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Photon interference and correlation effects produced
by independent quantum sources
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Interference effects produced by independent quantum sources are investigated, when the
state of the field is not describable as a simple mixture of coherent states. The results of
classical and quantum-mechanical calculations are compared. Whereas correlation effects
are predicted both classically and quantum mechanically when the sources have random

phases, there are important differences when the number of atoms is small. In particular,
when each source consists of just one atom, the joint probability of detecting two photons at
two different points in the receiving plane is found to vanish when the distance between

them is an odd number of half fringes. Finally it is shown that when the number of atoms
of each source is subject to Poisson fluctuations, one recovers the solution given by classical
optics for thermal light, no matter how weak the sources may be on the average.

I. INTRODUCTION

Ever since it was demonstrated experimentally
that interference effects are observable with light
produced by two independent, unrelated sources, '

the quantum theory of the process has been the sub-
ject of attention from time to time. Later experi-
ments showing that interference effects exist even at
the level of a few photons, ' and even when each
emitted photon passes through the interferometer
and is absorbed at the detector with high probability
before the next one is emitted, brought renewed in-
terest. The interpretation of the experiments and
some proposed modifications thereof have again
been discussed recently. "'

So far most of the experiments made use of laser
sources, ' ' ' which means that the coherent state
of the electromagnetic field, ' or a randomly phased
mixture thereof, could be used as an adequate repre-
sentation of the quantum state. However, with the
development of experimental techniques for study-
ing resonance fluorescence from single atoms, '4'5
other quantum states of the field have become acces-
sible for interference experiments, and this raises
new possibilities.

In the following we calculate both the probability
of photon detection and the joint probability of
two-photon detection as a function of position in the
region of the interference pattern, when the sources
consist of a finite number of atoms in various quan-
tum states. We approach the problem first semiclas-
sically and heuristically and then through the quan-
tized field. We show that there are important
differences in the results predicted by the two ap-

proaches, although they agree in the limit of a large
number of atoms, and also when the number of
atoms is not large but subject to Poisson fluctua-
tions.

We find that even when each source consists of a
single excited atom, so that there is no definite phase
relationship between the sources, interference effects
still show up in the two-photon detection probabili-
ty. In particular, this probability is zero when the
two detectors are separated by a distance corre-
sponding to n + —, interference fringes
(n =0, 1,2, . . .). Two photons can therefore never be
found at certain pairs of points. This prediction has
no classical analog, and its confirination would
represent an interesting test of the quantum theory
of the electromagnetic field.

II. INTERFERENCE
IN THE CLASSICAL DOMAIN

We start off by discussing the interference prob-
lem in tei-iils of a completely classical electromag-
netic field. The conclusions will serve as reference
for the quantum-mechanical calculations to follow.
Although the answers in the two approaches have a
good deal in common, they also exhibit some impor-
tant differences.

We consider two polarized, approximately plane
electromagnetic waves at positions r

&
and r2

described by complex scalar amplitudes
V(r&,t)= V&(t) and V(r&t)= Vz(t) which are super-
posed at some position R (see Fig. 1). For simplici-
ty, the angle between the r& —R and rz —R vectors
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will be assumed to be very small. Then the resultant
complex field amplitude at R at time t is given by'

V(R, t) = V&(t r&—)+ Vz(t —rz),

C

rz ——
I

rz —R/c
(2)

I—S
2

I—S2

are transit times for the light. The instantaneous
light intensity I at R, t is then FIG. 1. The geometry for two point sources.

I(R,t) = V*(R,t) V(R, t)

i) I'+
I

Vz(& —rz)1 + Vl(~ r1) V (zt rz)+C. C.

=I, (t —r, )+Iz(t rz)+ —V& (t r& ) Vz—(t rz)+—c.c.
For quasimonochromatic light I&(t) and Iz(t) do not vary much over short time intervals or small path
lengths, while V&(t) and Vz(t) are almost periodic in t with period 2rr/cop, where cpp is the midfrequency. We
can therefore write

V~(t r& ) = V—&(t rp+rp —r& ) = V—~{1—rp)exp[ igloo(r—o —r& )]
ip)

= ~I& (t rp )e ex—p[ ipzo(1 p
—1~ )],—

Vz(t rz) = Vz—(t —ro+ro —rz) = Vz(t —ro)exp[ —E'Mp(ro —r, )]
i/2+Iz(r ro)e exp[ ~~o(ro rz)l

where rp is the transit time from r& or rz to the point O(x =0) in Fig. 1, and P&, Pz are phase angles that
characterize the field at x =0 at time t. Equation (3) then becomes

I(R,t)=Ii(t —ro)+Iz(t —ro)+2[I1(t ro)Iz{t rp)] cos[cop(rl rz)+$1 @2] .

Reference to Fig. 1 shows that for small inclinations of the beams

c(r& —rz) xs/D

so that we can write

I(x t) =[Ii(t ro)+Iz(t —ro)] '1+2
1l2I)(t —rp)

Iz(t —rp)

' 1/2 —1Iz(t —ro)+ I)(r —ro)
27TXS

+Pi —4z
A,oD

The light intensity therefore exhibits a periodic vari-
ation with position x, with periodicity A,oD/s, that
we refer to as interference, over time intervals for
which the phase difference P~ —Pz remains reason-
ably constant. If the two light beams are mutually
highly coherent, then P &

—Pz remains constant in-
definitely. But even if the two beams are derived
from separate sources and have no fixed phase rela-
tionship, P, —Pz will not change appreciably over
time intervals short compared with the coherence
time, or the reciprocal bandwidth. Over such short

(6)
I

times Eq. (6) predicts interference even for indepen-
dent light beams, and this has been observed. The
"visibility" cr&z of the interference pattern is given
by the coefficient of the cosine in Eq. (6), and for al-
most equal light intensities it is close to unity even
for independent light beams. However, if we calcu-
late the average light intensity from Eqs. (5) or (6)
by averaging over the ensemble of all realizations,
we find that when the phase difference P& —Pz is
random

(I(x,t) ) = (I((t —ro) ) + (Iz(t —rp) )
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because the cosine teirri averages to zero, and this
gives no inkling of interference effects. The ensem-
ble average of the light intensity is therefore not the
most relevant quantity in this case.

Nevertheless, we can demonstrate that interfer-
ence effects are present even in an average sense.
For this purpose we consider two neighboring points

I

R,R' in the receiving plane, with x coordinates x,x',
and we use Eq. (5) to calculate I(x, t) and I(x', t).
Finally, we evaluate the average product or the two-
point correlation function (I(x,t)I(x', t) ) under the
assumption that the two light beams are indepen-
dent and the phase difference P~ —P2 is random.
We then obtain

(I( xt)I( x', t) ) = (I ) (t —rp) ) + (I2(t —rp) ) +2(I) (t —rp) ) (I2(t —~p) )

+2(I~(t —7 p) ) (I2(t —Tp ) )costpp(s~ —T
&

—rp+ 7 2 )

= (I~(t —rp) ) + (I2(t —rp ) +2(I~(t —1 p) ) (I2(t —vp) )

+2(I&(t rp)—) (I2(t rp)—)cos[2m (x —x')s/A pD] . (7)

Once again we notice a periodic variation with posi-
tion, with the same periodicity L =A,pD/s as before,
showing that interference effects are present even
though the phase difference P &

—P2 is random. The
correlation is partly a reflection of the random
motion of the interference pattern, and it offers an
alternative procedure for establishing the existence
of interference effects. ' The relative modulation
amplitude is given by

p» ——2 (I, ) (I~ ) /[ (If ) + (I, ) +2I, ) (I, ) ]

when the light beams are stationary, so that single-
time averages are time-independent. Unlike the
relative modulation amplitude obtained from Eq.
(6), this has a maximum possible value of —, when
(I))=(I2) in the absence of any fluctuations of
I~(t) and I2(t), in which case Eq. (7) yields

(I(x,t)I(x', t) ) = (I(x,t) ) (I(x', t) )

X [1+—, cos2n (x x') /L ] . —

l

I(x, t ) given by Eq. (6), which can vanish for certain
positions x.

III. INTERFERENCE EFFECTS
IN LOCALIZED PHOTON STATES

We now turn to the quantum treatment of the
phenomenon. We start by showing that interference
effects are produced also in nonclassical states of the
electromagnetic field, and even when only a few
photons are present. However, the customary Fock
states having definite photon occupation numbers in
certain modes are inappropriate for our purpose, be-
cause they correspond to photons distributed over all
space, whereas we wish to emphasize effects pro-
duced by strongly localized sources. States in which
the modes are defined in a more general way have
been discussed. ' However, we shall find it con-
venient to make use of the quasilocalized photon
states of the general form'8'9

l@~&=~,(ri ti)V, (r2t2) ~ (rN tN) lvac&

When I~ (t) and I2(t) fluctuate, the relative modula-
tion amplitude is even smaller. For example, if the
light beams obey thermal statistics, then
(I & ) =2(I& ), (Iz) =2(Iz ), and the maximum
value of p&2 is —,, which is reached when

(I~ ) = (I2 ). Equation (7) then gives

(I(x,t)I(x', t) ) = —, (I(x,t) ) (I(x', t) )

X [1+—, cos2m (x x')/L] . —

The correlation is smallest when

(10)

l
x —x'

l

=(n+ —, )L(n=0, 1,2, . . .),
but it can never vanish, unlike the light intensity

in which
l

vac ) is the vacuum state of the field, and
the V ( r, t) are configuration space creation opera-
tors, that can be given the plane-wave mode expan-
sion

V (r, t)= 1 y a k, (t)e*k,e (12)

H«e I k ) stands for a particular set of wave vectors
k and s is a polarization index. The state

l
@&)

may be regarded as an N-photon state, in which one
photon is created approximately at position r, at
time t~, one at r2 at time t2, etc. , provided no at-
tempt is made to define the position to better than
several optical wavelengths or the time to better
than several optical periods. '9 For example, an ex
cited two-level atom in the process of decay can be
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regarded as giving rise to the one-photon state
V (r, t)

I
vac&, when f k ] stands for the set of field

modes to which the atom couples. [ k J may include
only a narrow band of frequencies centered on the
atomic frequency coo.

We now consider a set of K atoms located around
some point r, and another group of M atoms around
some point r ' (see Fig. 2). These constitute two
"point sources" of light separated by a distance s. If
the atoms of one group are separated by less than a
wavelength, we are justified in associating them with
the same position coordinate r or r '. We suppose
that the atoms have been prepared at time t =0 in a
product state, each of which is characterized by the
same Bloch vector

I
8,$ & with polar angle 8 and az-

imuthal angle P, while the field is in the vacuum
state

I
vac&. We then write for the initial state of

the combined system

I

S2

e
~ ~
e

/

I—S2

I
+ &

=exp( iHr5—t/~)
I

vac &

X M

iII I8.~ &. I~. I8.~'&
m=1n=1

e
/l' e e

~ e
t

FIG. 2. The geometry for distributed atomic sources.

I- & II I
8.4 &. II I

8.4'&-
m=1

We use the index n to label atoms belonging to one
source, and m those belonging to the other. The
method of preparing this state will not concern us
but it might be done with a short coherent pulse of
light, for example. For simplicity we have assumed
that the atomic excitation described by the polar an-
gle 8 is similar for all atoms. However, the phase
angles P of the atoms of one source may differ from
the phase angles P' of the others.

If the atoms interact with the field through an
electric dipole interaction, then after a short time 5t
the state in the interaction picture will be of the
foi iri

( —)~r ———p - g E (r,O)b„(0)
n=1

M w( )+ g E (r ', 0)b (0) +H. c.
m=1

(14)

Here p is the transition dipole moment of each
atom, b„(t) and b„(t) are atomic lowering and rais-

ing operators for atom n, and E ( r, t ) and
E (r, t) are positive and negative frequency parts
of the electric field. Because of the quasimono-
chromatic character of the field excitation, we may

( —) ~take E (r, t) to be proportional to V (r, t) defined
by Eq. (12), and we may write up to terms of order
(5t)',

T

1+Kj g VJ (r,O)b„(0)+ g Vj (r ', 0)b (0)+H.c.
n=1 m=1

+ —,K;Kj g g V; (r,O) Vr (r,O)b„(0)b„(0)+ g g V; (r ', 0) VJ (r ', 0)b (0)b (0)
n =1 n'=1 m =1 m'=1

+2 g g V; (r, O)Vr (r ', 0)b„(0)b (0)+H.c. +
n=l m =1

where

&& I- & II l8 4 &. II 18.&'&
~

m=1

+j—= (p)j(~o/2eo) ~ 5t/A' .

Now the atomic state
I 8,$&„can be expanded in terms of lower and upper states

I
1&

I
2&„ in the foiD12o

I
8,$ &„=sin—,8 e ' '&

I
1&„+cos—,8 e' '&

I
2&„, (15)

so that
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n=1 m=1
N N M

+& V (r 0)
I
vac&cos —,'Oe ' ' g I

1 & ll I
~ 0 & ' ll I

~ 0''&
n =1 n'&n m =1

M M N

+& V'(r'0)lvac&cos2~e '"'~ 2 I
1 & ll I~ &'& ll l~ 0&.

m =]. m'~m n =1
N N N M

+ —,'~,.~,cos' —,'0 V,. (r, O)V,'(r, O) l»c&e '"'~g g I
1&.

I
1&. 11 l~ 0&„-ll l6 0'&

+ V; (r ', 0) VJ (r ',0)
I

vac&

M M

m&m' m +m, m'

+2V; (r,O) V~ (r ', 0)
I
vac&

N M N M

exp[ ——,~(4+0')& g g I
1&. I» ll lo 0 &' ll I~ 0'& +

n =1m =1 n'&n m'&m

We now wish to detect the field at some position
R with the help of a photoelectric detector (see Fig.
2). For this purpose we equip the detector with an
aperture of width 5x and height 5y (the points
r, r ',R are taken to define the xz plane), and we as-
sume that the distance D is so great compared with
the source separation s that the light is incident al-
most normally on the photodetector. In a short time
5T the photodetector then detects photons by effec-
tively sweeping out a volume F" of space in the
form of a cylinder whose base is the photocathode
area 5x5y and whose height is c5T. Now it has
been shown' that the operator

(17)

represents the number of photons within the volume
at time t in a certain sense, provided the linear

dimensions of P" are large compared with optical
wavelengths. Moreover, the one-photon state
V (r, t)

I
vac& is an eigenstate of n~, with eigen-

value 1 if r E F, and with eigenvalue 0 if r g P .'9

A slightly different operator for the photon number
in a volume ~ has recently been introduced by
Cook, ' but we shall not use it here. The probability
that a photon is detected at R at time r within 5T is
then proportional to the expectation (n~, &.
shall take t to be the propagation time of the light
«om the source to the detector. The measurement
interval 5T will not show up explicitly in the answer
if we ensure that every photon produced by the
source reaches the detector. Also, the joint~robabil-
ity for a photon to be detected at position R& at time
ti and one at position Rz at time t2 is proportional
to the normally ordered correlation (:n~, n~, .&,

where F z is the correspondingly small volume lo-
cated at position R2.

In calculating these expectations we shall have oc-
casion to use the following free-field commutation
rule, which holds so long as the linear dimensions of~ are large compared with the wavelength, '9

Q(r, O;P, t)—= [V(r,O), n~, ]= g a k, eg, e'" ' U(r+cktlk, P ),

where U(r, P") is the discontinuous function that is unity when r E P, and zero otherwise. It follows that if
r, O and P, t are disjoint space-time regions then the commutator vanishes, whereas it reproduces V(r, O) if
t =0 and r E P . However, in other cases the answer is generally less simple.

We now use these results to calculate the photon detection probability at R at time t to the second order in 5t
or K. To this order the only contributions to

I
4 & come from one-photon states in Eq. (16), and we find
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(0
l n~,

l

0') =K;KJcos , O—f[N+N(N 1—)sin —,8](vac
l
Vj(r 0)"y-, ~V (

+[M+M(M 1—)sin —,9](vac
l

VJ(r ', 0)n~, V; (r ', 0)
l

vac)

+NM»n' —,«'~ ~'(vac
l

Vj(r ', 0)ny, V; (r,O)
l
vac)+c.c. ] . (19)

The matrix elements of the field are easily evaluated with the help of Eq (1.8). We obtain

(vac
l

VJ(r ',0)n~, V; (r,O)
l
vac) =D;(r ', 0;r,O;P, t),

where DJ;( r ',0; r, O; P, t ) is given by

DJ;.(r ', 0;r,O;P, t)=[Qj(r ', 0;F,t), V, (r,O)]

expi . r —r r c t
(2m-)3 ( [ )

as is shown in Appendix A. If ct =
l
R—r '

l, and if the lines R—r ',R—r are almost perpendicular to the line
r —r ' and to the induced dipole moment vector p, then it can be seen by reference to Fig. 2 that k ( r —r ') in
the exponent can be replaced by

ks /2D—+ksx/D,
because the factor U( r '+ c kt /k, F ) restricts the direction of k to lie almost along R —r '. Hence

k;A'~D~(r', 0; O;Fr,t),OQf k'1k esp(( —, kss/D+ksx/D) —.
g J Ji (22)

The element of solid angle subtended by the detector aperture at r or r ' is

50 =5y 5x/D

If we use these results in Eq. (19) we readily obtain

('((nr, s(
s(s ) =K' ccs' —,8 f k'dk N+M+ [N(N —) )+M(M l)]sins —8—

D2 2 (2 )3 [P) 2

(23)

+2NM sin —0 cos2 1 ksx
2 D 2D

+0' —0 (24)

2nD o

kos s /D
(25)

exactly as before. If p' —(I[J is random and uniformly
distributed over 0 to 2m. , then the interference term
averages to zero. However, even if P' —/ =0, the in-
terference term vanishes if 0=0, i.e., if the atoms
are in the fully excited state. This conclusion has no

This shows that, as long as the phase difference
P' —()1) is fixed, and provided the range of f kj, which
deternkines the coherence time of the light, is not too
great, there is a periodic variation of the photon
detection probability with position x, that we call
"interference fringes. " This result corresponds to
Eq. (6) which was derived classically. The fringe
spacing is given by

classical counterpart. The reason for it is that the
fully excited atomic state has no well-defined phase,
so that cross-terms vanish when we calculate the
quantum expectation. The term proportional to
[N(N 1)+M(M —1—)] in Eq. (24) is associated
with cooperative atomic emissions from each source
or super-radiance. It is a consequence of the fact
that all the atoms of one source are initially in
phase.

In physical terms, we may attribute the appear-
ance of interference fringes when 0&0, despite the
fact that the sources are independent, to the fact
that the two sources are unresolved at the detector.
For, in determining the position of the photon at the
detector to a precision 5x &L, we can fix the x com-
ponent of the momentum to no better than
h/L =(h /Ao)(s/D), which means that it is impossi-
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ble to tell from which source the photon was emit-
ted. There are, therefore, two probability ampli-
tudes which interfere. However, if the atoms start
from the fully excited state, it is possible, in princi-
ple, to determine by an examination of the sources
from which of the two any photon was emitted.
One of the two probability amplitudes then vanishes,
and the interference fringes disappear.

Whenever the interference pattern is present, we
see from Eq. (24) that its visibility, or the relative
modulation amplitude o (2, is given by

2NM sin —,8
i2= (26)

N+M+ [N(N 1)+—M(M —1)]sin —,8

The 8 dependence of o.(2 has no classical counter-
part. When N and M are equal and large, cr&2 l-ir-
respective of 8, except for the excited state 8 =0. In
the other extreme, when each source consists of but
a single atom, N= 1 =M, and

2 1

CT12=S111 2 8

which varies between 0 when the atoms are fully ex-
cited (8=0) and 1 when they are almost unexcited
(8=m ). Although the visibility is greatest in the
latter case, because the atoms then behave somewhat
like classical oscillators, the photon detection proba-
bility is then close to zero because cos 2 8=0.

IV. TWO-PHOTON CORRELATIONS

Although the interference term in Eq. (24) van-
ishes when we average over phases and the phase
difference P' —P is random, or when 8 =0 and the
atoms are fully excited, again it must not be thought
that all interference effects then disappear. The ef-
fects are still there, but they are reflected in expecta-
tions of higher-order operator products, which re-
quire correlation measurements of two or more pho-
tons to be revealed. We now calculate the two-
photon detection probability.

For this purpose we consider two detectors locat-
ed at positions R& and R2 in the receiving plane (the
xy plane), with x coordinates x( and x2. We denote
by P"1 and P 2 the volumes (5x 5y c5T) that are ef-
fectively sampled by the two detectors at time t, and
by n~ „n~, the associated localized photon num-

ber operators. The joint probability of two-photon
detection is then proportional to the normally or-
dered correlation' (:n ~,n ~,.) in the quantum

1 2

state
i

(Ii) given by Eq. (16).
It is apparent that nonvanishing contributions to

(:n~,n~, ) can come only from the two-photon
1 2

and higher-order states in Eq. (16). We readily find
to order (5t ) or K, after multiplying out and
evaluating the atomic products,

( (P i:n, ,n, :
i
% ) = ,' K;KJ—KK cos4 ,

' g—
XI(2N' '+4N' 'sin —8+N' 'sin —,8)

X(vac
i
V;(r, Q)VJ(r, Q):n~, ,n~, .V~(r, O)V~(r, O)

i
vac)

+(2M' '+4M' 'sin
2
8+M' 'sin —,8)

X ( vac
i

V ( r ', 0) VJ ( r ',0):n~,,n ~,, Vz ( r ', 0) V~ ( r ', 0)
~

vac )

+4P M+(N"'M+NM"') '
—,8+N'"M"' '

—,g~

X ( vac
i

V ( r, 0) VJ ( r,O):n y in y i.Vq ( r,O) Vq ( r, O)
~

vac )

+N"'M'"s1n4 —'8 e "(4'-~'
2

X (vac
i
Vi(r, O) VJ(r, O):n~,n~, V~(r ', 0) Vq(.r ', 0)

~

vac)+c.c.

+2M(2N' 'sin —,8+N 'sin —,8)e'4'

X (vac
i
V;(r, O) VJ(r, O):n~, ,n~, .V&(r, O)V&(r ', 0)

i
vac)+c.c.

+2N(2M(2)s1n2 g+M(3)s1n4 8)ei($' —p)

X (vac
i
V(r ',0)VJ(r ',0)n~,n~, .V&(r, O) Vz(r ', 0)

i
vac)+cc. J . (27)



936

In writing this equation we have used the abbreviation

N'"'=N(N 1—)(N —2). . .(N r—+ 1) .

It is worth noting that only the first three terms in this equation survive if the phase difference P —P is ran-
dom; the other terms all average to zero. Moreover, irrespective of whether the phases are random, only the
third term makes a nonzero contribution when each source consists of a single atom (N = 1 =M).

The matrix elements of the field can again be evaluated by repeated application of the commutation rules. It
is shown in Appendix B that when the lines joining the sources to the detectors are almost perpendicular to the
xy plane

K;KJ.K&Kq (vac
~

V;(r&, 0)VJ(r2, 0):n~,,n~, , V&(r3, 0) Vq( r4, 0)
~

vac)

=k
c f d kf, d k'( cxp li[k (r& —rx)~k' (rr —r3)]l(2~)' (~) !~')

X U(r4+ckt/k, P ~)U(r2+ck 't/k', W2)

+expIi[k (r
&

—r3)+ k' (r2 —rq)]I

X U(r3+ckt/k, F &)U(rz+ck 't/k', P 2)

+expIi[k (r2 —rz)+k' (r& —r3)]I

X U(r4+ckt/k, P &)U(r~+ck 't/k', 7 2)

+expIi[k. (r2 —r, )+k' (r, r4)]I

X U(r3+ckt/k, P &)U(r&+ck 't/k', p z)) .
(28)

If we apply this rule to each of the matrix elements in Eq. (27) and refer to Fig. 2 for the evaluation of
k (r —r ') as before, we obtain for quasimonochromatic sources, after discarding the terms in P —P', and for
suitable times t,

(@l:"r ~"r ~%)=&, cor' —,8,f k'dk f k'dk'
D' ' (2n-)' (k) (k )

X I 2(N"'+M'")+ 4(N"'+M'") sin' —g+ (N'4'+ M ~'~)sin' —' g

+2[NM+(N' M+M' 'N)sin g+N' 'M' si—n g]—
X [1+cosks(x& xz)/D]I . — (29)

We note that this correlation function or joint probability exhibits a periodic variation with position, with
the same periodicity A.OD/s as the interference pattern described by Eq. (24). Moreover, the periodic variation
is there even if the atoms start off in the fully excited state (g =0), and even if the phase difference y —y is
random when the interference te~ ln Eq. (24) averages to zero. The periodic correlation may be regarded as
reflecting the random motion of the interference pattern, and Eq. (29) can be compared with the classical equa
tion (7). Photoelectric measurements of this correlation were used in the experiments of R.efs. 8 and 9 to estab
lish the existence of interference effects.

From Eq. (29) the relative modulation amplitude p&2 is given by
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NM + (N(2)M +M(2)N )sin2 8 +N(2)M( 2)sjn4 g

NM+N~ ~+M' ~+(N'2'M+M' 'N+2N' '+2M' ')sin —g+(N' 'M' '+ —N'4'+ —M'4')sin —g2 2 2 '" 2

(30)

Unlike the corresponding classical expression given by Eq. (8), this can be as large as unity when N = 1 =M, al-
1

though it tends to the classical value —, when N =M and both numbers are large.
The case when there is just one atom at each source is exceptional and particularly interesting. We find

from Eq. (29) on setting N = 1=M,
2

(0 ~:a~ tn~, %)=2%4 cos4 —,8 J k~1k j k'~ kd[1+c'saks(x, —x~)/D],D2 & (2')6 [k] [k'] (31)

and we note that this vanishes whenever xi —x2
~

=(n+ —, )I. (n =0, 1,2, . . . ), where I. =ApD/s is the in-

terference fringe spacing. In other words, it is impossible to detect the two emitted photons at two points
separated by an odd number of half fringes. Needless to say, this conclusion has no classical analogy. It is a
reflection of the fact that one photon must have come from one source and one from the other, but we cannot
tell which came from which. There are therefore only two probability amplitudes that interfere destructively.
However, as soon as one or the other source has two or more atoms, the two detected photons could have come
from the same source and the additional probability amplitudes lower the relative interference effect.

V. Randomly Distributed Atoms

(33)

Although our simple model is able to bring out certain essential differences between the quantum mechanical
and the classical situations, it is not very realistic. In practice the atoms of the sources are likely to be distri-
buted over regions that are large compared with the wavelength, and because of variations in atomic position,
the phases of the different atoms are likely to be different. Moreover, with moving atoms even the number of
atoms that constitutes a source may fluctuate from one trial to the next. Although the previous calculation
can, in principle, be adapted to this more general situation, it becomes cumbersome. It is a little simpler to ex-

press the electromagnetic field E(R, t) at position R in the far field of the atoms directly in terms of atomic
variables and to calculate the expectations from these.

We again consider two sources of N and M identical two-level atoms, located at positions r i, r2, . . ., r& and
r i, r 2, . . ., r ~, respectively. The starting point of our calculation this time is the expression for the positive

frequency part E'+'(R, t) of the electromagnetic field at position R in the far field of an atom at r 22

-(+) - ~p g p (R—r)(R —r)E +(Rt)=, — —b (32)4~«' fR—r
/

[R—r /'

Ef„,(R, t) is the positive frequency part of the free field, in the absence of the atom. Equation (32) is nothing
but the quantum-mechanical version of the field of a classical oscillating dipole. We may readily adapt the
equation to the problem in which there are N +M atoms at different positions, and we write

N M
E'+'(R, t)= gC'"'b„(t —

~

R—r„~ /c)+ g C ' 'b (t —
~

R—r'
~
/c)+Ef,+„'(R,t)

n=1 m=1

26) p

417&pc 2
p

[R—r„/

p.(R—r„)(R—r„)
(34)

g

and C (I) given by a similar expression with r„replaced by r ' . The probability that a photon is detected at
position R at time t is then proportional to (E' '(R, t).E'+'(R, t)). We shall assume, either because the field
that was used to excite the atoms is turned off at time t, or because the point R is located outside the region of
the exciting field, that

E,'+,'(R., t)
~
)„„,=0 .

In the Heisenberg picture the operators b„(t) oscillate at the atomic frequency cop as well as evolving more
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slowly in time at a rate determined by the coupling. If the transit time
l
R—r„

l
/c (or at least its variation

from one atom to another) is very short compared with the atomic lifetime, as we may assume, then to a good
approximation

~„—=
l
R—r„

l
/c, (36)

where wp is the transit time from the midpoint of either source to point 0 in Fig. 2.
With the help of Eqs. (35) and (36) we then have for the expected light intensity, or the photon detection

probability,

( )
M

y C(n)+b t(t )e 0 n 0 + g C'(Pit)*b t (t )e 0 m 0

n=1 m=1

)
M

n=1 m=1

N N M M
=g gC(")*.C(" )(b „(t ~)pb„, (—t —rp) &++ gC ' '*.C ' )(b (t —~p)b (t —rp) &

N M

+ g g C'"'*.C ' '(b„(t vp)b (t ——~p)&e ' " +c.c. (37)

As before, we assume that the atomic excitation has been produced by exposing the atoms to a coherent optical
field, and that the atomic state at time t —~p is a product state of the form

n=1 m=1
(38)

The polar angles of the Bloch vectors are taken to be equal for all atoms of one source, but the azimuthal an-
gles in general are all different, because the atomic positions are different. Therefore each complex term in Eq.
(37), such as

(b „(t ~p)b„(t ~p—) &, —
in general has a different phase angle. In a short observation time 5T these terms generate interference effects,
as before. However, if we are dealing with moving atoms, it is to be expected that the phase angles change for
each independent observation, because the atomic positions are random. When we average over the ensemble,
all cross terms in Eq. (37) average to zero, with the result

N M
(I(R, t) & =

l

C
l g (b „(t—~p)b„(t —~p) &+

l

C' g (b (t ~p)b (t ——~p) &

n=1

=
l
C [icos —,8) +Mcos —,02] .

Under the small angle approximation
l

C'"'
l

and
l

C' '
l

have been taken to be almost the same for all
atoms. This averaged equation of course shows no interference. Nevertheless, interference effects can be exhi-
bited even by the ensemble average if we calculate the normally ordered two-point intensity correlation func-
tion, ' which is proportional to the joint probability of photodetection at two points R,R' in the receiving
plane.« ~aking use of the fact that atomic operators commute with free-field operators at later times, ' we ob-
tain from Eqs. (33) and (36)
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r""—= (E', -'(R, t)E,'-'(R', t)E,'+'(R', t)E', +'(R, t) &

N
( )

M
C(n}ebt(t )

0 lyly 0+ y ('(m) bt(t )
0 1m 0

n=1 rn =1

( )
M

C(gg')*b t (t )
0 2g' P + g C'(m')4b t (t )

0 2m' 0

n'=1

N
( )

M
X g C,

'" 'b„-(t —~ )e ' '" '+ g C,
' 'b -(t —r )e

n"=1

N
( )

M
X g C; 6„"(I—T )8 ' '" '+ g C 'b (t ~ )e' """' "'

)n"'= 1 rn"'= 1

(40)

with the abbreviations

c~,„=—
I
R—r„ I,

c~,„=—
I

R' —r„ I
.

Multiplying out generates 16 distinct terms, each of which consists of a quadruple sum. If we discard all terms
with unpaired lowering and raising operators, on the grounds that the phase of each atom is random and aver-
ages to zero over the ensemble, and make the small angle approximation as before, we are left with the follow-
ing nonvanishing contributions:

N N
I ""=IC I' 2g g(b „(t—.)b„'(t —,)b„(t—,)b„(t—,))

n+n'

+2+ g(b (t vp)b —(t rp)b (t—7p)b (t ——rp) )

N M

+ g g (b (t —rp)b (t —7 p)b (t —vp)b (t —1p) )(1+e )+c.c.
n =1m =1

(42)

In writing this equation we have made use of the relations (cf. Fig. 2)

c~)„D+—,( —,s+x——) /D+ca„/top,

n z„D+—,( —,s——+x') /D+cP„/top,
(43)

where a„,P„are position-dependent phases that may be taken to be random. The matrix elements in Eq. (42)
m m

are readily evaluated with the help of Eq. (38), and we arrive at

I' ' '=2
I
C

I

[N' 'cos —,8, +M' 'cos —,8 +NMcos , O, cos , 8 [1 —+cos m2. (—x'—x)/L]], (44)

where L given by Eq. (25) is again the spacing of the
interference fringes. This result can be contrasted
with that given by Eq. (29), in which the atoms were
assumed to be very close together and there were
super-radiant contributions. The two expressions
agree when N =1=M and 8& ——82. Evidently in-
terference effects show up in higher-order measure-
ments even when the sources have random phases.

Qnce again we note that I ' ' ', and therefore the
joint probability of two-photon detection, vanishes
when N =1=M and

I

x' —x
I

is an odd number of
half fringes, for reasons we have already discussed.

X [1+—,cos2m (x' —x)/L], (45)

which is exactly the classical Eq. (10), applicable to
thermal light. In general, when 8& ——82, the relative
modulation amplitude p&z obtained from Eq. (44) is

I

This conclusion cannot be obtained from any classi-
cal argument, e.g., from Eq. (7). Qn the other hand,
when 8&

——82 and N and M are both large and ap-
proximately equal, Eq. (44) can be expressed in the
foi-iri

r~'"= —,
' (r(x, t) ) (Sx', t &



N'"+M'"+NM ' (46)

VI. FLUCTUATING NUMBER OF ATOMS

1

and this varies between 1 and —, for equal N, M, and
becomes very small for greatly unequal N, M.

then have to average the previous results over the
fluctuations of N, M.

In the simplest situation N and M are independent
Poisson variates with means (N) and (M), respec-
tively. After averaging over N and M we obtain
from Eq. (39)

Finally we consider the situation in which the
numbers of atoms N, M at each source are them-
selves random variables. This situation might be en-
countered with gaseous or atomic beam sources. We

(&(R,t)) =
~

C
~

[(N)cos —,'0,

+(M)cos2 —g ],
and from Eq. (44), since

(47)

(N(N —1))=(N), (M(M —1))=(M)
I ' '=2

~

C
~ j (N) cos —,0, +(M) cos —,8 +(N)(M)cos —,O, cos —,0 [1+cos2 (x' —x)/L]j . (48)

When (N ) = (M ), 9
~
——82 this can be written

I ""=—, (r(x, r) ) (I(x,r) )

X [1+—,cos2m (x' —x)/L ],
which is the same as Eq. (45). However, this time
the equation holds exactly, without the assumption
that (N), (M) are large. Indeed, the answer holds
even if (N ), (M ) « 1, when one might have ex-
pected to encounter the strongly nonclassical situa-
tion represented by Eq. (31). Instead we find that
the atomic number fluctuations cause the behavior
of the system to move into the classical domain, be-
cause the source of any one photon is made more
uncertain.

We have studied the interference effects produced
by nonclassical sources, when the state of the field is
not expressible as a simple mixture of coherent
states, and have shown that interference effects are

present even when the phases of the sources are ran-
dom. We have used both classical and quantum
mechanical approaches to calculate the two-point in-
tensity correlation function, and have found that
there are similarities as well as significant differ-
ences. But whereas the relative modulation ampli-
tude for a classical field has a maximum value of —,,
it can be as large as 1 for a quantum field. We
showed that when each source consists of one partly
excited atom, the joint probability of photon detec-
tion at two points in the receiving plane is zero when
the two points are separated by an odd multiple of
the half-fringe spacing. Finally, we considered
sources in which the number of atoms is governed
by Poisson fluctuations, and we found the same in-
terference effects as are exhibited by a classical,
thermal light field.
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APPENDIX A: EVALUATION OF A MATRIX ELEMENT

We consider the following matrix element of the operator n~, between two localized one-photon states:
D;.(r ',0;r,0;W, t)=(vac

~ V, (r ',0)n, V;(r,0)
~

vac) .

The commutator of VJ( r ',0) and n ~, is given by'

Q(r'0;P, t):—[V(r', 0),ng, ]= g a-„,e-„,e'" ' U(r'+ckt/k, F )

with U(r, P")= 1 or 0 according as r H P or r 6 P . By commuting VJ(r ', 0) and n~, we obtain

(Al)
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DJ;(r ', 0; r, O; &,t)=(vac
~
QJ(r ',0;P, t)V; (r, O)

~

vac)

[ak„a „-,](ek, )j(e "k-,, );e' "'' " ']U(r '+ckt jk, F )

f k j,sfk'j, s'

g(5J., kj—k;/k )e'"'" ''U(r'+ckt/k, F")
fk)

3

d k(5; —k k; jk )e'"'' ''U(r +'ckt jk, P ) .
( k)

(A2)

The last line is obtained from the previous one after we go to the continuum limit, when the quantization
volume L ~ oo, and it coincides with Eq. (21) of the text.

APPENDIX B: EVALUATION OF HIGHER-ORDER MATRIX ELEMENTS

Consider the matrix element

M=K
KJK~Kq (vac

~
V (r],0) VJ(rz, O):n~, ,n~, , V~(r3, 0)Vq(r4, 0)

~

vac)

with n~ „n~, defined by Eq. (17). We start by expanding n~, as an integral, and then apply the commuta-

tion rule

F (r t r' t')=[V( t) V (r' t)]= g (e- ) (e*- ) e'f"''
L'fk)s

tf-dk st
(2~ )

i [ k .( r —r ') —w(g —g')]

k
e (B2)

twice, followed by the rule (A 1). We then find

)(S K&KtKrKr(vac V(r, ,O)Vt(rtO)f dr V,,(r', t)ttv. ,'V„(r', t)Vt(r , t)VO( r, rt)Ovac)

KKtKrK f dr'(vac( V(rt, O)[V„(r ', t)V (rt O)+Ft„(rt O; t)]nv-r,

X [Vz( r3,0) V„(r ', t)+F„z(r ', t; r3,0)]Vq(rq, O)
~

vac)

=KK)KrKv f dr '(vac( [F;„(rt 0;r ', t)Vt(rt 0)+Ft„(rt 0; r ', t)V (rt O)]nv-,

X[F„q(r 't;r4, 0)V&(r3,0)+Fz(r ', t;r3, 0)Vq(r4, 0)]
~

vac)

=K;KJK~Kq dr '(vac
~
[F;„(r],0;r ', t)QJ(r2, 0;P 2t)+F1„(r2,0;r ', t)Q;(r], 0;Wzt)]J P q y-1

X[F~(r ', t;r4, 0)V&(r3,0)+F~(r 't;r3, 0)Vq(r4, 0)]
~

vac) .

Next we make use of the commutation relation

[Q;( rO;1 2t), V~(r', 0)]= g (ek, );(e'k, )~e'"'' ' 'U(r+ckt/k, P 2)
f k j,s

P

k
e' " ' ' ' 'U(r+ckt/k, W2)

=D~(r, O;r ', 0;P 2t), (B3)

and obtain
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M=K;IC&K&Xq dr '[F;„(r1,0;r ', t)F~(r ', t;r4, 0)D&z(r2, 0;r3,0;F 2, t)J P 0 y,
+F;„(r„O;r', t)F &(r ', t;r3, 0)DJq(r2, 0;r4, 0;P 2, t)

+FJ„(r2, 0; r ', t)F„q( r ', t; r4, 0)D&(r(,0; r3, 0;P 2, t)

+FJ„(r2,0;r ', t)Fq(r ', t;r3, 0)D;q(r), 0;r4,0;F 2, t)] . (84)

We now evaluate the r -integral under the assumption that P 1 is in the form of a box centered at rp with sides
l1,12,13. For a typical element we have

d r 'F;„(r1,0; r ', t)F~(r ', t; r2, 0)
1

k„' kq
Nq

r'exp t r~ —r'+ ' r' —r~+ co —co't

k;k„k„'kq
5 — expIi[(k ' —k) rp .(to' —to)t—] )

Xexp[i(k r1 —k '. r2)]$ [
j=1

sin —,(kJ kJ )—lJ

—,(kJ —kJ )

When the dimensions l(, l2, l3 are all large compared with the optical wavelength, because of the last factor, k
has to be very close to k '. We now put k ' —k = k " and integrate over k ". Then to a good approximation

f dr F;„(r&,0;r', r')F~tr ', rz,r)=0f d lr 5r —— e
(2Ir)3 f k ) k

s111—,kJ"IJ

—k"
2 J

rr 3

d k"e3 r i[ k "(ra —r&) (ro ro)tl— —

(2n. )3 j=1

and the k " integral becomes the Dirichlet integral, 'q

'U + t
(2Ir)3 f ") ' k'

D(qr ,20r ,101 I, t) . (85)

We now use this result repeatedly in Eq. (84) and obtain finally

M =K;KjKpKq
1

(2m )

k;kq
~

~kJ' k~
JP kr2

—+

Ur4+, I U r2+

kJ' kq
Jq kr2

l[ ~ [ ~ ] l 3)+ ~ ( ~ 2 l 4)]e
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ckt ck 't
XU r3+,~1 U r2+

~

~kJ kq

k'
k k~

!p
i[ k.t r 2

—r 4)+ k '.
( r

&

—r 3)]e

~ U r4+ ckt ck 't
1 r 1+ i ~ 2

~

~kj k~+ JtP k2

k kq
lg

i[k (r2 r3)+k'. r1 4~e

ckt

This becomes Eq. (28) of the main text when the vector K is almost perpendicular to the lines joining the
sources at r1, r2, r3 I 4 to either of the detectors, i.e., when the scalar products K k are very small.

~A. T. Forrester, R. A. Gudmundsen, and P. Q. Johnson,
Phys. Rev. 99, 1691 (1955).

~A. Javan, E. A. Ballik, and W. L. Bond, J. Opt. Soc. Am.
52, 96 (1962); D. R. Herriott, ibid 52, 31 (1.962); B. J.
McMurtry and A. E. Siegman, Appl. Opt. 1, 51 (1962);
M. S. Lipsett and L. Mandel, Nature 199, 553 (1963).

3G. Magyar and L. Mandel, Nature 198, 255 (1963), and
in Quantum Electronics III, edited by N. Bloembergen
and P. Grivet (Dunod, Paris and Columbia University
Press, New York, 1964), p. 1247.

4H. Paul, W. Brunner, and G. Richter, Ann. Phys.
(Leipzig) 12, 325 (1963); H. Paul, ibid 14, 147 (1.964);
G. Richter, W. Brunner, and H. Paul, ibid. , 14, 329
(1964); H. Paul, ibid 19, 210 (19. 67).

5H. Haken, Phys. Rev. Lett. 13, 329 (1964); T. F. Jordan
and F. Ghielmetti, Phys. Rev. Lett. 12, 607 (1964).

6L. Mandel, Phys. Rev. 134, A10 (1964); L. Mandel and
E. Wolf, Rev. Mod. Phys. 37, 231 (1965).

7L. DeBroglie, J. Andrade, and E. Silva, Phys. Rev. 172,
1284 (1968); B. Liebowitz, Phys. Rev. D 1, 720 (1970).

R. L. Pfleegor and L. Mandel, Phys. Rev. 159, 1084
(1967); Phys. Lett. 24A, 766 (1967); J. Opt. Soc. Am.
58, 946 (1968).

9L. Mandel, in Quantum Optics, edited by R. J. Glauber
(Academic, New York, 1969), p. 176, and in Progress in
Optics, edited by E. Wolf (North-Holland, Amsterdam,

1976), Vol. XIII, p. 27.
L. A. Vainshtein, V. N. Melekhin, S. A. Mishin, and
E. R. Podolyak, Zh. Eksp. Teor. Fiz. 81, 2000 (1981)
[Sov. Phys. JETP 54 (6), 1054 (1981)].

A. Garuccio, K. R. Popper, and J. P. Vigier, Phys. Lett.
86A, 397 (1981).
L. Mandel, Phys. Lett. 89A, 325 (1982).

13R. J. Glauber, Phys. Rev. 130, 2529; (1963); 131, 2766
(1963).

' H. J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev.
Lett. 39, 691 (1977); Phys. Rev. A 18, 201 (1978); M.
Dagenais and L. Mandel, Phys. Rev. A 18, 2217 (1978).

~5W. Neuhauser, M. Hohenstatt, and P. E. Toschek,
Phys. Rev. A 22, 1137 (1980).

1 See, for example, M. Born and E. Wolf, Principles of
Optics, 6th ed. (Pergamon, Oxford, 1980), Chap. 10.

'7U. M. Titulaer and R. J. Cxlauber, Phys. Rev. 145, 1041
(1967).

' We denote all Hilbert space operators by the caret.
19L. Mandel, Phys. Rev. 144, 1071 (1966).
2 See, for example, L. Allen and J. H. Eberly, Optical Res-

onance and Turbo Level Atoms (-Wiley, New York, 1975).
21R. J. Cook, Phys. Rev. A 25, 2164 (1982).

H. J. Kimble and L. Mandel, Phys. Rev. A 13, 2123
(1976).

23B. R. Mollow, J. Phys. A 8, L130 (1975).


