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We study the semiclassical mean-field theory of absorptive optical bistability in the limit
of a fully developed hysteresis cycle, i.e., in the limit of large values of the bistability param-
eter C. We show by multiple time-scale perturbation analysis that it is possible to describe
the transition between the two stable branches by simple equations. Near the low-

transmission branch, the behavior of the system is governed by an equation for the atomic
population, whereas, near the high-transmission branch, it is an equation for the field am-

plitude which determines the long-time evolution of the system. We then present an analyt-
ic study, completed by numerical results whenever necessary, of the time-dependent
response of the system when the input field is swept across the bistable region. We study
the influence of the initial conditions, the sweeping velocity, and the ratio of the atomic re-
laxation times on the dynamical hysteresis as well as its relation with the stationary hys-

teresis.

I. INTRQDUCTIGN

The idea of optical bistability (OB) has been pro-
posed by Szoke et al. ' McCall gave the first de-
tailed theoretical discussion based mainly on numer-
ical solutions of the steady-state coupled Maxwell-
Bloch equations. Finally, Bonifacio and Lugiato
showed how the tools developed in laser theory
could be applied in QB with a simple and elegant
model. The experimental observation of OB ' and
the realization of a bistable optical device {BOD)
have given an additional impetus and new perspec-
tives to theoretical research.

To be specific, we shall study in this paper the
simplest possible model exhibiting OB. We there-
fore consider a ring cavity containing an absorbing
nonlinear medium. An external signal is injected
into the cavity and one studies how the output-field
amplitude depends on the input-field amplitude. A
standard approach to this problem is first to derive
the stationary solutions and second to study their
linear stability. In the simplest case of absorptive
OB, such a program can be carried out analytically
within the mean-field semiclassical description. Al-
though much energy has been devoted to the realiza-
tion of the same program for more complicated situ-
ations which take into account dispersion, radial
mode variation, propagation effect, ' or boundary
conditions" to name but a few directions of explora-
tion, the steady-state regime does not correspond to
most experimental situations. Indeed the experi-
mentalist usually sweeps either the amplitude or the
phase of the input field. What is the relation be-

tween the stationary bistable characteristic and the
effective time-dependent response of the BOD is by
no means a simple problem. The aim of this paper
is precisely to study the effects of time-dependent
control parameters and the relation between tern-
poral and stationary responses.

Previous mathematical studies of transitions be-
tween steady states have been devoted mainly to sys-
tems where the parameters are constant in time. '

However, authors motivated by stability questions in
chemical reactors have recently considered bistabili-
ty problems with time-varying parameters. ' When
the time variation of these parameters is slow com-
pared with typical chemical reaction times, the
method of matched asymptotic expansions can be
used to reduce the full set of equations to simple
nonlinear canonical equations. ' In this problem the
change in time of the control parameter is not neces-
sarily slow compared with the characteristic relaxa-
tion times of the BQD. Hence we must examine
how the BOD's response is modified as we modify
the sweeping velocity of the control parameter. We
shall use the Maxwell-Bloch equations to describe
OB. When dealing with these equations in quantum
optics, it is customary' to resort to some version of
the adiabatic elimination scheme in order to simpli-
fy the theory. Such a scheme relies on strong ine-
qualities that are assumed to exist between the cavi-
ty and the atomic decay rates. It was applied in OB
in the good cavity limit by Benza and Lugiato' for
the absorptive case and by Ikeda" for the dispersive
case; it was also applied recently by Drummond' in
one of the bad cavity limits. Unfortunately, the
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II. MAXWELL-BLOCH EQUATIONS

Let us consider a very simple situation which is
that of single-mode mean-field semiclassical absorp-
tive OB in a ring cavity. In this case the nonlinear
absorbing medium is modeled by a set of homogene-
ously broadened two-level atoms. Since absorption
is taken as the dominant atomic mechanism, we
may assume that the coherent external driving-field
frequency, the atomic frequency, and the cavity-
mode frequency are all identical. As discussed in
Refs. 4 and 7 this situation can be described by the
following set of Maxwell-Bloch equations:

E 1

dt T
E — El —gS, (2.1)

, = —ygS+ Eb, ,t' (2.2)

ES, (2.3)

where E is the real field amplitude produced in the
cavity when a generally time-dependent field ampli-

atomic decay rates are fixed constants and modifica-
tions of the cavity quality factor are not that easy.
As a consequence it is desirable to have a theory
that does not make use of such adiabatic schemes.
Furthermore, a parameter which is easily varied be-
tween two experiments is the bistability parameter
C; we recall that C &4 is the condition for OB to
occur. We have found that in the limit of fully
developed OB (i.e., in the limit of large C) it is possi-
ble to analyze the problem without any adiabatic el-
imination of variables. Our approach is a multiple
time-scale perturbation method' to solve the time-
dependent problem. We show that in the large-C
domain the transition regions where the output field
undergoes a jump are still governed by simple non-
linear equations whose solutions diverge in a finite
time.

In Sec. II we recall the basic Maxwell-Bloch equa-
tions on which this paper is based. We also recall
the stationary solutions, their scaling laws, and the
results of the linear stability analysis. In Secs. III
and IV we present the asymptotic theory of the low-
and high-transmission branches, respectively. These
two sections primarily contain a derivation of the
basic equations and a first discussion of their prop-
erties based on numerical solutions. Section V is de-
voted to an analytic study of the equation derived in
Sec. III to describe the vicinity of the limit point
where the jump to the high-transmission branch
occurs. A discussion and concluding remarks are
found in Sec. VI.

This population difference relaxes with a decay rate
y

l l

and the total number of atoms N is an invariant:

N =N+(t')+N (t') .

Initial y, N & N+.
It is useful to introduce a set of reduced variables

as follows:

x= E, y= EI,p
&V'rllr.

1/2
2 Yl 2S= S, 5= d, t=at',
N yll

=
N

C =gpN/4fucyg,

(2.4)

in terms of which the Maxwell-Bloch equations be-
come

Bx =x = —x +y —2Cs, (2.5)

s= —s +x5 (2.6)

-5= —5+1—xs . (2.7)

Consequently the number of relevant parameters is
reduced to four for the general time-dependent situ-
ation and to two (C and y) for the stationary state.
For a constant input field y the system will eventual-
ly reach a stationary state in which

5=(1+x )

s =x(1+x )

y =x+2Cx(1+x )

(2.8)

(2.9)

(2.10)

From the last equation we get a cubic equation for x
as a function of y and C. When C &4 the cubic has
a single real positive root whereas when C & 4 there
are three real positive roots. The ring cavity then

tude EI is injected into the ring cavity via a mirror
of transmittivity T. The injected signal is attenuated
by the cavity, which has a decay rate ir, and by the
interaction with the atomic medium in which it in-
duces a polarization S. The atom-field coupling
constant g and the modulus of the dipole moment p
are related by

g =4~cop/V,

with co being the unique frequency in the system.
The atomic polarization S has a decay rate y~ and
induces a modification of the population difference
between the lower (N ) and the upper (N+) level
defined by

, [N (—t') N+(t—')] .



T. ERNEUX AND PAUL MANDEL

displays a multistable characteristic as exemplified
in Fig. 1. A linear-stability analysis of the station-
ary solutions easily indicates that when the slope of
the curve x =x (y) is positive, the stationary solution
is stable, whereas when the slope is negative the sta-
tionary solution is unstable. Hence when C ~4 and

y &y &yM, there corresponds two possible states to
each single value of y. It is important to realize that
the two branches of the hysteresis are associated
with very different mechanisms. In the low-
transmission branch defined for 0&y &yM most of
the energy which is sent into the cavity is reflected
by the atomic medium which is mostly opaque and
manifests properties usually associated with
cooperative behavior. For instance, the fluores-
cence intensity If which is proportional to N+
scales like N '. On the contrary, in the high-
transmission branch defined for y &y the energy is
stored in the field mode of the cavity and the
fluorescence intensity scales like ¹ the atomic sys-
tem behaves like a collection of N weakly interacting
atoms. This indicates that the physics of the high-
and low-transmission branches is very different.
For instance, consider a system which is initially in
a stable stationary state. A modification of y will
induce a time evolution and a relaxation towards a
new stationary state if y reaches a constant value. If
the initial state pertains to the lower branch it is the
atomic system which relaxes and is likely to provide
the dominant relaxation mechanism. On the con-
trary, if the initial state pertains to the upper branch
the situation is drastically modified since it will be
the field in the cavity mode which relaxes and is
likely to dominate the time evolution.

The expression of the extremal values of the input
field y and y~ and the ouput field x and xl are
fairly complicated. However, they become simpler
in the limit of fully developed OB, i.e., in the limit
of large C:

X

y~ —C

y =(8C)', x =(2C)'~, z =(2/C)' z,

(2.11)

(2.12)

where zM (z ) is the value of x on the upper (lower)
branch corresponding to yM(y ).

III. LOW- TRANSMISSION BRANCH

x =0(1), s =0(1), 5=0(1) . (3.1)

In domain II, which includes the point (z,y~ ) the
external field amplitude is y =0(C'~ ) and the sta-
tionary solutions scale as

x=O(C '
), s=O(C '

)

5=0(l) .
(3.2)

In this section we shall only consider domain I
leaving the study of domain II for Appendix A.
Hence we shall concentrate on the response of the
system as the parameter y(t) varies in time and
crosses the critical value y~, i.e., when x jumps from
the lower to the upper branch of the steady-state
solutions. Accordingly, we define

e =C '«1,
Y(t)=y(t)C '=0(1), (3.4)

and we write the Maxwell-Bloch equations
(2.5)—(2.7) in terms of e and Y:

x = —x+e '( Y—2s), (3.5)

K
s =- —s+x5,

In this section we examine the time-evolution of
the system in the neighborhood of the lower branch
of the steady-state solutions in the limit C~ oc. On
the basis of the stationary scalings [(2.11) and (2.12)]
we can divide the lower branch in two domains. In
domain I, which includes the point (x~,y~), we
havey =0(C) and

15--1— 5= —5+1—sx . (3.7)

10-

—0.5 6 =20

Since we are restricting our analysis to domain I,
all three time-dependent variables x, s, and 5 must
be of order one. In particular, we must restrict the
initial conditions as follows:

Xm-

5-

X
N

I

10 y 15 20 y

x(0)=x;+0(e'~ ),

5(0)=5;+0(e'~ ),

s(0)= —, Y(0)+e'i s;+0(e) .

(3.8)

(3.9)

(3.10)

FIG. 1. Steady-state output-field amplitude (x) and
atomic population (5) vs input-field amplitude.

The particular restriction (3.10) guarantees that the
short time evolution of x (t) remains 0(1): if
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s = —, Y——(x ~x). (3.1 1)

s(0)——,Y(0)=O(1), then x(t) quickly moves to
1

large positive values when s; & —, Y(0) or becomes
negative when s; & —,Y(0).

We may use (3.5) to express s (t) in terms of x and
Y:

(3.17)

This suggests the use of a multiple time-scale pertur-
bation method' with solutions which are functions
of t and T, where

T=t tp(t) .

ex~ex 1~ ~x(25~e) —Y-
Ll

Y=o,

(3.12)

Introducing this equation in Eqs. (3.6) and (3.7)
leads to

The formal procedure consists in rewriting Eqs.
(3.12) and (3.13) in terms of t and T considered as
independent variables and eliminating secular solu-
tions on the long time scale (i.e., solutions diverging
like T). To determine these solutions, we assume
that x(t), 5(t), and to(t) have a perturbation expan-
sion of the form

5~5 —1~—x Y——(x ~xx)=0,2 2

with the initial conditions:

x(0)=x;+O(e'i ),

x(0)= —2e '~~s; ~O(1),
5(0)=5;+O(~' ').

The stationary solutions are

xi ~
——[1+(1—Y )' j/Y+O(e),

(3.13)

(3.14)

x (t) =x (t, T,e'i~) =xo(t, T)

ie'"x, (t, r) q ~ ~ ~,

5(t) =5(t, T,e'i') =5o(t, T)

~e'~'5, (t, T)~, (3.18)

co(t) =co(t,e'i ) =cop(t)

+e co&(t)+ .

Introducing these power series into Eqs. (3.12) and
(3.13) leads to the following results:

5i, z =(1+x i,z)
2 +O(e),

2X) 2

1

s) p
——x, ~(1~x( p) '= —, Y~O(e),

(3.15) 5o(t, T)=5o(t ),

K 15o=1—5o—
45p

Y ~-- YY (3.19)

with Y& 1+O(e). The linear stability of these solu-
tions yields the following eigenvalues:

(1—x) p)~O(e ),1/2

K

1
xo(t, T)=

25o

where

Y+ Y +2a(t) cosT, (3.20)

Ab, =+i@ '~ (2yg5) p/a)'~~ (3.16) +=E 2 J 0 t K

1+ +x, II +O(el/2).
K K

(3.21)

The real root A, is positive for x &1 and negative
for x &1. Hence, the steady-state solution xz( &1)
is stable, whereas x

~ ( & 1) is unstable. Furthermore,
there exists a limit point located at Y, =1+0(e)
and x, =1+0(e). When Y(t) reaches Y, from
below, the eigenvalue A,, vanishes and small ampli-
tude perturbations of the steady state xz exhibit a
critical slowing down. Note that the same eigen-
values could have been derived directly from Eqs.
(3.5)—(3.7).

From the linear-stability analysis we also observe
that there are two natural time scales which appear
in this problem; they are related to the real and
imaginary parts of the eigenvalues which scale as

Y1+ + o
45p 25p ~ yg Y

~25o 1~ (3.22)

To derive (3.19) and (3.20) we have assumed that
Y = Y(t), i.e., Y varies only on the slow time scale.

A few remarks concerning our results [(3.19) and
(3.20)] are in order at this point. First, we notice
that xp has a slow variation induced by the input
field (proportional to Y and Y) and a fast oscillatory
variation (proportional to a) whereas 5p has no os-
cillations. This result may seem odd on the basis of
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5 =1—5 — Y'+ YY,
45

(3.23)

0.5

.36

0.50 1 2 2
Y

FICi. 2. Stationary vs time-dependent atomic popula-
tion for two sweeping velocities.

1.5

the linear-stability analysis that lead to (3.16) be-
cause we would expect either all solutions or none of
them to oscillate. The explanation of this difficulty
is that the eigenvalues (3.16) give only part of the
solution; a complete solution requires the determina-
tion of the corresponding eigenfunctions to give the
relative weight of each eigenvalue for each solution
x, s, or 5. By solving the system (3.12) and (3.13)
which is equivalent to our starting Eqs. (3.5)—(3.7)
we have determined at once the eigenvalues and the
eigenfunctions, albeit in implicit form because all
expressions depend on 5o. Our result shows that to
leading order in e, the oscillations do not contribute
to 5o. They do contribute, however, to the next or-
der, i.e., to 5~. Second, the fact that 50 is still given
by a closed differential equation whereas xu is expli-
citly given in terms of time-dependent functions
does not imply that we have performed a procedure
tantamount to an adiabatic elimination of xo. Con-
sider, for the sake of the argument, a constant Y.
Since t =Inst' the time evolution of 50 will solely de-
pend on y~~. Consequently the nonoscillating part of
xo will indeed follow adiabatically the time evolu-
tion of 5O. This is no longer true for the oscillating
part since a(t) may relax on a much different scale.
The picture which emerges from (3.19) and (3.20) is
therefore the following: To leading order in e there
appears a hierarchy between the atomic and the field
dynamics in the sense that the atomic dynamic de-
pends only on y~, y~~, and Y in the general case
(Y&0) whereas the field dynamics depends on all
parameters and on 5O. Because of this fact, the
atomic dynamics is unaffected by the cavity quality;
it is the amplitude of the oscillations of the field in-
tensity which will be affected by the cavity quality.
Third, we may define a new time '=ry~~t' and re-
cast the equation for 50 in the form

0.5

0.5 1.5 2

Y = 0.1 6+0.36
2 I

0.5 2
Y

FIG. 3. Influence of the initial condition on the
dynamic response of the system. (a) For Y =r'+ 0.36
the two curves remain different. (b) For Y =0. lr' + 0.36
the two curves differ only for very short times.

where the dot stands for the derivative with respect
to r' (since no confusion is possible we now drop the
subscript 0). Hence the atomic dynamics is
governed by a generic equation if the input field is
constant. Otherwise, only the ratio of the atomic
decay rates enters as a relevant parameter apart
from Y and Y. In Sec. V we shall present an analyt-
ic discussion of (3.23). Nevertheless, we shall close
this section by commenting on some general proper-
ties of Eq. (3.23) when Y is time dependent and
y~~ =y~. We have integrated this equation for vari-
ous time-dependent input-field amplitudes. The re-
sults are shown in Figs. 2—4. On all these figures
we have drawn the stationary solution as a reference;
the time-dependent solutions are labeled with an ar-
row pointing in the direction of increasing time. In-
itially the system is in a steady state.

In Fig. 2 we consider the influence of the sweep-
ing velocity. The initial condition is Y(0)=0.6 and
5(0)=0.9 which is on the stationary curve. As ex-
pected the dynamical curves will lie near the station-
ary curve outside the vicinity of the critical point at
Y = 1 (i.e., y =y~); the slowest Y varies, the nearest
5(r') is from its stationary value. But in the vicinity
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0 oS 1 1.5 2 2
Y

FIG. 4. Back and forth sweep. Input-field intensity is
first increased according to Y =0.5+~' until Y =T. It
is then decreased according to Y =T—~'.

of Y =1, there occurs a critical slowing down. As a
result, no matter how slowly Y varies, there exists a
domain around Y= 1 where the relaxation time of
the system is so long that 5(r') will no longer be
able to follow the stationary curve; hence the depar-
ture between the dynamical and the stationary
curves seen in Fig. 2. This means that a time depen-
dent Y induces a dynamical hysteresis which may be
very different from the stationary hysteresis. This
question will be treated analytically in more detail in
Sec. V.

In Fig. 3 we consider the influence of the initial
conditions. Since Y = Y(r ) there is no stationary
solution and therefore the whole evolution of 5 will
remain dependent on the initial condition. However,
this dependence may be washed out by the fact that
for 0& Y «1 all solutions are attracted by the sta-
tionary solution. Hence if Y varies slowly enough,
the dependence on the initial conditions will be
negligible; as the sweeping velocity is increased, this
dependence will be more and more pronounced. For
the particular values considered in Fig. 3, 5(~')
remains different during its whole evolution when
Y =~'+0.36, whereas the two curves practically
coincide, except for very short times, when
Y' =0.lr'+ 0.36.

Figure 4 refers to a class of experiments where the
field intensity is swept back and forth. Since the ac-
tual state of the BOD may seriously depart from its
stationary characteristic, one must ask how this
property affects the switching between the two
branches of the hysteresis. A typical example is
shown in Fig. 4. The initial condition is Y (0)=0.5
and 5(0)=0.85. The input-field intensity increases
linearly in time Yf(r')= Y~o~+v.'. At some point
Y = T the field suddenly begins to decrease in time
according to a similar law, i.e., Y2 (~') = T
This shows a typical back and forth sweep. The tra-
jectories of the backward sweep fall into two
domains. If the change ~'~ —~' occurs "early

enough" there will be no switching and the system
will reach a state with 0 & 5(2T) & 1. As a matter of
fact, this may be a possible way to prepare the states
necessary to discuss the influence of the initial con-
ditions (see Fig. 3). On the contrary, if the decrease
of the input intensity occurs "too late*' the switching
process will nevertheless take place. These two
domains have one curve in common, a separatrix.
For the situation considered in Fig. 4, the separatrix
corresponds to T = 1.5.

Since Figs. 2—4 refer to the time evolution of 50
as given by Eq. (3.23) it is normal that no value of C
be given. Nevertheless the choice of C does affect in
an indirect way these figures because it restricts the
domain of variation of both 5(t) and Y(t) [see (3.4)
and (3.14)]. These restrictions imply that there is a
strip along both axes in which the requirement (3 4)
and (3.14) no longer hold. Hence the actual domain
in which (3.23) is a good approximation of the full
set (2.5)—(2.7) is limited by these two strips whose
width is a function of e.

IV. HIGH- TRANSMISSION BRANCH

In this section we consider the time evolution of
the system near the upper branch of the steady-state
solution. In particular, we are interested in the
dynamic response of the system when y progressive-
ly decreases. As in the preceding section, we expect
that the system will, more or less, follow the stable
branch until the limit point is reached. Then a jump
to the lower state will occur. Our purpose in this
section is to analyze the initial stage of this transi-
tion process. The remaining part of the upper
branch is discussed in Appendix B.

~hen C~oo andy =0(c'~ ), we know from the
steady-state relation (2.10) that the upper branch is
given by

x =C'"—,[Y+(Y' —8)'"]+0(1),
where Y is defined through

y=C' Y, Y=O(1) &8'

(4.1)

(4.2)

5=0(C '), s =0(C 'i ),

where X, S, and D are all 0 (1) variables. Rewriting
the evolution equations (2.5)—(2.7) in terms of X, S,
and D, we obtain

are related to (4.1) by (2.8) and (2.9). Since we as-
sume that x (t), s (t), and 5(t) are initially in the vi-
cinity of x, s, and 5 it will be convenient to define X,
5, and D by

x =C'"X, s=C-'"S, 5=C-'D,
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S=DX—S' ,

D =e '(1 —SX) D,—

X= —X—2S~ Y,

(4.4)

(4.5)

(4.6)

frequency.
Motivated by the linear-stability analysis of the

upper branch of the steady-state solution when
C~ oo, we seek a solution to Eqs. (4.10) and (4.11)
of the form

X(T,t, e'~') =Xp(T, t) ~e'~'X, (T,t) ~
where e—:C ' « l.

Equations (4.4)—(4.6) admit the following initial
conditions: D(T, t, e'~')=Dp(T, t)+~'~'D~(T, t)+

(4.13)

S(0)=S;+O(e'~ ),

X(0)=X;+O(e'~ ),

D(0)=D;+O(e'i ),
(4.7)

where T is a rapid time variable defined by

T=e '"o(—e, t).
=e '~ [op(t) ~.e' o ((t) ~ ]

(4.14)

(4.15)

1 —XiS;=0. (4.8)

where S;, D;, and X~ are specified O(1) quantities
verifying

and cr(e, t) is an unknown function of t which will be
determined by the multiscale perturbation pro-
cedure. In a first approximation, i.e., to leading or-
der in e '~, we find the following results:

This last relation guarantees that the initial evolu-
tion of the solution remains O(1). From (4.5) we
may express S as a function of D and X:

Xp ——Y(t) —Xp —2/Xp,

Xp(0) =X;,

(4.16)

D1S=—1 eD —e—
X yll

(4.9) 1
Do ——

2
1—

Xo

~ Xo ~2a ( t)cos T,
yg Xp

(4.17)

Introducing (4.9) into (4.5)—(4.7) we obtain two
equations relating D and X:

where

(yllyg/~ )' Xp(s)ds

—e -D+ eD
yllyl

X+ (4.18)

X——X —e
q X

X—~1=0
yg X

(4.10)

1 2 'yll+»
cz= ——u 2+

K
(4.19)

and u(t) represents a decaying function of time:

X+—1 —t D — eD —Y+X=0,X yll

X(0)=X; -+O(e'i ),

D(0)=D;+O(e'i ),

D(0)=e 'i g~O(1),

(4.11)

(4.12)

+ie '~zX(ylly, /~2)'~2~0(~'~2)

The imaginary part of these eigenvalues is the Rabi

where g =0(1) is obtained from (4.5) and (4.7).
Analyzing the linear stability of the stationary

solutions of either (4.10) and (4.11) or (4.4)—(4.6)
yields the following eigenvalues:

A,.= —1~2D ~O(~),

1 yll+yi 2
b, c 2

+

Both variables X and D rapidly oscillate on the fast
time scale T. However, the amplitude of these oscil-
lations is O(e) for X but O(1) for D. The long-time
behavior of the system is determined by Eq. (4.16)
for Xp while Dp is passively related to Xp by Eq.
(4.18). Equation (4.16) cannot be solved exactly (ex-
cept when Y=0) and has been analyzed numerical-
ly. Figure 5 represents a typical evolution of Xp(t).
As previously noted the jump is considerably de-
layed when Y= Y(t).

V. ANALYTIC RESULTS

In this section, we analyze Eq. (3.23) in detail for
three different time dependences of Y(r'). First, we
consider the stationary case Y=O. We show that in
a vicinity of the limit point Y = 1, 5 = —, , the system
exhibits a critical slowing down, i.e., the relaxation
time of the system decreases and eventually van-
ishes. Our analysis complements earlier investiga-
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X2

12,5—

where r is a slow time defined by

(5.4)

10-
We introduce (5.1)—(5.4) into Eq. (3.23); to leading
order in rl, we find

?,5-

2.5-

1 2= —e —25 i,
5, (0)=pi .

(5.5)

0 5 ')0 15 20
Y

FIG. 5. Down switching under influence of an output
intensity decreasing according to Y (v') = Y (0)—av'. In-
itial conditions: Y (0)=15 and X (0)=12.5. Sweeping
velocities: a =0. 1 for curve a and a = I.O for curve b.

A. Critical slowing down

We consider Eq. (3.23) with the initial point locat-
ed near the turning point. More precisely the sys-
tem is first located near the low-transmission
branch. The external field Y is then suddenly
changed to a new fixed value near (but greater or
smaller than) the limit point Y = 1. We characterize
this vicinity by a small parameter g:

g =[(Y —1)/ej'~2 &&1, (5.1)

tions by Bonifacio and Meystre. ' There the em-
phasis was on the linear evolution of small perturba-
tions of the steady state when Y approached the lim-
it point from the left. The present analysis consid-
ers nonlinear evolution of the system on both sides
of the critical point. Second, we examine the case of
a gradual, slow increase of Y(r') (with Y&1). As
expected the system will approximately follow the
lower branch until the turning point is reached.
Then a jump to the upper branch will occur. We
show that this jump is not always possible if Y is
slowly decreased after it has crossed the turning
point. Third, we concentrate on the behavior of the
system when Y is rapidly changed ( Y & 1). Finally,
we mention that similar results can be found for the
transition from the upper to the lower branches by
analyzing Eq. (4.16). This will not be done here.

The solution of Eq. (5.5) depends on the sign of e.

I'recritical region: e = —1 ( Y & 1)

We have

where

1 1+b exp(cr)
1 b—exp(cr )

(5.6)

b=, , c=2
2'"g, +1
2i /2g

(5.7)

From (5.6) we note that

1 15i(r)~ as ~~co if gi &—
21/2 21/2

(5.8a)

2 1/2
5i(r)=

C

1
as r~r, =—ln

C

1

in .
2

(5.8b)

2. Postcri tical region: e = 1 ( Y & 1 )

We have

5,(r)=, tan(b —2'~ r),21/2
(5.9)

Clearly, 6 i (r ) is bounded for all r if
5, (0) & —1/2'~ and, as r —+ oo, 6i(r) approaches a
stable steady state 5i ——1/2' . On the other hand,
if 5 i (0) & —1/2', 5 i (r ) becomes unbounded at a
critical time r=r, In other . words, depending on
the initial condition, the system will remain on the
lower branch or will jump to the upper branch not-
withstanding the fact that Y & 1.

where e = + 1 when Y—1 & 0 and by assuming the

following expansion for the initial condition:

(5.2)

where

b=tan '(2'~ g ) .

From (S.9) we note that

(5.10)

We then seek a solution of Eq. (3.23) of the form

&(r') =5(r, q) = , +q5, (r)+ q'S, (r—)+~ ~ ~,
(5.3)

1 1

„, as r~r, = (b+ —,~) .c 21/2
(5. 11)
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Thus 51(~) becomes unbounded when ~ approaches
the critical time ~„ i.e., the transition to the upper
branch will occur when Y& 1 regardless of the ini-
tial condition.

50(~)= —, ——, ( —2~)'~ +O(~),

5, (~)=— +0((—~) ' ),l

4( —2l. )

(5.19)

(5.20)

B. Slow passage through criticality

Our purpose is to describe the dynamical response
of the system to slow variations in Y. In particular,
we shall examine the transition from the lower
branch solution to the jump solution. We character-
ize the slow varitation of Y by introducing a small
parameter p and a slow time w, where

as r~0 . Since 51 becomes large when ~~0, the
expansion (5.16) is no longer valid. We therefore ex-
pect a different behavior of the solution near the
limit point.

2. Transition stage

To describe the new development of the solution
we introduce a new time scale s defined by

7=p7-', 0(p (( l (5.12) S=P 7
—2/3 (5.21)

With (5.12), Eq. (3.23) can be rewritten as Equations (5.13) and (5.15) are transformed into

=1—5 — Y +p YY
45

where Y= Y(~). At an initial time ~ =~; & 0:

(5.13) 1

45
[1+2p s+O(p)],

(5.22)

5(~;)=5;, Y(r;)= Y~ . (S.14)

We choose Y(~) to be a smooth monotonically in-
creasing function which has the power-series repre-
sentation

Y(s) =1+@' 's+O(p'~'),

and the new expansion for 5 is

5 = —, +p'i di(s)+O(p i
) .

(5.23)

(5.24)

Y(~)=1+~+0(r'), (5.1 5)

1. I'recritieaI stage

We first seek a solution of (5.13) of the form

5(~,p) =50(~)+p51(~)+O(p') . (5.16)

After introducing (5.16) into (5.13) we obtain the
following results. The leading-order solution has the
same form as the static solution, i.e.,

50(~)= —, I 1 —[1—Y (v )]'~
I . (5.17)

as r —+0. This specifies ~=0 to be the instant at
which the limit point is reached. From the defini-
tion of p there is no loss of generality in setting
Y(0)= 1.

With the initial conditions (5.14), the system first
rapidly evolves [~=O(p)] to a slowly varying re-
gime in the vicinity of the stationary solution; this
slow regime can be described in the following two
distinct stages.

From (S.22) and (5.23) we observe that the transi-
tion solution (5.24) is restricted to a small area of
the limit point Y= 1, 5 = —,. Substituting (5.24) into
(5.22), we obtain the following Ricatti equation for

d1 = —S —2d 1
2 (5.25)

This equation must be solved with the condition

dl ~—2 ( —s ) — as s —+ —oo
—1/2 1/2

8s
(5.26)

d, (.) = —2-"3 A'. (&),
Ai(g)

where

A. (~)
d Al(g) 1/3

dg

(S.27)

(5.28)

which comes from matching 5= —, + p' dl(s) as
s~ —oo with the precritical solution 5 =50+@51as
r~0 . The solution of (5.25) and (5.26) is

Knowing 50(w) we determine 51(r ):
2450 1

1(v )=
2 5p+ YY

Y —450 4 p
(5.18) 0 &00 (S &Sp) (5.29)

and Ai(g) denotes the Airy function. ' This solution
is valid only for

The asymptotic expression (5.15) then shows that
(5.17) is valid only for ~ & 0. Indeed we find that

wllel e gp is the first zero of Ai(g):

go= —2 3381 (so—1.8558) . (5.30)
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When /~go+ (s~so ), d&(s) becomes singular:

di(s)= —2
1

0

1 1

2 So —S
(5.31)

In summary, we have shown that the solution fol-
lows the low-transmission branch with the slow time
dependence pr and passes through criticality with
the slightly faster time dependence p'/ ~'. When
Y(p~') approaches the critical value

C. Rapid variation of Y( r ')

We now consider the situation where Y changes
rapidly. We analyze two cases: y~~/y~ =O(1) and
9 )

~ ~

/) J & 1 . Let us first consider the case
y((/yg

——O(1). Let

Y(~') =a+P~',
where a =O(1) and P »1. We seek a solution of
Eq. (3.23) of the form

Y 1 + z/3s +O( 4/3) (5.32a) 5( ') =5(,P ) =Do( )+P 6 ( )+O(P ),
the solution leaves the slowly varying regime and
goes on to the initial stage of the jump, varying on
the fast scale 7.'. However, (5.32) does not represent
the critical limit for a transition between the lower
and the upper branches of the steady states for the
back and forth sweeping process. Indeed if Y(pr')
is slowly decreased after it has crossed the limit
point of the steady states, the jump occurs provided
Y(0) & Y,':

Y,
' = 1+p'/'so +O(p'/3), (5.32b)

where so= —2 '/
go and go is the first zero of

Ai(g).
By examining Eq. (5.25) the problem can be stud-

ied in the phase plane (d &,s). The latter is shown in
Fig. 6 which represents d, as a function of time.
From the practical viewpoint, our analysis thus
shows that the transition between the steady states
occurs only if Y has crossed a critical point larger
than the natural limit point of the steady-state solu-
tions. For slow O(p) variations of Y this limit is
given by (5.32) indicating a O(p / ) deviation from
the limit point. For larger O(1) variations of Y, this
deviation can be important as suggested by the nu-
merical results presented in Sec. III.

(5.33)

where

r=P~r'=O(1),

p&0, q&O.
(5.34)

(5.35)

and the leading-order solution must satisfy the fol-
lowing equation:

5p ——— (a+~),
0 Yl

5(p) = 5&.

The solution of (S.37) is given by

(5.37)

(5.38)

From (5.38) we note that 5o approaches zero when
1 /2

Introducing (5.33)—(5.3S) into (3.23), and identifying
terms in Eq. (3.23) that may be neglected in the
asymptotic limit p~ Oo, we find that

(5.36)

v~7, = —a+ a +4
y

(5.39)

The critical time ~, corresponds to the following
value of Y.

1/2

Y, =a+w, = a +4 (5.40)

From (5.40) we conclude that the jump (50—+0) is
subcritical when Y, & 1, i.e., when

a +4 6;&1, (5.41a)

1.S s

which implies the following conditions for a and 5;:
FIG. 6. Back and forth sweep in the vicinity of the

limit point Y =1. Curve I verifies d& ———s—2d &., curves
2—4 verify d~ ———(a —s) —21f with a =so —e for 2,
a =so for 3, and a =so+@ for 4 where so is the first zero
of the derivative of the Airy function.

1/2
(5.4 lb)
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conversely, the jump will be supercritical when
Y, ) 1, i.e., when

and its solution is
1/2

(5.51)
a +4 5;)1, (5.42a)

which implies the following conditions for a and 5;:
3 1

(3) q & —,, p =q ——, . In this case 5p verifies

5;& (1—a )
4

1/2
(5.42b)

5p ——— b ~,2

45p

so that 5p is given by
1/2

(5.52)

Hence we have shown that although Y(~') varies
rapidly, 5(w') nevertheless becomes rapidly zero at a
critical value of Y. The latter always remains at a
O(1) distance from the limit point Y= 1. Under
some conditions the jump even occurs before this
point.

The previous analysis is valid for y~ ~/y3 =O(1).
We now consider the case 8=

y~ ~/y3 & 1 and show
that different behaviors may be expected. Again we
assume

5p(v)= 5;— (5.53)

VI. DISCUSSIGN

For each case, we observe that the jump [5p(~)~0]
appears at a critical value of Y which is located at a
large distance of the limit point Y= l. Indeed if

is defined as the time for which 5p(~)=0,
Y,=~,O ~~ in the first case while Y,=~,o '~ in
the two other cases. We have thus demonstrated
that the effect of small y~ ~/y3 is to delay the jump.

Y(~') =a +P~', (5.43)

We seek a solution of the form

5(~') =5(~,0")=5p(r)+8 "5)(~)+O(0 "),

where
(5.45)

~=0 ~~'=O(1),

r)0, p)0.
(5.46)

Inserting (5.43)—(5.47) into (3.23) and identifying
terms that may be neglected in the limit 0~0, we
find the following results:

(1) q & —,, p=2q/3. The leading-order solution
verifies the equation

5p ——— b ~
45p

whose solution is
1/2

b2 '
5p(~) = 5;—

(5.48)

(5.49)

(2) q = —, , p =1. The evolution of 5p is now
governed by the equation

5p ———— (b ~ +b ~), -

45p
(5.50)

where a =O(1) and P admits the following expan-
sion:

P=O ~b+O(0 ~+'), b =0(1), q &0 .

(5.44)

Our main result is that in the limit of large C the
Maxwell-Bloch equations can be decoupled and the
study of absorptive OB may be reduced to the
analysis of a single nonlinear differential equation.
Furthermore, a salient feature of this procedure is
that it leads to an equation for b, , the population
difference between the two levels, in the low-
transmission domain and to an equation for x, the
output-field amplitude, in the high-transmission
domain. These two equations are not entirely new.
Indeed, recently Drummond' derived an equation
for b, assuming y~~ &&~ and y3, when we take into
account that P, »1 in the low-transmission domain
and assume Y=0, his equation reduces to our Eq.
(3.19). Another result in the derivation by Benza
and Lugiato of an equation for x assuming
Ic ((}

~
~, and }3,' when we take into account that

x »1 is the high-transmission domain, their equa-
tion reduces to our Eq. (4.16). However, there is an
essential difference between the present work and
the two studies just mentioned. Indeed in the treat-
ment of Drummond and of Benza and Lugiato an
adiabatic elimination of two variables is performed,
leading to a unique differential equation and there-
fore a unique relaxation mechanism for both high-
and low-transmission branches. By contrast our
analysis leads to a nonlinear differential equation for
a different dynamical variable in each transmission
domain. Our analysis also indicates that in first ap-
proximation the fundamental variable is not oscillat-
ing whereas the other two variables display oscilla-
tions on a short time scale. More precisely the
remaining variables can be expressed as the sum of
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two terms: the first one adiabatically follows the
behavior of the fundamental variable and the second
represents rapid oscillations decaying on a different
time scale. Although these oscillations have a fre-
quency proportional to e ' or to e ', they are
damped over a time which, to leading order, is in-
dependent of e and therefore comparable with the
relaxation time of the fundamental variable [see, for
instance, Eq. (B13) in Appendix B]. Since the two
fundamental variables are different for the low- and
high-transmission branches, the transition between
the stable states necessarily presents a change from a
monotonic (oscillatory) to an oscillating (monotonic)
behavior for 6 and x. Furthermore, the frequency
of the oscillations gradually varies with time
and is proportional to the fundamental variable 5
near the low-transmission branch and proportional
to x in the vicinity of the high-transmission branch.

Two typical kinds of situations can be considered
in OB: either the input field is abruptly changed, or
it is swept through the bistability region. In the
former case, the main interest lies in a description of
the jump. In Sec. V A we have analyzed analytically
Eq. (3.23) and described the behavior of the system
when the initial point is located near the limit point.
In addition to the nonlinear critical slowing down,
we have shown that the dynamic variables are slow-
ly changing during an induction period before
presenting an abrupt jump process. Numerical solu-
tions of Eq. (3.23) indicate that this phenomenon ap-
pears significantly when Y—1 (0.1 The existence
of this induction time has already been reported ear-
lier' ' but only on the basis of numerical results
and in the frame of adiabatic elimination schemes.
In a separate publication ' the two fundamental
equations (3.23) and (4.16) have been solved and the
up- and down-switching time have been evaluated
analytically. A much richer situation results when
y(t) is swept across the bistable domain. We have
only considered sweeps in which the input intensity
varies linearly in time. The question to ask is what
factors may influence and how do they infiuence the
dynamical (i.e., the time-dependent) response of the
system. This question is studied analytically in Secs.
V B and V C for the low-transmission branch and
the beginning of the jump towards the high-
transmission branch. On the basis of these analytic
results we have made a numerical study of the time
dependence of 5(r'). The results are summarized in
Figs. 7 and 8. Figure 7 indicates that a subcritical
jump is possible provided the sweeping velocity is
sufficiently large. This phenomenon was already
predicted by Eq. (5.40). Subcritical jumps were not
observed earlier because they require unusual initial
conditions. However, Fig. 4 shows that in a series
of back and forth sweeps such "initial conditions'*

0.75

0.5

0.25

2

FIG. 7. Examples of subcritical (Y(1) and supercriti-
cal (Y) 1) transitions; influence of the ratio y(~/yq for a
sweeping velocity ten times greater than in Fig. 8. Two
initial conditions are Y~(0)=0.36 with 5(0)=0.9 and 0.3.

075
= C'+ 0. 362

0.5

0.25

FIG. 8. Influence of the ratio @~i/y~ on the dynamical
1esponse.

may be generated. The remaining curves in Fig. 7
represent the response of the system as the ratio
y~~/yt is progressively decreased. We observe that
the jump is considerably delayed. This result is veri-
fied when the sweeping velocity is O(1) as shown in
Fig. 8.

In conclusion, we have proved that the time
dependence of y introduces a very serious bias by
creating a dynamical hysteresis which differs from
the stationary hysteresis. The dynamical hysteresis
may be smaller or larger than the stationary cycle.
In the whole domain of variation of the input field
y(t), two relevant parameters are the initial condi-
tion and the sweeping velocity. In addition, the ra-
tio y~~/yt infiuences the non-oscillatory part of the
response in the vicinity of the low-transmission
branch but not near the high-transmission branch.
All other parameters will only influence the relation
(2.4) between the original and the reduced variables.
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5p =5p(t) = 1 + [5p(0)—1]e

5i ——5i(t) =5i(0)e

K ' 1
52 52(t)~ 52 52

5o

(A6)

Y+ FF

APPENDIX A

In this appendix we carry through the study of
the domain x (1 by considering the domain II in
which the stationary scaling is given by (3.2). We
proceed along the lines followed to investigate the
domain I. Consequently we first introduce the scal-
ing assumption for the time-dependent functions

1 K
Xp(t, T)= y + y +2a(t) cosT,

25o 'Yi

where

a(t) = [2yi5p(t)/K] ao exP — t—I /4 K+ pi
2K

(A7)

y=C'"Y, x=C-'"X, s=C-'"S, (Al) (A8)

and Y, X, S, 5-0(l). The scaled Maxwell-Bloch
equations then become (e = C ')

eX= —eX+ Y—2S, (A2)

Here again we have assumed that the external field
amplitude Y is a function of t but not of T.

APPENDIX B

S= —S+X5, (A3) In this appendix we carry through the analysis of
the upper branch by considering the domain in
which the stationary solution scales like

5= —5+1—eXS . (A4)

kb, ——— 4i(25y i/eK)'~ +0(e'n) .
2K

It is quite remarkable that the following three prop-
erties are common to the domains I and II:

(i) 5-0(1),
(ii) Iml, =(25yi/eK)'n,
(iii) ReA, -O(1), ImA, -O(e '~ ). From Eq. (A2)

we express S in terms of X and Y:

2S= Y—e(X+X) .

Inserting this relation into Eqs. (A2) and (A3) yields
two coupled equations for 5 and X. The equation
for X is precisely the same as the Eq. (3.12) for x
whereas for 5 we have

The linear-stability analysis of the stationary solu-
tions of these equations yields the three roots

A,, = —
yll /K+0(e),

X= —2eS —X+Y,

S= —S+Xb. ,

(B2)

(B3)

e b, = 1+@ b, —XS .

The linear stability of the stationary solutions yields
the following three eigenvalues:

A, = —1+0(e),
(B5)

y =0(C), x =0(C),
s=O(C 1), 5=0(C ) .

Consequently, we introduce the following new func-
tions:

y= YC, x=XC, s=SC ', 5=C 2Q, (Bl)

with Y, X; S, and 6-0(1) functions in terms of
which the Maxwell-Bloch equations become

- 5+5 —1+—XY— X(X+X)=0 . (A5)
~ll+» i 2 in4iXe-'(&, l»/K')'"+O(e) .

Since the eigenvalues of the linear-stability analysis
have the same scalings as in domain I and since the
frequency of the oscillations is the same, it is natural
to seek in the long time limit solutions of (A5) and
(3.12) depending on the two times t and T defined
through (3.21). Using the expansions (3.18) we ob-
tain

ReA, -O(1),
Imk. -O(e 1) .

(B6)

Here again the imaginary part of A. gives the Rabi
frequency. However, since x scales differently than
in the vicinity of the limit point (x,y ), the scaling
of the A, is accordingly different:
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X+X—Y+ —e —e' b+ b,X yii
=0, (87)

Using Eq. (84) we express S in terms of X and b,

and insert this relation in the remaining two equa-
tions; the result is

X(t) =X(t, T,e)=pe"X„(t,T),
n:p

&(t) =b, (t, T,e) =g~"g„(t,T)
n:p

We easily obtain

@X'+ b,
yj. yl

eXb+ b,
Xo =Xo(t), Xo = Y—Xo

2
Xi ——Xi(t), Xi ———X|-

Xp

(89)

(810)

+~'»+ 6 + X—X+X'a=o.
Vie yi

(88)

On the basis of (86) we seek solutions of the last two
equations depending on t and T where

tT=e i o t
t=e o.

p
t' +so.

&

t' +. . .

Let

o.„(t)=yiiyiXo(t) ja.
Ao(t T)= z 1+1

Xp

Y

yi Xo

+2a(t) cosT,

a(t) =a(0) exp
yii +yl

2K

(811)

(812)

(813)
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