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The asymptotic behavior of the pair-correlation function in fluids with realistic long-range pair potentials

is shown to give rise to a correction to scaling that has not been previously taken into account.

The current theory of corrections to scaling in fluids' is
based on renormalization-group theory developed for sys-
tems with strictly finite-range interactions, i.e., interactions
that vanish identically beyond a certain distance. All real
fluids, on the other hand, interact with intermolecular po-
tentials that are long ranged, and it is these which are of
concern here. The term long-range potential is used to
denote any non-finite-range interaction that is absolutely in-
tegrable at large distances. Realistic examples of such in-
teractions in fluids are provided by potentials that decay as
inverse powers of the distance at large distances, one fami-
liar case being the induced dipole-induced dipole interaction
in d = 3 dimensions, for which the potential decays (neglect-
ing retardation effects) as $(r) = —A/r, where r is the in-
terparticle separation and A is a constant.

It has been known for some time that long-range poten-
tials give rise to an important contribution to the radial dis-
tribution function, g (r ), at distances greater than the corre-
lation length g. The main purpose of this Rapid Communi-
cation is to point out that this contribution, when included
in the calculation of thermodynamic properties such as the
isothermal compressibility X, leads to a correction to scaling
that has not been previously taken into account. It is
shown that this new correction can have a temperature ex-
ponent that is comparable in some cases to that of the first
%egner correction. ' The amplitude, however, is probably
small, and the implications of this for the analysis of fluid
equation-of-state data near the critical point are examined.
The correlation length here is defined by the usual formula

g'= p J d r r'[g (r ) —1]/(px/p)

where p is the number density of particles and p ' is
Boltzmann's constant kg times the absolute temperature T,
and X is related to g (r ) through the compressibility relation

pX/p=l+p d"r[g(r) —lj
In order to assess the effect of a long-range potential on

corrections to scaling it is necessary to first consider the
long-range asymptotic behavior of g(r). This problem has
been solved for power-law potentials by Enderby, Qaskell,
and March using the Ornstein-Zernike integral equation to-
gether with the assumption that the direct correlation func-
tion for such potentials satisfies

c(r) = —p@(r) for r

One may then show by Fourier transform techniques that

g(r ) —1 = —(pX/p) p@(r ), for r oo (2)

The salient feature of this important result is its propor-

h(r) =F(rig)(a/r)~ (3)

where q is the correlation function exponent and o- is a
measure of the microscopic fluid particle size. The scaling
function F(x) is known' to tend to a constant as x 0
and to decay like x' "~'+~exp( —x) for x && 1: that is,
the correlations differ significantly from zero only inside a
sphere of radius equal to the correlation length. In view of
the result (2) discussed above, the expression (3) for
short-range potentials must therefore be modified in the
case of long-range potentials (e.g. , those with asymptotic
power-law decay), where at arbitrarily large r the right-hand
side of (2) dominates the right-hand side of (3) for any fin-
ite g. This is in accord with a statement by Widom" that
the correlations in the positions of two fluid particles cannot
effectively disappear at distances at which the particles are
still in mutual interaction.

Inasmuch as the asymptotic result (2) holds as r ~ for
any one-phase fluid not exactly at its critical point, it seems
reasonable to decompose the correlation function for a
long-range potential into two additive contributions, hsR(r )
and hLR(r), where hsR(r) refers to the right-hand side of
(3) plus higher-order terms that account for the usual
corrections to scaling, and hLR(r) denotes the long-range

tionality to the square of the isothermal compressibility,
which diverges strongly as one approaches the critical point.
While a rigorous proof of (1) has yet to be given, the result
is widely believed to be of general validity: its truth at low
densities is evident from the density expansion of c (r ), and
a formal demonstration not restricted to low densities has
been given by Stell. ' With regard to (2), the form of the
result suggests only that it might break down near the criti-
cal point (where the amplitude diverges), and it is believed
that the result holds at arbitrarily large r for any fiuid state
of finite compressibility. (See also Ref. 6.) This will be
the point of view taken here.

Consider then the issue of corrections to scaling near the
critical point, and in particular, the following question:
What form should the scaling laws take near the critical
point in the case of long-range intermolecular potentials? It
should be noted that the asymptotic scaling behavior for
such fluids (i.e., the behavior so close to the critical point
that corrections to scaling may be neglected) has been
analyzed in some detail, first by Stell' and later in a
renormalization-group context by Fisher, Ma, and Nickel
and Sak. These analyses provide some motivation for the
scaling behavior presented here, although the present em-
phasis is on corrections to scaling.

For strictly finite-range potentials the asymptotic behavior
of h (r ) = g (r ) —1 near the critical point is given by'0
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potential term given in (2). It is important to bear in mind,
however, that the derivation of (2) is valid only for those
values of r where the long-range behavior of /t (r ) is in fact
given by hLa(r), and this means that hLa(r) should be in-
cluded in h(r) only when hqg(r) » hsa(r). Assuming
that this condition is satisfied for r r„one then has

h(r) =hsa(r) —H(r —r, )(pX/p) pQ(r) (4)

where H(x) is a Heaviside step function. The results to be
derived from this expression do not depend in a significant
way on the choice of the cutoff function H(x), nor do they
depend on the fact that hsa(r ) has been included in h (r )
for r & r, : That is, hsa(r ) « hLa(r ) for r & r„and it
hence makes a negligible contribution to h (r ) in that re-
gime.

For simplicity, the remainder of the discussion deals with
the behavior of the isothermal compressibility along the crit-
ical isochore [p =p„t = (T —T, )/T, & 0], and with power-
law potentials of the form $(r) = —A/r +v for r
where A and p are positive constants. An immediate upper
bound on r, then follows from the exponential decay of
F(x) in (3) for large x, the bound being of the form" g'+',
where e & 0 is arbitrarily small. Evaluation of (3) and (2)
(with3 X —g' ") at r = g further shows that

and this implies a qualitative distinction between the cases
p &2 —q and p ~2 —q. For p &2 —q one must have
g « r, « g'+' for g ~, and if r, is taken to be that
value of r at which hsa(r) =hLa(r) one finds

r, =(p —2+g)(l (ng/v) (5)

and

XLa ——r+ r -«[br"&v-'+»(lnr ) -v] . (7)

The quantity P, is the critical pressure, I +, a, a~, a2, a3,
and b are constants, y = v(2 —q) is the compressibility in-
dex (in the usual notation' ), h~ and hq are gap exponents,
a is the specific-heat exponent, and v is the correlation
length exponent, defined by g= got "and characterizing the
divergence of g as t 0+ along the critical isochore.
Thus, in addition to the usual corrections to scaling given in
(6) and involving the exponents h~, hq, and y —n, long-
range potentials give rise to a new correction involving an
exponent q = v(p —2+ q). This correction depends,
through p, on the explicit form of the intermolecular poten-
tial at large distances. Note that for p & 2 —g, XLR is in fact
merely a correction to XSR, but that as p —2+q 0 these
two contributions become codominant. Since" q = 0.03 for

For p ~ 2 —q, on the other hand, hLx(r) is not negligible
compared to hsa(r) even for r & g. No attempt is made
here to analyze this case (see Refs. 7-9), although the limit

p —2+ q 0+ is alluded to below and provides some indi-
cation of what is to be expected. It is henceforth assumed
that p &2 —g."

Given the decomposition (4) and the result (5), the
compressibility integral relating X = (p,P,/p, )pX/p to h (r )
separates naturally into two terms: X = XSR+ XLR, where'

h~ h2 2h
Xsa I'+r "[1+at '+atr '+a&r '+a38' + ]

(6)

d =3, this would happen for a potential with asymptotic
form $(r) = —A/r, the important point being that for
more slowly decaying potentials one must be prepared to
find critical exponents somewhat different from those usual-
ly associated with fluids, as was first emphasized by Stell. '

There is no reason to believe that the usual critical ex-
ponents are affected when p & 2 —q, and it is therefore as-
sumed that they are not. A definite illustration of the term
t~ is then provided by the induced dipole-induced dipole po-
tential (p=3) for d=3. Using accepted numerical values
for the exponents, " one then finds '6~=0.50, 42 —0.90,
22k~ = 1.00, y = 1.24, a = 0.11, y —o; = 1.13, v = 0.63,
q = 0.03, and q = 0.65, so that the new correction is charac-
terized by a correction-to-scaling exponent that is only
slightly larger than that of the dominant Wegner term

h)(at '). The amplitude bin (7) may in turn be estimated by
replacing the potential parameter A by 4~a-, where e and cr

are the well-depth and length-scale parameters of a
Lennard-Jones potential. One then obtains

b = ( 1~6/ 3)( 1+7)i'(p, o')(P,~)(p./P P, )(o/go)'I'+

This quantity is generally of order unity and is readily ca1-
culable in particular instances. '

A final point concerns the significance of the new correc-
tion to scaling for the analysis of fluid equation-of-state
data. ' It is important to realize that experimental measure-
ments typically have t 10, and in this regime the
corrections to scaling given in (6) are of the order of at least
a few percent. The first three or more terms are in fact
often needed to obtain adequate data fits. ' Ordinarily one
then either assumes that the correction-to-scaling exponents
are known and adjusts y and the amplitudes, or one as-
sumes that y is known and adjusts b ~ (with 6& ——2k~) and
the amplitudes. Given this, consider again the case of the
attractive I/r6 potential, which describes reasonably well the
interactions in a wide variety of fluid systems. ' Consider
for definiteness the specific case of xenon, as this provides
some indication of what can be generally expected.
Compressibility data in the range 10 ' & t & 10 are given
in Ref. 18 together with critical constants and related param-
eters, and the potential parameters e and cr are given ap-
proximately by~0 a/ks = 220 K, a. = 4 A. Reduced tempera-
tures t & 10 turn out to be too large for the expression
(5) to accurately represent the solution to hsR(r, )
= hLa(r, ), and it is therefore necessary to recompute both
r, and the long-range contribution XLa given in (7). That is,
both (5) and (7) are valid only for t 0+ and represent
poor approximations for t 10 . The function r, (t) is
nevertheless easily determined numerically, and when this is
done for Xe one finds that XLa/Xsx decreases from the
value 3&10 at t=10 to the value 6X10 at t =10
This implies that the new correction to scaling is negligible
compared to the corrections in (6) in the temperature inter-
val 10 & t & 10, i.e., in the regime where experimental
data exist and has been analyzed on the basis of (6). While
the new correction must of course eventually become the
second roost important contribution, this will not happen
(for Xe) until one reaches reduced temperatures consider-
ably smaller than 10

Effects similar to those considered here may be expected
to arise in thermodynamic properties other than the isother-
rnal compressibility as well as in systems such as binary
liquid mixtures. In addition, it is conceivable that long-
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range potentials alter the behavior of h (r ) for r ( r, to a

greater extent than has been assumed here. A renormal-
ization-group calculation of the corrections to scaling could
resolve this question.
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