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Based upon the analysis of electron correlations in hyperspherical coordinates for arbitrary I., S,
and m states, a classification scheme for all doubly excited states of two-electron atoms is presented.
A new set of internal correlation quantum numbers, K, T, and A, are introduced. Here (K, T)
describe angular correlations and A =+1,0 describes radial correlations. These quantum numbers
are used to label the first-order wave functions which are approximated as O'=F„"(8)4„(R;0)in
terms of hyperspherical coordinates. The channel index p is p=

~

(K, T}~ 2 +'I. ), where N is the
dissociation limit of the channel. Rules for constructing the correlation diagram for channel poten-
tial U„(R) and the labeling of each channel are discussed. By comparing the rotation-averaged sur-
face charge densities, it is shown that channels which have identical (E,T)~' have isomorphic
correlation patterns, irrespective of the overall I., S, and m. Such isomorphism is shown to be the
underlying origin of the supermultiplet structure of intrashell doubly excited states. In fact, it is
shown that such supermultiplet structures actually extend to all states which have A =+1 or —1.
A new Grotrian diagram for energy levels grouped according to (K, T)+ and (X,T) displays rotor-
like structure. Such diagrams can easily reveal missing or misclassified levels. It is also shown that
all A =0 states are similar to singly excited states where for a given (K, T)~, the triplet state always
has a slightly lower energy than the singlet state. Approximate selection rules for photoabsorption
and for e-H and e-He+ scatterings are discussed.

I. INTRODUCTION

Since the identification of doubly excited states of He
in 1963, it has been well established ' that these states
cannot be adequately described in terms of the conven-
tional independent™particle model. A new set of quantum
numbers is desirable for the classification of these states.
However, due to the lack of understanding of electron
correlations for doubly excited states, such a scheme has
not been available so far

Over the last few years, partial understanding of elec-
tron correlations for doubly excited states has emerged
gradually. " In a series of articles, the author has inves-
tigated radial and angular correlations for S states of H
and He. These correlations were analyzed by assuming
quasiseparability of wave functions in hyperspherical
coordinates. In Ref. 5(c), it was illustrated that these ap-
proximate quasiseparable wave functions agree very well
with those obtained using the large-scale conventional
configuration-interaction (CI) method. Thus the reliabili-
ty of quasiseparability of wave functions in hyperspherical
coordinates is well established and different channels were
shown to exhibit striking differences in radial and angular
correlations.

Attempts for classifying doubly excited states along dif-
ferent lines of approaches have also been made by several

other groups. " In particular, Herrick and Sinanoglu
proposed doubly-excited-states-basis (DESB) functions to
represent the first-order approximation of these states.
The DESB functions are equivalent to approximate CI
functions where only the intrashell correlations are includ-
ed. In Ref. 6 it was shown that such DESB functions are,
in general, lacking of sufficient radial correlation and for
some states also lacking of sufficient angular correlation.
Thus linear superpositions of DESB functions are needed,
in general, in order to give a good description of doubly
excited states.

Under the assumption of quasiseparability in hyper-
spherical coordinates, the wave functions are expressed as
Fp(R)ep(R;0} where R =(ri+r2)', 0= (a,ri, r2), aild-
a =arctan(r2/r i ). In this approximation, p is the channel
index, @&(R;0)is the channel function, and F&(R) is ob-
tained by solving the one-dimensional radial equation
from the channel potential U„(R). The channel function
@„(R;0),which depends on R parametrically, contains
all the information about electron correlations for states
within that channel. The validity of quasiseparability for
all values of R, as shown in our earlier works, also im-
plies that the correlation pattern for a given channel is
nearly invariant. However, until very recently, it has not
been possible to relate the channel index p to some ap-
parent quantum numbers which also provide information
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about electron correlations.
In a recent communication, ' we reported a new classi-

fication scheme for all doubly excited states of two-
electron atoms. Through the analysis of electron correla-
tions, we propose a new set of quantum numbers which is
to replace the quantum numbers used in the independent-
particle model. According to the latter model, the two
electrons within the I.S coupling scheme are described by
n $, lI, n2, l2, L, 5, 7T, ML, and Mg, where n; is the princi-
pal quantum number of electron i and the rest have their
usual meanings. Since configuration mixings are quite
strong for doubly excited states, the quantum numbers n j,
l~, n2, and lz are no longer meaningful in identifying the
states. Herrick and Sinanoglu considered. the mixing of
l~ and I2 pairs within a fixed n~ and n2 in their DESB
functions and introduced two new quantum numbers, K
a.nd T, to replace l~ and l2. As shown in Ref. 6, DESB
functions do not incorporate radial correlation adequately
and cannot be used as a first-order approximation for dou-
bly excited states. Instead of the quantum numbers n&,

n2, K, T, L„S,and m used in the DESB functions, we pro-
pose that a first-order approximation of doubly excited
state is given by F&(R)4„(R;0),where the channel index

p—:IÃ, (K, T)",L,S,vrI. In other words, a given doubly ex-
cited state is represented by the set of quantum numbers
n, N, (K, T)", L, S, and m where n is the radial quantum
number of the outer electron, X is the dissociation limit of
the channel, and (K, T)" is the new set of correlation quan
turn numbers.

Our choices of E and T quantum numbers are identical
to those used by Herrick and Sinanoglu. However, we do
not associate K and T to DESB functions directly. In-
stead, they are used to label dipole states, ' i.e., the Stark
states of the system when one electron is far away from
the other. In the present context, E and 1 are used to
describe angular correlations only. To account for radial
correlation, we introduce A = + 1, —1, and 0. For
A = + l, we emphasize that the channel functions
4„(R;0)exhibit an antinode at a =45' exactly or approx-
imately. For A = —1, we emphasize that these channe1
functions exhibit a node at a=45' exactly or approximate-
ly. Channels that do not have either properties are as-
signed to have A =0 and they are similar to singly excited
states of two-electron atoms. This new classification
scheme is valid for all states of two-electron atoms, i.e., it
incorporates both singly and doubly excited states.

One important consequence of this new classification
scheme is the observation that channels having identical
(K, T)" but different L, S, and m have isomorphic correla-
tion patterns. This isomorphism results in nearly degen-
erate channel potential curves U„(R) as well as near-
degeneracy of eigenenergies. This fact not only allows us
to interpret the supermultiplet structure observed
phenomenologically by Herrick and Kellman' for intra-
shell states but also points out other new supermultiplets.
In fact, we point out that supermultiplet structure exists
for all doubly excited states which have radia/ quantum
number A =+7 or —l. We also point out that supermul-
tiplet structure does not exist for A =0 states.

The rest of this paper is arranged as follows. In Sec. II
we describe the labeling of potential curves U&(R) in

terms of correlation quantum numbers K, T, and A and
the rules for constructing correlation diagrams. In Sec.
III we show the isomorphism of channels with identical
(K, T)". This is illustrated by showing rotation-averaged
surface charge densities for these channels. In Sec. IV we
show how the isomorphism for A =+1 channels results in
supermultiplet structure. This is illustrated by grouping
the energy levels calculated by jLipsky et al."according to
(K, T) . We emphasize that channels which have identical
(K, T) but —with different L exhibit rotor-series structure
in their energy eigenvalues. In the case that I. is also iden-
tical but S and ~ are different, the eigenenergies are shown
to exhibit near-degeneracy. We also consider how singly
excited states fit into the present classification scheme and
how are they related to A =0 doubly excited states. In
Sec. V, we summarize by recommending new symbols for
labeling doubly excited states. In Appendix A the formu-
las for calculating rotation-averaged surface charge densi-
ties are given. In Appendix 8, the classifications of Lip-
sky et al. for all doubly excited states of He below X =2
and 3 and L (3 are compared with the present (K, T)"
classification. All the examples considered in this paper
are for doubly excited states of He below X=3 unless oth-
erwise stated. Other examples will be considered in the
future.

II. POTENTIAL CURVES AND CORRELATION
RULES

A. Diabatic potential curves

We assume wave functions of doubly excited states are
quasiseparable in hyperspherical coordinates and that
they can be approximated as F~(R)4„(R;Q). The chan-
nel functions C&&(R;0) and the channel potentials U&(R)
are obtained by solving the two-electron Schrodinger
equation in hyperspherical coordinates with R treated
parametrically. The method used in calculating the chan-
nel functions C»(R;0) and channel potential curves
U&(R) is similar to the method used in our previous
works. Basically, analytical channel functions' and
hyperspherical harmonics are used to diagonalize the
Schrodinger equation at each E. in the adiabatic approxi-
mation. In order to preserve the correlation pattern for
each channel, diabatic states are preferred in regions of
avoided crossings. These diabatic curves are obtained
presently by smoothly joining pairs of adiabatic potential
curves at regions of avoid crossings. They can also be ob-
tained more rigorously from adiabatic curves by introduc-
ing a 2&2 rotation matrix for each of the pair of curves
involved. ' This last step is not done here but it is neces-
sary for more accurate numeriml mlculations.

B. Potential curves converging to He+(N =3) limits

We will use helium doubly excited states for discussion.
Reduced units with Z =1 are used throughout. In Fig. 1

diabatic potential curves for ' S', ' I", and '* D' chan-
nels that converge to the He+(X =3) thresholds are
shown. Similar curves for ' I', ' 6', and ' 0' are
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Although there is no simple functional form relating ad to
E and T for a given N, L, S, and m., Herrick' has shown
that ud, in reduced units, is given approximately by

ad = —3NAK+. L(L+1)+ 2 (N —1 —K —3T )

—(K/12NX)[SL (L +1)+N —1 —K —15T ]

+O(A, '), (3)

where D is proportional to a 9-j symbol and

~

Nl, nl', LSn ) is a coupled two-electron hydrogenic wave

function. Thus in (1), DESB functions are constructed as
the linear combination of the product of hydrogenic wave
functions for a given N and n It is show. n in Ref. 6 that
DESB functions incorporate most of the angular correla-
tions but not enough radial correlations. It is obvious that
screening is not included in the expansion in (1).

Although the DESB functions are not adequate in

representing doubly excited states, the integer quantum
numbers E and T are convenient indices for labeling angu-
lar correlations. In fact, these two quantum numbers had
also been used to label asymptotic dipole states' for
scattering systems like e-H, e-He+, e-Li +, etc., i.e., they
label Stark states which have long-range dipole interac-
tion. In the asymptotic region, the dipole part of the po-
tential is

where A, =1/Z. This formula is valid if A, is not too small
and N not too large. Thus the asymptotic potential curves
are ordered from below with decreasing values of K (i.e.,
maximum E corresponds to the lowest curve) and for a
given K, with decreasing values of T. The curves shown
in Figs. 1 and 2 follow this ordering in the asymptotic re-
gion.

For a given L and X, the range of E and T are deter-
mined as follows:

T =0, 1, . . . , min(L, N —1), (4a)

+K=N —T 1,N —T —3, . —. . , 1 (or 0) . (4b)

For states where m=( —1) +', T=0 is not allowed.
From Eqs. (4), we notice that the range of values for K
and T for a given L and X is independent of S and ~. For
example, according to (4), the allowed values of (K, T) for
N=3 are as follows: (2,0), (0,0), and ( —2,0) for ' S';
(2,0), (1,1), (0,0), ( —1,1), and ( —2,0) for ' P', and (2,0),
(1,1), (0,2), (0,0), ( —1,1), and ( —2,0) for L & 2. For
sr=( —1) +', the (K, T) pairs with T=0 are not allowed.
Thus for T&0, the allowed (K, T) pairs are independent of

The asymptotic dipole potential nd, according to the
perturbation formula (3), is independent of the overall par-
ity m of the state for a given N, E, and T. In fact, this de-
generacy has been proved by Nikitin and Ostrovsky' ' ' to
be rigorously true based upon a group-theoretical explana-
tion. Since for T&0 the allowed (E,T) pairs for a given'
N and L are identical, we thus expect that the dipole po-
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tentials are also identical.
In terms of the asymptotic properties of the two elec-

trons, K is proportional to the average value of r&cos&~2
where rj refers to the inner electron and 0~2 has the usual
meaning, and T is proportional to the square of the aver-

age of I..r2 ——1
& r2 (since 12 rz ——0), thus T describes the

magnitude of the overlap 1
& r2, or roughly speaking, the

relative orientation between the orbitals of the two elec-
trons. If the two electrons orbits are on the same plane,
then T =0.

D. The inner region: radial correlation
quantum number A

l +I'+E +S+X=odd . (5)

This condition originates from the symmetry requirement
of the wave function at r& r2. In Eq. (5), l+——I' enters
only to indicate the parity of the channel. Thus the al-

The K and T quantum numbers discussed above in the
asymptotic region can be continued into the small-R re-
gion since the angular correlation pattern has been
shown ' ' to be independent of R. To account for radial
correlations at finite R, a value of A = + 1, —1, or 0 is as-
signed to each (K, T). Here all the 'S' curves have
3 =+1 and all S' curves have 3 = —1. This is because
all 'S' channels have antinode at a=45' while all S'
channels have node at o.=45'. In Figs. 1 and 2, all curves
which have minima occurring at R —16 are assigned to
have A =+1, and those which have shallow minima at
R -24 are assigned to have 3 = —1. Such assignment im-
plies (see Sec. III) that the channel functions for these
curves have nearly antinodal (for + ) or nodal (for —)

characters at a-45'. There are also high-lying curves in
Figs. 1 and 2 which we have assigned 3 =0. We will
show in Sec. IVE that they are similar to singly excited
states.

We have to know how to enumerate the number of pos-
sible + and —curves for a given N, L, S, and m. The
number of + curves is equal to the possible K and T
pairs in Eq. (1) for n =N, which in turn is equal to the
number of possible l and I' pairs (without violating the
Pauli exclusion principle) for a given n =N. In other
words, the number of + curves is identical to the number
of intrashell states for a given L, S, and vr. Thus for ' P',
the possible intrashell independent-particle states are 3s3p
and 3p3d. Thus there are two + curves. For 'D', there
are three + curves by counting 3s3d, 3p, and 3d . For
D', there is only one + curve from 3s3d D'. Because

of the exchange symmetry, + curves for S = 1 become—
curves for S =0 and vice versa. Therefore, the number of
—curves for a given N, L, S, and m. is obtained by count-

ing the number of + curves of the other spin symmetry.
Thus, for example, there is one —curve for 'D' and three
—curves for 3D'. Curves which are not + nor —are as-
signed to A =0 and the number of A =0 channels is in-
dependent of S.

To complete the correlation rule for connecting the po-
tential curves, it is necessary to assign (K, T) quantum
numbers in the inner-R region. For the + curves, the al-
lowed X values have to satisfy the relation

lowed largest value of E for 'P' is K =1 and for P' is
K =2 (for N =3). Since, from (5), K is either even or odd
for all + channels, the next allowed value of K for 'P' is
K = —1 and for P' is K =0. Thus the + curves for 'P'
are (1,1)+ and ( —1,1)+ and for P' are (2,0)+ and (0,0)+.
To find (K, T) for the —curves, recall that we have to
refer to the + channels of the other spin symmetry.
Thus the —channels for 'P' are (2,0) and (0,0) and for
P' are (1,1) and ( —1,1) . If there is more than one

value of T for a given K, then all the (K, T) pairs are as-
signed to have identical + or —characters. Thus for
'D' the + channels are (2,0)+, (0,2)+, and (0,0)+ and the
—channel is (1,1) . For D', the + channel is (1,1)+,
the —channels are (2,0), (0,2), and (0,0) . For other
L, S, and ~, the + and —channels are shown in Figs. 1

and 2. Notice that there are no + and —channels for
L & 4 or for L ~ 2(N —1) in general.

For a given 3, the potential curves at small R are or-
dered from below with decreasing K and for a given K,
with decreasing T. The + curves have deeper potential
wells with minima at smaller R and the —curves have
shallow potential wells with minima at larger R. On the
other hand, in the asymptotic region, only the values of K
and T count. By joining curves with identical (K, T) in
the two regions, the + and —curves, in general, will
cross, while the curves within a given A do not cross with
each other. We also do not allow —and 0 curves to cross
since the 0 curves always correspond to smaller K.

E. The correlation rule

We summarize the resulting correlation rules.
(1) For a given N, L, S, and vr, find the possible pairs of

(K, T) from Eq. (4). The asymptotic potential curves are
ordered from the bottom starting with the maximum al-
lowable K and then in the order of decreasing K. If there
is more than one value of T for a given K, order from
below according to decreasing value of T.

(2) Compute the number of + curves for a given N, L,
S, and ~ by enumerating the number of independent-
electron states consisting of identical principal quantum
numbers. Find the E values for + curves which satisfy
Eq. (5). They are either all even or all odd integers. By
starting with the largest E allowed, label all the + curves
in the small-R region from below with decreasing values
of K and for a given K, with decreasing values of T, until
all the + curves are accounted for. Find the number of
—curves by computing the number of + curves of the
other spin symmetry. Connect curves with identical
(K, T) from the inner to the outer region. Only + and-
curves are allowed to cross and all the rest follow the non-
crossing rule.

III. RADIAL AND ANGULAR CORRELATIONS

A. Summary of correlations for 'S' and S' channels

In this section we show that the set of quantum num-
bers K, T, and A implies distinct radial and angular corre-
lations. In our previous works for L, =0 states, this is
achieved by displaying the surface charge densities

~
4„(R;0)

~

on the (a, 9~2) plane. From these works, we
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identical (K, T)". In Fig. 5 we show two more examples of
such isomorphism for the (1,1)+ channels of 'P' and D'
at R =20 and the (1,1) channels of P' at R =27 and
'D' at R =32 for N =3 (these graphs are shown at dif-
ferent values of R to avoid the region of curve crossing).
We also notice that the major difference between the
(1,1)+ 'P' channel and the (1,1) P' channel is in radial
correlations where the + channel has large charge con-
centration near n-45' while the —channel has near-zero
charge concentration for a-45' for all values of R. This
is also true for the (1,1)+ D' channel, as well as for other
channels which have identical (K,T).

D. Correlations and (X,T)"

We have shown that angular correlation patterns are ba-
sically independent of A for a given (K, T) [cf. the (1,1)+
and (1,1) channels shown in Fig. 5] but differ signifi-
cantly for channels with different (K, T). In the discus-
sion to follow, it is assumed that the invariance of angular
correlation and the evolution of radial correlation from
the inner- to outer-R regions are already understood. To
minimize the number of graphs to be displayed, we show

oz for different (K, T) channels at large R where o„at
o, -45' is nearly vanishing. In this limit, the charge densi-
ties are independent of S =0 or 1.

In Fig. 6 the surface charge densities O.„for all the 'S',
'P', and 'D' channels for %=3 are displayed at the
asymptotic R =36. They are ordered such that every
graph across each row has identical (K, T), although the
values for A are sometimes different. We notice the iso-
morphic angular correlations across each row.

Figure 6 also illustrates the dependence of angular
correlation on quantum number E. For a given T, large E
values correspond to the situation that the two electrons
are distributed with large Oj~ and negative K values corre-
spond to small 8&z (&m/2). Recall that K is proportional
to (cos8~2); it offers no information about the 8&2 distri-

bution itself. Thus the (0,2) and (0,0) channels in Fig. 6,
although having nearly identical (cos8~2) -0, their actual
o.„'s are quite different for the two channels. In Fig. 6, it
appears that the cr„ for the (0,2) 'D' channel is quite close
to that for the (l, l) 'D' channel. This is actually not so.
It is due to the fact that the plots are in the "asymptotic"
region. In Fig. 7, the surface charge-density plots for
(0,2)+ and (1,1) channels of 'D' are shown at R =20
where the + and —characters of the (0,2)+ and (1,1)
channels are clearly observed.

IV. SPECTROSCOPY AND SUPERMULTIPLET
STRUCTURE

A. Potential curves grouped according to (X,T)"

ISe IDe

(2,0)+ (2,0)

(0,0)

(2 0)+

(o,o)+

Examination of potential curves shown in Figs. 1 and 2
reveals that channels with identical (K, T) have similar
shapes and nearly identical values. In Fig. 8 we show
groups of curves which have identical (K, T)". For a
given (K, T)", we notice that curves belonging to higher L
lie slightly higher.

The difference in potential curves for a given (K, T)"
but different L can be interpreted as similar to the rota-
tional distortion of potential curves of a "rigid" rotor.
Energy eigenvalues calculated from these curves form an
approximate rotor series. For example, the lowest eigen-
values from each of the (2,0)+ 'S', P', and 'D' curves in
Fig. 8(a) can be fitted into a rotor series. Since the mini-
ma of a11 three curves occur at approximately the same R

(-2,0)+

(t I) ~a& pgp

FIG. 5. Surface charge densities for the (1,1)+ D' and
(1,1)+ 'P' channels at R =20, the (1,1)3 'D' channel at R =27
and the (1,1)3 'P' channel at R =32. Notice that the pairs of
(1,1)+ and of (1,1) channels have similar correlation patterns.
The major difference between (1,1)+ and (1,1) channels is
near the a=45 line. Notice that the angular distribution (in
O~q) does not differ significantly for the (1,1)+ and (1,1) chan-
nels.

FIG. 6. Surface charge densities for all 'S', 'P', and 'D'
channels below 1V =3 at R =36. In this asymptotic region, all
charge densities near a =45 become very small, thus only angu-
lar correlations are seen. These plots show that angular correla-
tion is independent of radial correlation quantum number A.
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FIG. 7. Comparison of the surface charge densities for the
(0,2)+ 'D' and (1,1) 'D' channels at E =20.

and all three curves have similar shapes, a single empirical
moment of inertia can fit the spectra quite well.

If we calculate the lowest eigenvalues of each of the
curves in Fig. 8(a), the resulting eigenvalues form a
rotation-vibrational supermultiplet structure. This super-
multiplet structure was first derived phonomenologically
by Herrick and co-. workers' and applied only to intrashell
states. In this paper we attribute this supermultiplet
structure to systematic patterns of electron correlations as
well as to the regular variation of potential curves, as
shown in Figs. 8(a) and 8(b). This supermultiplet struc-
ture is not limited to intrashell states only. They are ex-
pected to exist for intershell states as well if A =+1 or
—1. On the other hand, such structure does not exist for
states with A =0. This is clear from the potential curves
shown in Fig. 8(c) for the (0,2) channels of ' I", ' G',
and ' H'. The triplet curves are shown in dashed lines
and are lower than the corresponding singlet curves shown
in solid lines. The energy eigenvalues calculated from
these curves are similar to the spectral pattern of singly
excited states, i.e., energy values are quite different for dif-
ferent L and for a given L, triplets are slightly lower in
energy than singlets (see Sec. IV E below).

B. Spectroscopy of helium below N =3

In Fig. 9 energy levels for the low-lying states of He
below N=3 are grouped in terms of effective quantum
numbers n* using the data calculated by Lipsky et aI.

Only states with m=( —1) and states which have been
identified with A =+1 and —1 are displayed. Along the
horizontal axis, we show the correlation quantum num-
bers (K, T)". The similarity to a rotor series for each
given (K, T)" is quite obvious, particularly for the lowest
members of each (E;T) group. For higher members, the
rotor structure is not as good because the energies of these
states are determined to a great extent by the different
asymptotic potentials. Qn the other hand, it is quite evi-
dent that the rotor structure is not limited to intrashell
states only. In Appendix 8 the correspondences between
the (K, T)" channel classifications and those given by Lip-
sky et al. are compared.

According to the ordering in Fig. 9, we notice two new
regularities of the spectroscopy of doubly excited states.

(1) According to the (K, T)" ordering, the rotor struc-
ture can be used to help determine the relative energy lev-
ds of various I., S, and m states. The "string" of each ro-
tor series is determined by the possible number of L„S,
and m states which have the required (K, T)". Notice that
there are situations where the number of states in a rotor
series is very small. For example, in Fig. 9 there is only
one member for each of the (0,2)—, ( —1,1)-, and
( —2,0)—+ series.

(2) There is a "repetition" of (E,T)+ and (K, T) rotor
structure. Recall that for a given (K, T), if A =+1 for
S =0, then A = —1 for S =1 and vice versa. Thus the ro-
tor series for (E,T) can be obtained from the rotor series
for (K, T)+ simply by interchanging the spins. For exam-
ple, the 'S' P'-'D'- F' 'G-' rotor serie-s for (2,0)+ is "re-
peated" as the S' 'I" D' 'F' -G' -rotor-ser-ies for (2,0)
( 'G' levels are not included in Fig. 9 since they are not
available from Ref. 11). We emphasize that the rotor
series is evident for A =+1 states only. For 3 =0, no
such structure is observed.

In constructing the energy-level diagram in Fig. 9, we
found that the second (0,0)+ 'D' state is not listed in Ref.
11. This level is shown in Fig. 9 in dashed lines. Its posi-
tion was estimated using the assumption of constant quan-
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FIG. 8. Potential curves grouped according to (K, T) quantum numbers. For a given (E,T)", higher I. gives correspondingly
higher potentials at large R.
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FIG. 9. Effective quantum numbers n* grouped according to (E,T)+ and (E,T) quantum numbers. Parity of each state is
m =(—1) . Notice the rotorlike structure for a given (X,T)+ and (X,T) . These energy levels are taken from the calculation of Lip-
sky et al. (Ref. 11). A complete rotor series for (2,0)+ would include '6' and for (2,0) would include 6' except that these levels

are not available from Ref. 11. See text for some modification of the classification from Ref. 11.

turn defect along the series.
The second and third members (as well as the higher

members not shown) of the (1,1)+ 'F' channel shown in
Fig. 9 are classified differently from those given in Ref.
11. The reason for this new assignment is given in Sec.
IV C.

C. m=( —1}~+'states

All the channels considered so far have m =(—1) . For
states where m = ( —1) +', T =0 channels are not allowed.
According to (4), the number of (K,T} pairs for T&0 is
independent of the overall parity for a given N and L. In
addition, the quantum numbers K, T, and A for
m=( —1), S=O channels are identical to those for
m. =(—1) +', S =1 channels. Similarly, the K, T, and A
quantum numbers for m = ( —1)~, S = 1 channels are iden-
tical to those for n =(—1) +', S =0 channels. For exam-

pie, the two 3P' channels (for N=3) are (1,1}+ and
( —1, 1)+. These are the two T&0 channels for 'P'
Similarly, the three 'D' channels are (1,1)+, (0,2), and
( —1,0) . These are the three T+0 channels for 3D'.
Therefore, we found pairs like P'-'P', 'P'-3P', 3D'-'D',
'D' 3D', etc., have -identical (K, T)" channels if all the
T&0 channels are excluded.

These identical (K, T)" pairs also result in isomorphic
correlations. In Fig. 10 the asymptotic correlation pat-
terns at R =36 are shown for 'P' and 'D' channels be-
longing to N =3. Channels across each row have identical
(K, T) and isomorphic correlations. These surface
charge-density plots should be compared to similar plots
in Fig. 6 for T & 0 channels. It is quite obvious that chan-
nels with identical (K, T)" are isomorphic. The major
difference occurs at Hi2

——0 and m where the charge densi-
ties for m =(—1} +' channels vanish. Since the asymp-
totic potential does not depend on S and m [see Eq. (3)],
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FIG. 12. Potential curves for all ' P', ' D', and ' F' channels below N =4. These curves are to be compared with curves shown
in Fig. 1.

12. Similar relations for other pairs, S'-'P', 'P'- D', and
P'-'D', are easily seen. However, it should be noted that

this one-to-one mapping does not imply isomorphic corre-
lations since their correlation quantum numbers are dif-
ferent.

D. Singly excited states

According to the present classification scheme, all the
singly excited states have (E,T) = (0,0). The channel
quantum numbers are (0,0)+ for 'S', (0,0) for S', and
(0,0) for all other singly excited states. Within the
independent-particle model the energy for 1snL L is al-
ways lower than the energy for 1snL 'L for all two-
electron atoms. This is understood in terms of Pauli ex-
change correlations that the two electrons in triplet states
are kept away from each other because of identical spin
orientations, thus reducing the electron-electron repulsion.
To understand that this results in different angular corre-
lations, in Fig. 13 the surface charge-density plots for 'P'
and P' singly excited states are shown at R =2, 4, and 6.
Notice that at R =2, angular correlation is such that the
two electrons are to stay near 0&z

——~ for P' and near
8~2

——0 for 'P'. At large R ()4), we notice that the degree
of angular correlation becomes less pronounced as the sur-
face charge densities become independent of 0&z at large
R.

E. Doubly excited states with A =0

Except for ' S' and ' P', all doubly excited states for
other L, S, and m have states belonging to A =0. If
L ~2(% —1), then all the channels have A =0. The best
known example of an A =0 channel is the so-called
2pnd 'P' series [designated as ( —1,0) 'P' here] of He.
Such an independent-particle designation actually is not
adequate. Configuration-interaction calculations have
shown that these states have large configuration mixing
with the (0, 1)+ series. It was shown in Ref. 6 that the
channel function for 2pnd

'P' series is characterized by
vanishing charge densities near a-45' for all values of R.
Such properties are readily reproduced in the present ap-
proach using quasiseparability of wave functions in
hyperspherical coordinates.

For a given L, 5, m., and X, if A =+1 and/or 3 = —1

channels exist, then A =0 channels are characterized by
vanishing charge densities near a-45' and large charge
concentrations at small 9&2. For L ~2(% —1), there are
no + and —channels and some A =0 channels can have
charge densities near a-45' similar to those shown in
Fig. 13 for singly excited states. The correlation patterns
for these channels are not very sharp (or as strongly corre-
lated). Different channels are basically distinguished by
small differences in 0&z distribution.

Recall that for A =0 states there is no rotor-series
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~(0,0)3, and 4( —2,0)3 'P'. Similarly, for the six 'F'
channels below N =3, the lowest states are 3(1,1)3+,

„(2,0)3, 4(0, 2)3, &(0,0)3, 5( —1,1)3, and 6( —2,0)3 'F'.
These rules also work for high angular momentum states
where every state belongs to A =0. For example, the six
channels for ' II' have the following lowest states:
&(2,0)3, &(1,1)3, 6(0,2)3, 6(0,0)3, ,( —1,1)3, and, ( —2,0)3' H'. Recall that the lowest single-particle states are
3s6h, 3p5g, 3p7i, 3d4f, 3d6h, and 3d8k for ' H'. There-
fore, the lowest n's are 4, 5, 6, 6, 7, and 8, as predicted by
the rules.

Since the lowest state for each channel does not have
nodes in the radial function F&(R), the number of radial
nodes for each state is n —n;„where n;„ is the lowest
principal quantum number of that channel. Although the
size of the state, as measured by the radial distribution of
F&(R), is reasonably represented by the quantum number
n, the energy of the state is not. This is due to the large
variation of quantum defects for different channels, as the
simultaneous penetration of the two electrons into the
small-R region is quite different for different channels.

VI. DISCUSSION

In this paper we have introduced a complete classifica-
tion scheme for doubly excited states of two-electron
atoms. Three quantum numbers E, T, and A are used to
describe correlations. The integer K and T quantum num-
bers, adopted from the group-theoretical work of Herrick
and Sinanoglu, were used to describe angular correlations.
The radial correlation quantum number A is assigned to
take + 1, —1, and 0 only. In terms of (K, T)", the corre-
lation pattern is identified. It has been shown that states
with identical (K, T) but different L, S, and m exhibit
similar correlation patterns. Such isomorphism is shown
to result in general supermultiplet structure for doubly ex-
cited states.

In terms of these quantum numbers, each doubly excit-
ed state, designated as

~
„(K,T)z +'L~), to first order,

is expressed in hyper spherical coordinates as
F&(R)@z(R;0). Here n corresponds to the principal
quantum number of the outer electron and the channel in-
dex p=

~
(K, T)~ +'L ), where N is the dissociation

limit of the channel, K, T, and A describe internal correla-
tions, and L, S, and n. are the usual quantum numbers for
the system as a whole. From the examples discussed in
this paper, it is easy to visualize the correlation pattern for
each set of (K, T)". Therefore, the assigned quantum
numbers are not only unique for each state, but also pro-
vide important information about electron correlations.
In other words, our new designation provides the needed
terminology for describing doubly excited states. They are
equivalent to the independent-particle model for describ-
ing singly excited states.

This classification scheme also identifies several new
spectroscopic regularities, as shown in Figs. 9 and 11. By
grouping energy levels according to (K,T)", one can easily
locate the missing lines and possible misidentifications.
We have pointed out two examples in this paper already.

The current classification scheme also indicates approx-
imate selection rules for electron-atom and photon-atom

collisions. For example, photoabsorption of helium from
ground state to the neighborhood of He+(N =3), in
principle, should give five 'P' series. The experiment by
Woodruff and Samson' has shown that only one predom-
inant (1,1)3+ channel was observed near N =3, with slight
evidence of the ( —1, 1)3+ channel. All the other channels
are not observed. Similarly, for resonances below
He+(N =4) and He+(N =5), only the (2, 1)4+ and (3, 1)s+

channels, respectively, were observed. This is consistent
with that there is only one dominant (0, 1)z+ channel below
He+(N =2). Since the ground state belongs to the (0,0}I+
'S' channel, it appears that we have selection rules for
photoabsorption: M =0 and hT =1. Thus A = —1 and
0 states are not easily populated in photoabsorption from
the ground state. This approximate selection rule can be
qualitatively understood in classical terms as follows. In
the ground 'S' state, correlation between the two orbits of
the two electrons are such that they are coplanar (T =0)
but opposite senses so that both electrons can approach
the nucleus simultaneously (A =1). Upon receiving the
angular momentum and energy from the photon, it is
easier for one of the electrons to change its orbit to a dif-
ferent orientation such that the two orbits are no longer
coplanar (T = 1), while at the same time the sense of rota-
tion (A =1) is maintained. To end up with A = —1 states,
one of the electrons, after photoabsorption, has to change
its sense of rotation. In classical planetary motion, we
know that this is much harder than just changing the
orientation of the orbit. Thus there is an approximate
selection rule for M =0. Of course, this qualitative ex-
planation based upon classical orbits should not be taken
too literally since the de Broglie wavelength for each elec-
tron is quite long. [The above explanation does not apply
to the photoabsorption to 1snp 'P' channel where there is
no strong radial correlation (A =0). This is attributed to
the fact that photoabsorption to the lsnp'P' channel
occurs mostly in the potential valley rather than near the
potential ridge. ]

The discussion in the previous paragraph implies that
photoabsorption from the metastable ls2s S' state of He
would result in the population of A = —1 channels instead
of A =+1 channels. For example, channels such as
(0, 1)p, (1,1}3,and (2, 1)4 will be strongly populated by
photoabsorption from 1s2s S', while channels such as
(1,0)z+, (2,0}3+, and (3,0)4+ will only be weakly popu-
lated. This means that the lowest resonance state below
each threshold, such as q(1,0)z+, 3(2,0)3+, and 4(3,0)4+ (re-
call that these states are "designated" as 2s2p, 3s3p, and
4s4p P' according to the independent-particle model) will
not be excited by photoabsorption from ls2s S', or if ex-
cited at all, will be very weak. This also implies an in-
teresting consequence on the Wannier threshold law for
the double photoionization of He from 1s2s S' state. Be-
cause the final states have A = —1, the Wannier threshold
law should have the exponent m=3.668 instead of the
original m =1.056. ' Furthermore, the energy partition
between the two electrons should show a sharp dip when
the two electrons come out with identical energies. On the
other hand, the angular correlation still maintains a peak
at OIz ——m.. All these predictions are still to be confirmed
by experiments.
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For electron-atom collisions, such as e + H and
e + He+, excitation cross sections depend on the
strength of coupling terms among the channels. This re-
quires the evaluation of I' matrix, where
P&„(——C&&I (d/dR)

~

4 ). Although the systematics of
P-matrix elements are still rudimentary, existing evidence
indicates that P-matrix elements are large for the pair of
channels where 6%=1, LK=1, AT=0, and M =0.
[These rules are easily deduced from studying the correla-
tion patterns of (K, T)g channels. ] Coupling between
channels within the same N manifold is small, although to
achieve this goal diabatic states are preferred. Well-
defined procedures are now available' to obtain such dia-
batic states. Additional study is needed to give a better as-
sessment of the relative strength of coupling terms. If
coupling strength to a certain class of channels (e.g., K & 0
and/or 3 =0 channels) is small, these channels might be
neglected in future coupled-state calculations. This is de-
finitely desirable, since the number of channels for large N
(N &4) is large, a conventional close-coupling calculation
will become prohibitively difficult because of the large
number of channels that have to be included. Close-
coupling calculations for e-H scattering near H(n =2)
and H(n =3) thresholds indicated that only + channels
are predominantly excited. Thus it appears desirable to
perform coupled-channel calculations in hyperspherical
coordinates to test the possibility of neglecting all 2 = —1

and 0 doubly excited channels.
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)& @p(R;0')4q(R; 0')d 0', (A 1)

where Q=(a, r&, r2). In our calculation, the channel func-
tions are expressed as

@p(R II)= ~ g Nt&l fP&l&(R a)pl&I LM(rl r2)
l(, l2

Xy t, t, iM(r ),&p), (A2)

where the summation is over truncated pairs of (l ~, l2) and

1 2

1/v 2, l, =1~

I, /)&l2 . (A3)

In terms of the identity

2A, +15(cos812—cos812) g Pz(cos8]2)Pg(cos8)2) (A4)4a

Eq. (Al) is given by

APPENDIX A: SURFACE CHARCrE DENSITIES
FOR L+0 STATES

To display surface charge densities on the (a, 8~@) plane
at a given hyperspherical radius R for nonspherical L&0
states, it is necessary to average over the overall rotation
of the atom. This is achieved by defining'

op(R;a, 8)2)= f 5(cos8(2 —cos8)2)5(a —a')

o&(R;a,8~2)= g g g fP'~ (R;a)f&", t, ( R; a) Pq( cso&8)2(l~l 2L~P~(cos8&2)
~
l~lzL)2k+1

l, , l2 ~' I' A,

I r

+(—1) ' ' ft't (R;a)f&", I, R;——a P~(cos8~2)(l&lzL
~
P~(cos8~z)

~
lzl&L ), (A5)

where

&lil2L
l
P~(cos8»)

l

l'~l~L &

APPENDIX B: COMPARISON OF {K,T)"
QUANTUM NUMBERS WITH THE CLASSIFICATION

OF HELIUM DOUBLY EXCITED STATES
BELOW N =3 OF LIPSKY et al.

= f Ft, t,IM(r& r2a)P(cosz8)~ itt~(r&, r2)dr&dr2

(A6)

is the standard I'~ integral of Seaton and Percival.

Doubly excited states of helium below X=2 and X =3
have been classified into different channels according to
the calculated quantum defects by Lipsky et al." Due to
the lack of physically meaningful interpretation of corre-
lations, these channels were named simply as a, b, c,. . . .
In Table I, we show the proper (E,T)" designation for
each of the channels labeled by Lipsky et al.
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TABLE I. Comparison of (K, T) quantum numbers with the classification of Lipsky et aI. (Ref. 11) for doubly excited states of
helium below X=2 and N =3. The first column is the notation used in Ref. 11, and the subsequent columns are from the present
classification scheme.

lSe Se lpo lDe

Resonances below N =2
m={—1)

3po De lFo Fo

(1,0)+
( —1,0)+

(1,0)
( —1,0)

(0, 1)+
(1,0)
( —1,0)

(1,0)+
(0, 1)
( —1,0)

(1,0)+
(0,'1)
( —1,0)

(1,0)
(0, 1)
( —1,0)

(1,0)'
(0, 1)'
( —1,0)'

(1,0)'
(0, 1)
( —1,0)

3pe

(0, 1)+

~=( —1) +'
lpe

(0, 1)

3D0

(0, 1)'

1Do

(0, 1)'

Fe

(0, 1)'

1Fe

(0, 1)'

'S' 3Se lpo

Resonances below N =3
m. =(—1)

3po lDe 3De 1Fo 3Fo

a
b

d

(2,0)+
(0,0)+
( —2,0)+

(2,0)
(0,0)
( —2,0)

(1,1)+
(2,0)
( —1, 1)+
(0,0)
( —2,0)

(2,0)+
(0,0)+
(1,1)
( —1, 1)
( —2,0)

{2,0)+
(0,2)+
{0,0)+
(1,1)
( —1, 1)
( —2,0)

(1,1)+
(2,0)
(0,2)
(0,'0)-
( —1, 1)
( —2,0)'

(1,1)+
(2,0)
(0,2)'
(0', 0)
( —1, 1)
( —2, 0)0

(2,0)+
(1,1)
(0,'2)

(0,'0)
( —1, 1)
(-2', 0)

3pe

(1,1)+
( —1, 1)+

m=( —1) +'
lpe

(1,1)
( —1, 1)

3D0

(0,2)+
(1,1)
( —1, 1)'

1Do

(1,1)+
(0,2)
( —1, 1)

Fe

(1,1)+
(0,2)'
( —1, 1)

1Fe

(1,1)
(0,'2)

( —1, 1)'

R. P. Madden and K. Codling, Phys. Rev. Lett. 10, 516 (1963);
Astrophys. J. 141, 364 (1965).

J. W. Cooper, U. Fano, and F. Prats, Phys. Rev. Lett. 10, 518
(1963).

3U. Fano, Rep. Prog. Phys. 46, 97 (1983), and references
therein.

4C. D. Lin, Phys. Rev. A 10, 1986 (1974).
5(a) C. D. Lin, Phys. Rev. A 25, 76 (1982); (b) 26, 2305 (1982); (c)

27, 22 (1983); (d) 25, 1535 (1982).
C. D. Lin and J. H. Macek, Phys. Rev. A (to be published).

7D. R. Herrick and O. Sinanoglu, Phys. Rev. A 11, 97 (1975).
8S. Ezra and R. S. Berry, Phys. Rev. A 25, 1513 (1982).
9M. Crane and L. Armstrong, Jr., Phys. Rev. A 26, 694 (1982);

F. Iachello and A. R. P. Rau, Phys. Rev. Lett. 47, 501 (1981).
'DC. E. Wulfman, Chem. Phys. Lett. 23, 370 (1973).

L. Lipsky, R. Anania, and M. J. Conneely, At. Data Nucl.
Data Tables 20, 127 (1977).
C. D. Lin, Phys. Rev. Lett. 51, 1348 (1983).
(a) D. R. Herrick, Phys. Rev. A 12, 413 (1975); (b) S. I. Nikitin
and V. N. Ostrovsky, J. Phys. B 11, 1681 (1978); 9, 3141
(1976).
D. R. Herrick and M. E. Kellman, Phys. Rev. A 21, 418
{1980);D. R. Herrick, M. E. Kellman, and R. D. Poliak, ibid.

22, 1517 (1980).
15C. D. Lin, Phys. Rev. A 23, 1585 {1981).

B. Christensen-Dalsgaard (unpublished).
~7M. Le Dourneuf, S. Watanabe, and L. Pelamourgues (unpub-

lished).
~8J. W. Warner, L. S. Bartel1, and S. M. BHnder, Int. J. Quan-

tum Chem. 18, 921 (1980).
Woodruff and J. A. Samson, Phys. Rev. A 25, 848 {1982).

2 Our conclusion here is different from that of C. H. Greene,
Phys. Rev. Lett. 44, 869 (1980), where it was postulated that
+ channels are populated from 1s2s S' by photoabsorption.

Close-coupling calculation by V. L. Jacobs and P. G. Burke, J.
Phys. 8 5, 2272 (1972), indicates that photoionization from
1s2s S' above the He+(n =2) threshold populate —channels.

H. Klar and W. Schlecht, J. Phys. B 9, 1699 (1976); C. H.
Greene and A. R. P. Rau, Phys. Rev. Lett. 48, 533 (1982).
This latter paper also stated that double photoionization from
1s2s S' would populate + channels, in disagreement with
the present conclusion.

22J. H. Macek and P. G. Burke, Proc. Phys. Soc. London 92, 351
(1967).
I. C. Percival and M. J. Seaton, Proc. Cambridge Philos. Soc.
53, 654 (1957).


