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Dynamic structure factors in two-component plasmas
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The general kinetic equation for the charge-charge structure factor of a fully ionized strongly cou-
pled hydrogen plasma is solved in three distinct collision approximations. The equilibrium correla-
tion functions necessary to these solutions are provided by solution of the hypernetted-chain integral
equation in which an effective pair potential has been used to take into account short-range quantum
effects. The results are compared with molecular-dynamics simulations of the plasma using the ef-
fective pair potential and with a hierarchical approach involving known sum rules.

I. INTRODUCTION I =P e/2a&2,

Theoretical investigations into the properties of dense
plasmas have benefited greatly from the results of com-
puter simultations of model systems. The simplest of
these models is the classical one-component plasma
(QCP), which is a system of classical ions embedded in a
uniform neutralizing background. Monte Carlo' and
molecular-dynamics simulations of the QCP have guided
theoretical pursuits and have provided benchmarks for an-
alytic calculations of its properties, which are now well un-
derstood. '

The QCP is, however, a very simplified model of a real
plasma and is applicable only to systems which are so
dense that the electrons are completely degenerate. When
the electrons are nondegenerate, they can no longer be pic-
tured as a uniform, rigid background, and the QCP b=-
comes an inappropriate model. Under these conditions,
one must treat both the electrons and ions as particles. A
reasonable model which does this is the two-component
plasma (TCP).

In the TCP the electrons and ions are treated as classi-
cal (quasi) particles that interact through effective poten-
tials which deviate from pure Coulombic behavior at short
distances in a way that simulates the essential quantum
diffraction effects. A specific form for such a potential is
the one suggested by Deutsch. If ct and P are species la-
bels, and if

X p=fi/(, 2vrp pktiT)'~

where p p is the reduced mass of this interacting pair,
then Deutsch's potential is

Z~Zp8
v

tent
r)= I —exp

This potential remains finite at the origin, and, therefore,
prevents the collapse of the system. It is expected to give
reasonable results for nondegenerate plasrnas with tem-
peratures above the ionization potential and coupling pa-
rameters less than about 2, or

where a =3/4m. n =r, ao and ao is the Bohr radius.
The TCP is more difficult to simulate than the QCP,

but recently Hansen and McDonald ' have published re-
sults of molecular-dynamics (MD) analyses of a fully ion-
ized hydrogen TCP using the effective potential in Eq. (1).
Among the properties calculated from the simulation data
is the dynamic charge-charge structure factor S~~(k, co).
As the Fourier transform of the charge-density —charge-
density time-correlation function, S~~(k, co) reflects in its
shape the spectrum of longitudinal modes in the plasma.
The motivation of this paper is to use the simulation data
of Ref. 8 as a reference against which various kinetic
theoretical calculations of S~~(k, co) can be tested. A
similar study has already been made for the OCP; the in-
tention here is to generalize that work to two components.

The type of theories of interest here are microscopic
theories based upon formally exact kinetic equations de-
rived from the projection operator' ' or other tech-
niques. ' ' A general characteristic of such theories is
the separation of the so-called "memory" operator into a
static mean field or Vlasov term and a frequency-
dependent collision term. Calculations of density fluctua-
tions in dense plasmas, using just such a theory, were per-
formed several years ago by Linnebur and Duderstadt. '

Unfortunately, they were unable to estimate the short-
range part of the direct correlation functions appearing in
the memory operator and had to approximate those corre-
lations by their Debye-Huckel limits. %"e are now able to
calculate the direct correlation functions using the poten-
tial in Eq. (1) in the so-called hypernetted-chain (HNC)
equation. ' ' This is an approximate integral equation
method for calculating static correlation functions which
has proven to be accurate for plasmas in which the cou-
pling parameter is of order unity, and produces excellent
agreement with the static properties calculated by comput-
er simulations in Ref. 8. The proposal here, then, is to
generate the HNC direct correlation functions and use
them in the model kinetic theories described in Ref. 17.
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In Sec. II, we define the quantities of interest and re-
view the basic kinetic-theory concepts involved. Calcula-
tions based upon three different collision models are

presented in Sec. III, and in Sec. IV we present our con-
clusions.

II. KINETIC EQUATION

For a hydrogen plasma the dynamic charge-charge structure factor is defined by
2

Sgg(k, to) = — [S;;(k,co) —2S„(k,t0)+S„(k,co)],
2

where the partial density correlation functions S s( k, co) with a, /3=i, e are given by

S p(k, co) = fd p d p
' fdt e'"'—( f (k; p, t)fp( —k; p ', t ) ) =f d p d p

' f dt e'"'S p(k, t; p, p ') .2' N

Here

(3)

f (k;p, t)= fdre '" 'f (r;p, t)

is the Fourier transform of the phase-space density

(4)

f (r;p, t)= g 5(r —r, (t))5(p —p, (t)) .
j=l

In Eq. (3), X is the number of ions in the system and angular brackets indicate an average over the equilibrium ensemble.
It is not customary to calculate S ~( k, co) directly, but rather to find it from

S p(k, co)=2Ref d pdp'S p(k, z;p, p'),
where the Laplace transform function S p( k,z; p, p ') is

S p(k, z;p, p ')= f dt e 'S p(k, t;p, p ') .

Th.e advantage is that the functions S p can be found from the solution to a coupled set of kinetic equations of the form'

z — S p(k, z;p, p')+ M (p) g c &(k)fdp "Srp(k, z;p ",p ')
ma y=e, i

fdp "@ r(k, z;p, p ")Srp(k,z;p ",p ')=iS p(k, t=0; p, p ') . (8)
y=e, s

c p(k)=h p(k) —g c „(k)hrp(k),
y=e, i

where

(9)

In Eq. (8), M (p) represents the Maxwell-Boltzmann dis-
tribution function (normalized to unity), and the c ~ s are
the direct correlation functions defined by the Ornstein-
Zernike relations

tained in the operators N p(k, z;p, p '). Formally, exact
expressions exist for these operators, but they will not be
presented here. Instead, we will simply present results
based upon various models for them.

Before proceeding we note for future convenience that,
analogous to the single-species case, '3 Eq. (8) can be solved
formally to obtain the Laplace-transformed functions

h~p(k)=S p(k) 5p— S p(k, z)= fdpdp'S p(k, z;p, p')

in terms of the functions

(12)

S~p(k) =fd p dp 'S p(k, t =0;p, p ') J~p(k, z) =fd p dp 'J p(k, z; p, p ') (&3)

are the static partial structure factors. [Note that in Eqs.
(9) and (10) a factor of ion density has been absorbed into
the usual definitions. ] The effects of collisions are con-

where the J~p s are solutions to the simplified kinetic
equations

r

z — J p(k, z;p, p ') —g fdp "@&(k,z;p, p ")J&p(k,z;p ",p ') =M (p)5(p —p ')5 p .
ma y=e, i

Specifically, the results for a system of electrons and ions are
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S„{k,z)= (E, (k,z)[J„(k,z)S„(k)+J„(k,z)S,,(k)]
E(k,z)

+ [c„.(k) —z[J„(k,z)c„(k)+J„(k,z)c;;(k)]]

&& [J,,(k,z)S„(k)+i„(k,z)S,,(k)])

S„(k,z)= -(E,(k,z)[J;;(k,z)S;,(k)+J;,(k,z)S„(k)]
E(k,z)

+ [c„.(k) —z[J;;(k,z)c;,{k)+i„{k,z)c„(k)]j

X [J„(k,z)S„(k)+i,(k,z)S,,(k)]), (16)

where the functions F. ( k,z) and E(k,z) are defined by

E (k,z)=1—c (k)+z[i (k,z)c (k)+i p(k, z)cp (k)], a&P

E(k,z) =E,(k,z)E;(k,z) —jc„(k)—z[J„c„(k)+J„c;;(k)]I [c;,(k) z[J;;c;,(—k)+J;,c„(k)]I (18)

Various models for the collision operators will generate different approximations to the J ~ s. Using these in Eqs. (15)
and (16), and their counterparts with the labels e and i interchanged will give estimates of the dynamic structure factors.
These collision models will be studied in Sec. III.

III. COLLISION MODELS

In this section we will examine the charge-charge struc-
ture factors predicted by three different models for 4 p
and compare them to the MD results of Ref. 8. All three
models will require as input the direct correlation func-
tions c p(k) which will be obtained from the solution to
the two-component HNC equation with the potential in
Eq. (1). The first and simplest model we will investigate is
the collisionless or generalized Vlasov model in which
+ p ——0. The second model employs a simple Fokker-
Planck —type collision operator developed by Lenard and
Bernstein. The final model is one suggested by Duder-
stadt and Akcasu ' which incorporates the exact high-
frequency behavior of N p and models its time dependence
by simple exponential decay.

10'
q = 0.78 q = 1.102

I ~ ~

Huckel limits.
Taking these functions from HNC data, we calculated

Sgg(k, co) for I =0.5 and r, =0.4 at the same values of q
(=ka) used in the MD runs. The results are shown in
Fig. 1 where the standard RPA curves are presented for

A. Generalized Vlasov model q = 1.35 q = 1.559

In this model we simply neglect N & in Eq. (14) to ob-
tain

10-

J p(k, z)=5 p[1+X (k,z)]/z, (19)

5-

(k-p/m~)M~(p)g (k,z) = dp
z —k.p/I

{20)

is the plasma response function. Substituting Eq. (19) into
Eqs. (15) and (16) yields the usual random-phase approxi-
mation (RPA) results for S p(k, z) with one important
difference. The results presented here contain the exact
static correlation functions rather than their Debye-

0
0 2 0

CO / COpe

FIG. 1. Sgg(k, co) ()&100) as a function of co/m~ for four
values of q =ka at I =0.5 and r, =0.4. , MD results; ———,
Vlasov spectrum; —,generalized Vlasov with HNC statics.
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comparison (the ordinate has been scaled by a factor of
100). It appears quite clear that even at the smaller values
of the wave number q, where the collective modes will be-
gin to exhibit evidence of dissipation not available in this
collisionless model, that the generalized Vlasov results are
in good agreement with the MD data.

Although this mean-field approximation may provide
an adequate model of S~~(k, co) for I &0.5 (as long as

q &0.78), it does not give a good representation of the
charge-charge spectrum at I =2 unless q is restricted to
large values. For appropriate comparison with MD re-
sults at this value of the coupling, we must introduce a
reasonable approximation for 4 p in Eq. (14) and solve for
J~p.

B. Fokker-Planck model

A simple model for N p that introduces an interparticle
collision frequency v and allows an analytic solution to
Eq. (14) is

2 we compare the collisionless generalized Vlasov model
calculations (using "correct" HNC-evaluated direct corre-
lation functions) with the results employing v~~ from Eq.
(25) in the Fokker-Planck solution for the case I =2,
r, = 1. From the figure it is clear that the model including
collisions provides a much superior fit to the MD data
than the collisionless model. For values of q smaller than
0.78, the discrepancy is still larger, indicating the failure
of mean-field (RPA) descriptions of strongly coupled sys-
tems in the collective regime.

Even though the Fokker-Planck (FP) model consider-
ably improves the shape of the spectrum, the electron peak
intensity for the FP curve, which is a sensitive function of
v, falls below the MD data points at peak. In addition,
the peak position is lower in frequency than is shown by
the simulation. To correct this deficiency we must consid-
er a different collision model.

C. Duderstadt-Akcasu-I. innebur (DAI.) model

N~p( k,z; p, p ')

m g g p
~apvap + p 6( p —p ')

~

Qp Bp ma

(21)

J p(k, z)=5 pK (k,z),
where

(22)

Substituting this approximate collision term into Eq. (14)
and Fourier transforming in momentum allows one to
find'

Neither of the first two models discussed above satisfies
the fourth frequency-moment sum rule of S~(k, co). This
sum rule will, however, be automatically satisfied by any
model collision operator which incorporates the known
high-frequency behavior of 4 p. One such model is that
suggested by Duderstadt and Akcasu, ' and later applied
to weakly coupled two-component plasmas by Linnebur
and Duderstadt, ' in which the time dependence of N p is
modeled by two relaxation times. We define the DAL col-
lision operator as

K (k,z)= (imam v—/k )I (Q,s —1) (23)

and

~~a — a 0

(24)

1 1

m, PD, 3I D,*

(25)

In the above, Q =k /Pm v and s = iz!v-
Having introduced two collision frequencies v„and v;;

into our solution for S~~(k, co) to allow for collisional
damping, we must now select them with some care. It is
well known that the ordinary Spitzer-type binary-collision
times are inappropriate in moderately to strongly coupled
plasmas. We can, however, utilize transport coefficients
found directly from the molecular-dynamics simulations
to obtain estimates of the required collision frequencies.
In particular, using the self-diffusion coefficients given by
Hansen and McDonald, these frequencies are seen to be

MD
vee

q = 0.7810—

2I

( I
I

I

I
I

I
I

I

I

I

I

I I

I

I

q = 1.302

MD
vsv me

m;

' 1/2
1

3I D;*

Collisions are found to be of negligible importance for
S~(k,co) at I =0.5. They are, however, necessary when
describing S~(k,co) at larger values of coupling. In Fig.

FIG. 2. S~(k,co) for two values of q at I =2, r, =1. ~, MD
results. ———,generalized Vlasov with HNC statics;
FP model.
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C DAL(k .~ ~ I)

D~(0)
=l5~p z+ia' (k) gp

+—p &(v —p')
()p m~

kk c p(k)
m~mp

M (p)p. A p(k)-p ',
z+ia p(k)

(26) fdr g p(r)e'" 'V''Vv p(r) .
mamp

(29)
where

D (0)=D (0)+D p(0), «0
D p(0)= dr g p(r)V v p(r),ap 3p

(27)

(28)

The decay constants a'p(k) and a p(k) are chosen to ob-
tain the correct short and long time, as well as the known

large and small wave-number limits of S p(k, co).
Using Eq. (26) in Eq. (14) and once again Fourier

transforming in momentum leads to

and

2
mi

Ee 1 —-- zy 6;
k

J„(k,z) =—

2 2 2
lme me mi

k
3 ee~e + 4 z(3 ei 3 ee3ii )~e~i

k
2 2 2

lme me mi

k
yee~e + g {3el' 3 ee3il )~e~i

k

(30)

lmemiJ„.(k,z) =
k

3'ei ~e ~i
2 ~ 2 2 2

lmi lme memi
Zyii~i 2 yee~e+ 4

Z (3 ei 3ee3ii )~e~i
k k k

(31)

p D (0)
w (k z)= z+ia' (k)

The remaining functions appearing in Eq. (31) are

(32)

y p(k z)=
d

k.A p(k) k
z + ia ~p(k)

(33)

where X is defined as in Eq. (23), but with v replaced
by w (k,z) which is given by

tivity. This treatment can be thought of as a quantum
generalization of the fully renormalized kinetic theory of
Mazenko' in which the disconnected approximation
(DA), is used to renormalize the potential terms in the col-
lision operator. The application of this approximation to
strongly coupled plasmas has been discussed in Ref. 23
and elsewhere. ' More recently the theory has led to nu-
merical evaluations of o. (or ve77 which we label v„) for
the cases under consideration here. " We can estimate v„
by taking

h~ —:zK~—1 (34)
MD

DA ee DA
vee =

MD vei
vei

MD
vei Q)~ 1

4mo.
(36)

The form of the damping functions is chosen to be

a'p(k) =a p(0)[1+(k/k'p) ], (35)

where the unknown parameters a p(0) and k'~ are deter-
mined from known k and ~ constraints on S~~(k, co). '
With these restrictions we are required to choose only two
other collision frequencies to complete the description of
the DAL model. Those coefficients are the electron-ion
and ion-electron collision frequencies vei and v;„charac-
terizing momentum transfer between particles.

We can find vei from the coefficient of electrical con-
ductivity provided by the MD data,

TABLE I. Collision frequencies (in units of ~~) derived from
molecular-dynamics transport coefficients [MD, Eqs. (25) and
(36)] and calculated from the disconnected approximation [DA,
Ref. 27, Eq. (41)].

I =0.5, r, =0.4 I =0.5, r, =1 I =2, r, =1

The collision frequencies are collected in Table I for the
cases used in the simulation runs. The results employing
the DAL model with MD and DA collision frequencies
for a I =2, r, =1 TCP are given in Fig. 3. At low k, it is
apparent that the fits are superior to the FP model in peak
position as well as the intensity of the resonance. At small

As an alternative to using the simulation derived conduc-
tivity to find v„-, we can employ a quantum-kinetic-theory
treatment of plasma time-correlation functions which
leads directly to the calculation of the electrical conduc-

MD
&ee

DA
&ee

MD
ver'

DA
&el

0.054
0.111
0.022
0.045

0.093
0.225
0.037
0.090

0.135
0.201
0.073
0.109
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q = 0.78 q = 1.102

1 ~

0
0

10.

q = 1.35

2 0

q = 1.559

5-

0
0 2 0

CO / COpe

FIG. 3. Sgg(k, co) for four values of q at I =2, r, = 1. , MD
results. Curves are DAL model results with v=v (dashes) and
v —v (solid).

wavelengths the generalized Vlasov solution is nearly iden-
tical with those of the collision models, indicating the lack
of importance of collisions in this regime.

In their paper, Hansen and McDonald developed a
memory function theory (MFT) based on the work of
Abramo et al. to describe the charge-fluctuation spectra
obtained in the MD simulations. This theory builds a
hierarchy of memory functions for linear combinations of
momentum-integrated microscopic particle densities de-
fined in terms of known sum rules. The hierarchy is trun-
cated at the highest order in which the sum rules can be

exactly calculated using two-particle radial distribution
functions (the fourth-order sum rule). The highest-order
memory functions are damped in time by an exponential
or Gaussian approximation employing relaxation times de-
fined, again, by the known sum rules.

The advantage of "MFT" lies in the fact that only two
relaxation times are required and that these constants are
determined within the framework of sum-rule calcula-
tions. The DAL model, on the other hand, requires the
determination of four independent relaxation times by in-
troducing four transport coefficients. However, since
these time constants interpolate between hydrodynamic
and Vlasov behavior, a knowledge of the needed transport
coefficients (which can be accurately found from MD
simulations or quantum kinetic theory) ensures correct
small-k, small-co limits of S~&(k,co). The charge-
fluctuation spectra predicted by the DAL model and MFT
are very similar for all of the cases under consideration
here (see Figs. 6 and 8 of Ref. 8). Results of S (k,co=0)
for these models are collected in Table II.

As noted above, one may expect differences to occur at
longer wavelengths where the DAL model has used trans-
port coefficients to ensure correct hydrodynamic behavior.
In Fig. 4 we present a comparison of MFT with the DAL
model using values of the collision frequencies obtained
from MD transport coefficients and the quantum-
theoretical treatment with the disconnected approximation
at q =0.307. The MFT results were taken from Figs. 9
and 10 of Ref. 8. The DAL model using v predicts a
plasma peak of greater intensity and lower frequency than
the MFT calculations. The DAL model using the larger
values of v ~ predicts a smaller intensity and a peak posi-
tion closer to MFT. Differences between these theoretical
approaches can be expected to increase as q is made small-
er still. Unfortunately, there are no MD results at these
wave numbers to indicate which is the preferable theoreti-
cal prediction.

IV. DISCUSSION

The collision approximations we have investigated for
describing the TCP all utilize equilibrium correlation data

TABLE II. S~(k,co=0) for DAL, FP, and generalized Vlasov (CxV) and Vlasov (V) collisionless models compared with MFT and
MD simulation data. v ~ was used in the DAL and FP calculations.

Sgg(k, co =0)

0.78
1.10
1.35
1.56

MD

0.26
0.86
1.20
1.45

MFT

0.32
0.79
).26
1.60

0.31
0.78
1.21
1.59

0.31
0.78
1.23
1.60

I =0.5, r, =0.4
DAL FP

0.31
0.77
1.21
1.58

0.39
0.80
1.17
1.38

MD

0.33
0.85
1.28
1.80

MFT

0.40
0.83
1.22
1.51

0.35
0.79
1.18
1.48

0.36
0.79
1.18
1.48

r=o. s, r, =&
DAL FP

0.35
0.78
1.16
1.45

V

0.39
0.80
1.17
1.38

Sgg(k, co =0)
I =2, r, =1

0.78
1.10
1.35
1.56

MD

0.02
0.07
0.21
0.40

MFT

0.025
0.045
0.15
0.32

DAL

0.022
0.036
0.13
0.29

FP

0.022
0.036
0.12
0.29

0.021
0.033
0.12
0.29

0.064
0.16
0.29
0.39
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r =0.5 r, =0.4 I =05 r, =1

0
0.8 1.0 1.2 1.4 0.8 1.0 1.2 1.4

FIG. 4. Comparison of model results at I =0.5 for q =0.307.
--—,MFT results of Hansen and McDonald; ———,DAL
model with v= v ', , DAL model with v= v

as input to the solutions. The data have been shown to be
accurate and easily obtained from the solution of the
hypernetted-chain integral equations using the Deutsch
potential as the effective interparticle interaction. We
have used these data in all models considered with the ex-
ception of the usual Vlasov approximation.

As has already been shown, the standard Vlasov equa-
tion, which contains neither collisional dynamics nor
correct initial time-correlation information, does not
reproduce any of the MD spectra accurately. The general-
ized Vlasov equation, in which the Fourier transform of
the potential in the mean-field term is replaced by the ex-
act direct correlation function, provides a reasonable fit to
the data at I =0.5 for all r, and q values simulated. This
approximation is also adequate for large wave numbers at
higher values of the coupling parameter.

At the higher value of I considered here, it is necessary
to include collisions in order to damp the strongly spiking
plasmon peak. The Fokker-Planck —type Lenard-

Bernstein model approximates these effects by introducing
two self-collision times into the solution of S~~(k,~).
Even though these constants are well known, the resulting
spectra are only qualitatively similar to the MD data at
smaller values of q. As we have noted, the FP term does
not satisfy the fourth frequency moment sum rule. In ad-
dition, the collisional invariant of momentum is not satis-
fied by this model.

The DAL model does incorporate exact sum rules up to
fourth order and does satisfy conservation of momentum,
leading to much improved results at low q in the case of
large coupling. The implementation of several relaxa-
tion times allows the collision dynamics to be interpolated
from known hydrodynamic (k ~0,co~0) forms of
S ~ik, co) to their Vlasov and free-particle forms. This ap-
proximate form of the collision term depends on the accu-
racy of the acquired hydrodynam~ coefficients, but is
seen here to give a good description of the MD charge-
fluctuation spectra. This description is very similar to the
MFT calculations except at low wave number where the
interpolative DAL model should represent the spectra res-
onances as accurately as the transport coefficients provid-
ed. For all cases of 1" less than about 2 and q sufficiently
large, the distinctions are negligible.

The primary limitation in this process in the accurate
calculation of the radial distribution functions from the
HNC procedure. This implies that the best solutions will
arise from the most inclusive effective interionic potential.
The Deutsch potential, Eq. (1), is not valid for I greater
than about 2, but the HNC scheme should give reasonable
distribution functions for a more general effective poten-
tial. From these functions relaxation times can be derived
and used in the DAL collision term to provide accurate
predictions of dynamic correlation functions in more
strongly coupled two-component plasmas over a wide
range of k and co.
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