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Asymptotic behavior of three-particle correlations
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The three-particle correlation function G3(r12, r13, r23) for a fluid with a long-range pair potential is com-

puted in two limits: (a) all r~ ~, and (b) one distance, say r12, fixed and r13, r23 ~. In both cases,
the pair potential times the square of the isothermal compressibility appears.

A variety of studies on the triplet correlation function
G3(l ]2 r]3 f23) of a fluid have appeared recently, including
work on critical-point properties, ' integral equation
theories, and exact integral identities. To model certain
characteristics of fluids, consideration must be given to the
fact that, in general, the interactions between particles in a
real fluid cannot be set equal to zero beyond some arbitrari-
ly chosen finite range. The purpose of this Rapid Com-
munication is to report the calculation of the asymptotic
behavior of 63 at large distances for a fluid with a long-
range pair potential, @(r). A familiar example of such an
interaction is the induced dipole-induced dipole potential
which varies as @(r)= —A/r6 provided retardation effects
can be neglected (this being the case for distances less than
a few hundred angstroms ). More generally, the term
long-range interaction is used here to denote any non-
finite-range pair potential that is integrable at infinity.

The present calculation is based on a resummation of the
density expansion of the pair correlation function2 G2(r)
and of the triplet function. As will be evident, this method

for investigating the asymptotic behavior is simple, and ex-
tendable to higher-order correlation functions as well as to
fluid mixtures. The calculation focuses on two limits of 63.
(a) all rs ~ and (b) one distance, say r]2, fixed and
f 13 r 23 c]o ~ The former is of interest as a comparison with
G2(r ), r ~, for which it has been found'9 '0 that

G2(r) =1 —(pX/p)'pp(r),

where p is the number density, x = p '(d p/r]P ) is the
isothermal compressibility, P is the pressure, and P is 1/kT
with k Boltzmann's constant and T the absolute tempera-
ture. The limit (b) is germane to the closure problem' in
the theory of fluids and will be shown to lead to a correction
to the superposition approximation of Kirkwood, which as-
sumes that G3 is a symmetrized product of three pair-
correlation functions.

In the notation of Henderson, the density expansions of
the correlation functions are as follows:

exp[PC(«2)]G2(r]» =1+ g p"G2"'(&») =1+p
n+1

1 2

+p +2 + + ~ ~ ~

exp[]s[@(r]2)+@(r]3)+@(r23)]}G3(r]2I ]3 I 23) 1+ $ p 'T (r]2 r]3 f23)

= 1+p [G2' (r],) + G2' (r]3) + G2" (r23) + 54(r]2, r]3 r23) ]

+p IG2 (r]2)G2 (r]3) + G2 (r]3)G2 (r23) + G2 (r]2)G2 (r23)

+ G2 (r]2) + G2 (r]3) + G2 (r23)

+ [G2 (r]2) + G2 (r]3) + G2 (r23) ]g4(r]2 r]3 r23)

+
2 [s4("12 r ]3."23)]'+ ~s(&]2 «3, &23) ) +

The graphs 54 and 55 were introduced by Salpeter to represent

54(r]2, r]3, r 23) =
1 2 3

and

53(r]2,r]3, r23) =
1 2 3
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Standard notation prevails in Eqs. (2) through (5): Lines,—P@(r,")
which represent factors of f (r„)="e " —1 between par-
ticles, connect open circles denoting fixed particle positions
and/or solid circles (vertices) indicating integration over the
position of a particle. Throughout the report open circles
are numbered, in increasing order, from left to right.

To ascertain how the graphs are analyzed consider

G'"( ) = = Jl d r 3f (r13)f (r33) (6)

for r13 ~. The integrand decays as $(r12) when the par-
ticle at r 3 is near either r ] or r 2, but decays at least as fast
as [@(r13)] when r 3 is far from both r 1 and r 2. The
latter region of integration leads to higher-order contribu-
tions to (6) and these are neglected systematically in this
study. Now when r 3 is near r 1, f(r33) may be approxi-
mated by —p@(r13), and similarly, when r 3 is near r 3,

f (r13) may also be approximated by —pp(r13), giving

2

where

p@(. ), (7)

Py(r») . (gb)

Il
d r 2f (r12)

The analyses of the graphs in (2) with two vertices use the
same reasoning, but those graphs where both r ~ and r 2

have more than one bond can be neglected since they decay
at least as fast as [@(r13)] in the limit r13 ~. Thus the
graphs which contribute to (2) in this limit are

$k. AE ll

W (r») (»)
1 2

and

Turn next to the graphs in 54 and 55, and for illustrative
purposes consider the integral representation of 54,

123
= JI d r 4f(r14)f(r34) f(r34)

in limit (b), i.e., r13 fixed and r 3 ~. The integrand de-
cays at least as fast as [@(r13)] unless r 4 remains near
both r 1 and r 3, and in this region f(r 34) may be approxi-
mated either by —p@(r13) or by —pp(r33). If R is used as
a measure of either r13 or r», then in limit (b) 54 reduces to

py(R) . (10)

1 2 123 1 2 3 1 2

where 8 = r~q = r2q is again a measure of the distance of
r3toeither rior r2.

The graphical investigation outlined above can now be
used to determine the form of G3 at large interparticle dis-
tances. For the case where all rJ ~, one finds

123 1 2

On the other hand, in limit (a) (where all rj ~) 54 de-
cays at least as fast as [@(r/)]3 since two bonds must be
broken. Consequently this graph can be omitted in limit
(a). The analysis of 53, which consists of graphs with two
vertices, is facilitated by the following observations: (i) In
limit (a) all graphs decay faster than @(r;,) and can there-
fore be neglected; (ii) the graphs for which r 3 has more
than one bond do not contribute in limit (b) since they de-
cay at least as fast as [@(R) ] .

From (3) through (5) it is seen that two types of product
graphs also appear: G&" 54 and (54)'. These are readily
analyzed in limit (a) by noting from (7) and (10) that both
product graphs can be neglected. For limit (b) the result
(10) shows further that (54) 3 is negligible and for the
remaining product graph in this limit one has

G3(r12r13, r23) = I-P[4(r12)+4(r13)+4(r»)][1+2p +p'(3 +2

whereas the graphs combine in limit (b) to give

)+ ]

G3(r12 r13 r23) G2(r12) —218@(R ) exp[ —P4(r12) 1 [ I +p[2 + —,G3 ' (r13) l

ll

+p[3 +2 +3 G3" (r13)+263"(r13)]+ . [ (13)

From the virial expansion of the pressure, "however, one finds

(p&/P)'= I+2p + p'(3 )+. . .

which when applied to (12) yields the resummation

G,(.»,.»,.») = I- (px/P)'P[@(r»)+q(r»)+y(r»)] .

The series at (13) may be similarly resummed by using (14) and the fact that

p Bp G3(r»)/Bp=2exp[ —pf(r13)][1+ z
pG3' (r13) +2p G3 (r13) + ]

(15)

(16)

and for limit (b) this implies

G3(r12 r13 r23) G2(r12) —p '[&p'G3(r13)/&p] (p3///3)'p4 (R ) (17)

The pair potential in both (15) and (17) can be eliminated by using (1) and this leads to expressions for the asymptotic
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form of G3 in terms of h (r ) = G2(r ) —l. In the case of of the form
limit (a) the expression is G 3(f 12,f 13 r 23)/G2(f 12) G2( f 13) G2(I 23)

G3(112 r13 f23) 1 + h (r12) + h (r13) + h (f23) (18)

while limit (b) reduces to

G3(&12 r13 r23) = G2(~12) + p [1)p G2(&12)/rip lh (R )

(19)

The similarity between (1) and (18) suggests the following
form for the n-p arti cl ecorrelation function in limit (a):

G„(r 1, . . . , r „)=1—(pX/p)'p
1~i (j~~n

1~i & J~n
h (rq) (20)

G3(r12, r13 f23)/G2(r12) G2(r13) G2(r23) = 1

The result (19) leads to a correction to the superposition ap-
proximation, i.e.,

= 1+p[8 1nG2(r12)/Bp]h (R ) . (21)
In summary, the asymptotic form of the three-particle

correlation function at large distances for a fluid with a
long-range pair potential has been calculated in two limits.
An interesting feature of the decay of 63 is the appearance
of (pX/P), which is near unity at low densities, much
smaller than unity at high densities, and anomalously large
near the critical point. The derivation given here rests on
the assumptions of uniform convergence of (2) and (3) and
convergence of (14). In general, little is known about the
convergence of these series, and in particular it has not
been sho~n that the radius of convergence is limited to low
densities. Indeed, the results for the decay of G3 appear to
apply in their respective limits to any fluid state of finite
compressibility. The particular result (19) is in fact support-
ed by two independent studies. One of these' utilizes a
Legendre-polynomial expansion for G3 in conjunction with
integral relations such as that for the density derivative of
the pair correlation function. The other study (see also
Kuni in Ref. 9) is based on a functional expansion for the
conditional probability of finding a particle at r 3 given that
there are particles at r ~ and r 2.
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