithm of the asymptotic form of the wave function
and the energy. The nodal part of the wave function can
then be adjusted accordingly after expansion of the en-
velope part in power series in the coupling constant. The
same method can be extended to degenerate perturbation
theory. But it requires additional bookkeeping of indices.
Moreover, the ith-order correction to the wave function is
determined by the (i +1)t h- ro dreequation if the degen-
eracy is lifted in first order, as is the case in ordinary de-
generate perturbation theory.

We then used this modified perturbation method to cal-
culate the changes in the wave functions and energies of
the hydrogenic 2S and 2PO states in a multipole field, and
hence the static multipole polarizabilities in closed forms.
For multipoles higher than the dipole, there is no degen-
erate mixing between the 2S and 2Po states. However, in
the presence of the dipole field the degenerate method
must be used. We have used the degenerate method to
calculate the corrections to the wave functions to second
order in spherical coordinates and the energies to fourth
order. We have also calculated the first-order corrections
to the wave functions of the pure 2S and 2PO hydrogenic
states in a dipole field exclusive of the degenerate contri-
butions and hence the dipole polarizabilities of the states.
We also showed that for an arbitrary bound hydrogenic
state in a large-order multipole, the first-order correction
to the wave function and hence the polarizabilities can be
calculated in closed forms. Finally, in the Appendix we

show how the second-order energy shift of an atom in a
rotationally invariant state in an external electrical poten-
tial is related to the multipole polarizability given in sum-
rule form by Dalgarno.
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APPENDIX: SECOND-ORDER ENERGY SHIFT
OF AN ATOM IN A ROTATIONALLY

INVARIANT STATE IN AN EXTERNAL
ELECTRICAL POTENTIAL

The energy of an atom in an external electrical potential
Q is

AE = f p( r )4( r )d r,
which, on a Taylor expansion, becomes

(A 1)

hE= g GAEL,
L=0

where

(A2)

b,E = p(r)x x 8 8 4(0)d r .gt l) lL l) lL

Here p is the total charge density

p( r ) =p, ( r )+p~(r ),
where

(A3)

(A4)

p, (r) =y*y, (A5)

the square of the electronic wave function, is the electron-
ic charge density and

p~(r)= —&(r) (A6)

is the nuclear charge density and the electronic and nu-

clear charges are normalized to +1. Charge neutrality of
the atom implies Eo ——0 to all orders in perturbation
theory, the perturbation parameter being the external po-
tential 4. p~ contributes to Eo only.

For an atom in a rotationally invariant state P, to the
lowest (first) order in @,



29 MULTIPOLE POLARIZABILITIES FOR HYDROGENIC BOUND STATES

p(r)x;, . x; ();, (); 4(0)d r=o, L&0 (A7) aild

for any of the following reasons: (i) parity considerations
when L is odd, or (ii) angular momentum addition triangle
rule when L is even, or (iii) when L is even, contraction of
indices leading to V @=0 since 4 is an external potential.

Thus the lowest-order energy shift induced by the exter-
nal potential is second order in @ when the electronic
change density is polarized by the external field. Proceed-
ing in the usual fashion in perturbation theory, one ob-
tains the energy shift

(AS)

where

c", ',"=Is, a, e(0)][a, a,„c(0)], (A 10)

and repeated indices are summed over in Eq. (AS). Be-
cause of parity, N and L must be either both odd or both
even. Furthermore, because of rotational invariance, the
tensor T must be proportional to tensors constructed out

of 5, 5 ', or 5;; . However, the latter two types of ten-

sors would contract to V @ which equals zero since 4 is
an external potential. Thus, the only nonzero contribution
in Eq. (A8) comes from L =N. Hence

~ ~

l]p ~ ~ ~ p ll

&PIx;, x; In&&n Ixj x,
kE(p) = g T (I) ~ ~ /(L ()

L
(Al 1)

(A9) Again, rotational invariance arguments lead to

creSI aeSI a~b k, m&a, b

+D(L) g g I "n. ..d'"S. .. g S... , ,
+

oeSI a&b&c~d k, m~a, b, c,d
(A12)

where Sl denotes the set of all permutations of
I 1, . . . , L j. The only terms on the rhs of Eq. (A12) that
would give nonzero contribution to the sum in Eq. (Al 1)
are the first type of tensors multiplying B(L) since the
others lead to V 4 which equal zero. Since there are L!
possible tensors arising from the L!cr permutations and
the tensor N is symmetric with respect to its upper set or
lower set indices, we finally have

&0 I

x'
I

~ &&~
I
x+ I @&

(y) (~)L! Eon
(A17)

+I.L!L!2 (4')
(2L +1)! (A18)

Next, one can prove either by direct combination of spher-
ical harmonics or by mathematical induction that

kE(p) = g B(L)4&. !L! (A 13) Hence,

The remaining task is to identify B(L) with the static 2-
order multipole polarizability given by Dalgarno in Eq.
(3.1). Now consider the sum rule

L!2 4nB(L)=
(2L +1)! „ E(P) E(n)

~+L &
SA(L) =

(P) (n)Pl

where

(A14)

(2L +1)!

(A19)

1/2
x+lg + & 4&

X+ = =TY&
(2)1/2 3

According to the arguments leading to Eq. (A12),

S~(L)=B(L)L!

(A15)

(A16)

(A20)

The second relation follows from rotational invariance.
On using the relation between spherical harmonics and
I.egendre pplynpmials and the Dalgarnp form pf 2z mul-
tipole polarizability, one has

since in this particular sum rule there is no possible con-
traction among the upper set or among the lower set of in-
dices to form nonzero Kronecker deltas. Thus one estab-
lishes

L!2LB(L)=— a I .
2(2L )!

Using this in Eq. (A13), one obtains Eq. (2.12).

(A21)
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