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We show that two distinct realizations of the SU(3) symmetry —the Gell-Mann SU(3) symmetry in
quark physics and the Elliott SU(3) symmetry in nuclear physics —can be applied to the same
dynamical system in intense-field electrodynamics under different experimental conditions. We also
present a set of simultaneous soliton solutions in the Elliott SU(3)-symmetry scheme which has not
been derived previously.

I. INTRODUCTION satisfies the Liouville equation

Laser physics and quantum electronics have benefited
from unexpected overlaps with other relatively remote
fields of science. This is particularly true in the develop-
ment of new approaches to theoretical problems. One ex-
ample is the thermodynamic phase-transition analog that
is now well known. It has relevance to laser threshold and
questions of optical bistability.

In this paper we will discuss some features of a new and
unexpected overlap with high-energy quark physics and
nuclear physics.

The principle of unitary invariance has developed side
by side historically with other forms of invariance: rota-
tional, translational, reflectional, etc., into group-
theoretical treatments of physical theories. The supermul-
tiplet theory of Wigner, Franzini and Radicati, Elliott's
SU(3) theory of nuclear spectra, and the introduction by
Gell-Mann of SU(3) to be the central organizing principle
of elementary particles, were some of the outstanding
successes. A point not generally appreciated, however, is
that not only are group considerations powerful tools in
theoretical physics, but that different realizations of the
same group can be employed for the same dynamical sys-
tems under different experimental conditions. We show in
this paper that our SU(3) considerations have enabled us
to display two distinct realizations of the SU(3)
symmetry —the 6ell-Mann SU(3) symmetry in quark
physics and the Elliott SU(3),symmetry in nuclear
physics —to be applied to the same dynamical system in
intense-field electrodynamics.

In Sec. II we show that the dynamics of an important
special example of two-photon laser-atom interacting sys-
tem occurring at two-photon resonance exhibits the Gell-
Mann SU(3) symmetry, and in Sec. III we show that under
a different experimental condition when the two incident
laser fields are equally detuned, the dynamics of the sys-
tem exhibits the Elliott SU(3) symmetry. A set of simul-
taneous soliton solutions in the Elliott SU(3)-symmetry
scheme is also presented. A brief summary is given in
Sec. IV.

t'ai =[H,p] .
Bt

(2.1)

The density matrix p(t) and the Hamiltonian H(t) can be
expressed in terms of N 1 gen—erators sj of the SU(N)
algebra by

N2

p(t) =N 'i+ —,
' g S,(t)s.

j=l
(2.2)

where Acok is the energy of level k, and i is a unit operator.
The coefficients Sj(t) and I j(t) are given by

SJ(t) =Tr[p(t)sj ],
trtI J(t)=Tr[H(t)sj ],

if the generators sj are chosen to satisfy

Tr(sjsk ) 2~jk

(2.4)

(2.5)

(2.6)

A k ——— Tr(H[s, sk]) .
2iR

(2.g)

We now consider a three-level atomic system in which
nonzero dipole moments exist only between levels 1 and 2,
and 2 and 3. Let there be two electromagnetic waves in-
cident on the atom and the total electric field given by

The evolution of the density matrix can be expressed in
terms of the evolution of an (N —1)-dimensional real
coherence vector S=(S1,Sz S~2 1)

dS.(t)
Azk(t)Sk(t), j=1,2, . . . , N 1(2.7)—

k=1

where

II. THREE-LEVEL QUANTUM SYSTEMS
AT TWO-PHOTON RESONANCE

E(z, t) = 5'12(t)e ' ' + 8'23(t)e ' ' +c.c.

(2.9)

The dynamical evolution of an N-level atomic system
can be expressed in terms of its density matrix p which

We define a(t) and P(t) in terms of the half-Rabi frequen-
cies Qjk(t) by
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dlz &12(t)
u(t) =012(t)=

dz3 8 23(t)
p(r) =Q»(r) =

(2.10)

where dJk is the atomic dipole moment between levels j
and k. The detunings hjk are defined as usual by

~jk =+jk ~jk ~ (2.11)
FIG. 2. Three-level system at two-photon resonance.

~jk =~j —~k so that ~12=~21 —&1

623 —CO32 Vz for the level configuration shown in Fig.
1(a), 612——v] —co12 and 623 ——co32 —vz for the level configu-
ration shown in Fig. 1(b), and b, ,z

——coz, —v, and
623 ——vz —coz3 for the level configuration shown in Fig.
1(c). The convention (2.11) is designed so that the Bloch
equations would be the same for any level configuration.
Such three-level systems are of central importance to a
number of problems of current interest including two-
photon lasers, ' trilevel echoes, " Raman beats, ' multi-
photon ionization, ' and many others. '

We consider an important special example of two-
photon laser-atom interactions which occurs at two-
photon resonance when

I
~iz

I
+

I
~z3

I

=
I vi

I
+

I
vz I,

the problem. The commutation relations among these
operators can be symbolically represented by

[A,A]=A, [A,B]=8, [A, C]=0,
[8,8]=A+C, [B,C]=8,
[C,C]=0,

(2.15)

where, for example, [A,A] =A states that the commutator
of two different members of group A is equal to a member
of group A (possibly multiplied by a constant).

A possible choice of the Gell-Mann SU(3) generators
which satisfy (2.15) is given in Eq. (2.17) below where we
identify

~12= —~23= ~ (2.12)

a(t) =a Q,(t),
p(r) =b A,(r),

(2.13)

as shown in Fig. 2. We assume that a(t) and P(r) have the
same time dependence but possibly different amplitudes wz with C,

u23~u13~U13~ 23~

010
A A A A

with B1,B2,B3,B4

000

u 12,U12, W1 with A1,32,33,
(2.16)

A1,32,23 (2.14a)

where a and b are arbitrary constants. From the physical
point of view, the two-photon resonance condition puts
levels 1 and 3 on "equal footing, " strongly reminiscent of
the isodoublet of the quark triplet, and hence suggests the
use of Gell-Mann's SU(3) generators given by

u12 = 100
000
001

u13 ——000
100

0 0 0

u23 —— 0 0
0 1

0

0

i 0
V12 —— —l 00

0 0 0

0 0 i
(2.17)

the isospin components,

the hypercharge, and

81,B2,83,B4

(2.14b)

(2.14c)

U23

W1=

0 0 i

0 —i 0
—100
0 1 0
0 0 0

V13— 0 0 0
—i 00

—1 0 0
0 —101

0 0 2

the operators which mix states of different strangeness for In terms of these, p(t) and H(t) can be expressed, from
Eqs. (2.2) and (2.3), as

(c)

FIG. 1. Three types of three-level atoms having nonzero di-
pole matrix elements between levels 1 and 2, and 2 and 3. Our
analysis applies to all three types.

P(t) 3 ~ + p (u 12u 12+u23u23 +u13u 13

+U12U12 +U23U23 +U13U13

+ w1w1+wzwz )

3

H(r) =
p A 3 g C01 l —2CXEl )z —2pBz3

j=l

—4w]+ Awzv'3

(2.18)

(2.19)
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where

&jk =pjk+pkj ~

(2.20)Ujk
———i(pjk —pkj), 1(j&k &3

[2~i(i+ I)] (pll+p22+ +ptt —pl+ 1,1+1)

1&I&2

following from Eqs. {2.4) and (2.5). We find that the
equations of motion for the coherence vector

S= ( Q 12 &
+23 &

+ 13& V 12 & U 23 & V 13 ~ W 1 i W2 )

which follow from Eqs. (2.7) and (2.8), do not exhibit any
special symmetry properties which we may have hoped
for, namely, the dynamical space represented by the ma-
trix A does not factorize into smaller independent sub-
spaces.

Instead, we introduce the following set of eight SU(3)
generators:

U =@ '(au12+ pu23 ),
V=E '( —au 12+pu 23 ),
W=( —,

' e )[—(2a +P')wl+~3P w2+2aPu13],

U13 =V1

k =e '{Pu12—au23),

( Pu 12 +au 23 )

(2.21)

where

( 2+p2)1/2 (2.22)

Expressed in matrix form, we have

k =e [—aPwl —v 3aPw2 —(a —P )u13],

P =(—,
' e )[—W3p wl+(2a —p )w2 —2~3apu13],

Oa0
1U= —a 0 P

0P0

0 —a 0 a 0 aP
2a 0 p, W= —0 E0-

g2
0 —P 0 aP 0 P2

V13 ——1

0 0 1 0 P
10 00, 4=—P 0

—100 0 —o.

0p—
0

P 0 2aP 0 P —a
10 ~, m= — 0 0 0
2—o, 0 P —a 0 —2aP

{2.23)

v 3e2

2P —a 0 —3aP
0 —&' 0

—3aP 0 2a —P

In terms of these generators, p(t) and H(t) are given by

P(t)= ,'i+ —,
' [UU+—VV+WW+u»u»+ +++~~

A
H(t) = Tilt coilst, —2EA1+ M 3+ kC

3
(2.27)

(2.24)

3

H(t)= —,lri —, g cuj i 2eU+hW+ — hk
j=1 3

(2.2S)

The generators given by (2.23) can be verified to satisfy
(2.15) [and (2.6)] if we make the following identification:

Notice the absence of any Boperators in (2.27), as opposed
to Eq. (2.19) where u23 is a B operator when we used the
representation (2.17). From Eq. (2.27), and Eqs. (2.15) and
(2.6)—(2.8), it is easy to see that the matrix elements Ajk in
Eq. (2.7) for the evolution of the coherence vector
S=(A1,A2, A3,B1,B2,B3,B4,C), where the coinponents of
S are related to the density matrix p by Eq. (2.2), would be
nonzero only if j and k belong to the same group. There-
fore, matrix A in the equations of motion

[ U, V, WI = [A, ,A2, A, ],
[u13i + ~ ~,~]= [B1,B2,83,84 J, (2.26)

dS
dt

is a block-diagonal matrix of dimensions 3, 4, and 1

3A 0 0

(2.28)

The complete set of commutation relations among these
generators, which we represented symbolically by Eq.
(2.15), are given in Appendix A. The Hamiltonian H(t) of
the system (2.25), if now written in terms of the 3, 8, and
C operators defined by (2.26), becomes

—40 A 0

—10 0 A

(2.29)

The nonzero elements can be found from Eqs. (2.27) and
(2.28), giving
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0 —6 0
A3 ——6 0 2e

0 —2e 0

0 —e 0 0
e 0 6 0

A 4 —
0 g 0 &

A ] —0 e

, 0 0 e 0

{2.30)

It immediately follows that

+ + +~ =kmotion

U i3+ + +~ +~ =kmotion

e=k .„.„, (2.31)

(2.32)

+=a '(pu(p —au25),

&=—E (pV&2+aV25)
—1

~=@ [—aPw, —W3aPw~ —(a —P )u )5],
S'=(

2 e )[—W3P w)+(2a —P )w2 —2v 3aPu)3],

where k „;,„represents the constant of motion and where

U=E (au &2+ pu23)

V=@ '(au~q —puq3),

W=( —,'e )[—(2a +P )w~+v 3P wz+2aPu~3),

"pion" group with the Maxwell equation, then the soliton
solution of Stroud and Cardimona' follows. If we com-
bine the equation of motion for the "kaon" group with the
Maxwell equation, then we get in case (i) 6=0, the soliton
solution of Konopnicki and Eberly' and in case (ii)
b »a, p, the two-photon soliton solution of Tan-no
et al. The constant of motion represented by the eon
gives the amount of population trapped.

If the laser-atom interactions occur away from the two-
photon resonance, or if decays are taken into considera-
tion, then the Hamiltonian of the system would involve

generally the B operators as well, and the dynamical sub-
spaces obtained previously are no longer completely in-
dependent. The Gell-Mann SU(3) symmetry of the system
is said to be "broken. " If the symmetry-breaking effects
are small enough, then the effects can sometimes be treat-
ed by perturbation theory.

III. THREE-LEVEL SYSTEMS
IN THE CASES h~~ ——b,,5 AND a=P

~i2= ~23= ~

as shown in Fig. 3, and assume also that

a=p.

(3 1)

(3.2)

To appreciate the use in Sec. II of Gell-Mann SU(3)
symmetry, and to see that this is not the only type of sym-
metry which can be exploited, consider the following case.
Assume the two incident laser fields are equally detuned,
i.e.,

Such a system is a special case of a more general type of
problem studied by Cook and Shore. The three-level sys-
tem becomes equivalent to a spin-1 particle. Another way
of looking at it is that the system has a three-dimensional
rotational symmetry. This symmetry is Elliott's SU(3)
symmetry in nuclear physics. The eight SU(3) generators
for this problem, unlike (2.14), consist of the following
two parts:

L~~Ly~Lz (3.3a)

the angular momentum (or spin-1) operators and

(3.3b)Qi QZ Q»Q4 Q5

the quadrupole tensors. For a specific realization of these
operators, one can use, for example, the matrix representa-
tion given by Morris

are, respectively, the expectation values of the correspond-
ing operators given in Eq. (2.21). In terms of the evolu-

tion of the eight-dimensional coherence vector S, not only
is the length of S conserved, but the lengths in the three
subspaces are also separately conserved.

It may be noted that the quark Hamiltonian normally
assumed for the strong interaction in particle physics
shares a common feature with our Hamiltonian (2.27): it
does not have any B operators. It readily follows that the
subspaces of A, B, and C in which constants of motion ex-
ist are analogous to the subspaces of pions (m+, vP, n), . .
kaons (K,K,K+,K ), and eon (r) ), respectively.

The block-factored form of Eq. (2.28) can be shown to
also provide a unifying approach to the theory of simul-
taneous soliton propagation' and population trap-
ping. ' ' If we combine the equation of motion for the

1

U, =(—', )'" 0
0

0 0 0 1

1 0, Ui —— 1 0
0 1 0 1

0 0 —1

1, U2 —— 1 0
0 0 1

1 0 0

0 0 0 —1

0
—1, U3 ——000

1
1

U4 ——~ 0
0

0 0 0 1

—2 0, U5 —— 1 0
0 1 0 —1

2

0 0 1 0 0 0 1

—1, U6= —1 0 —1, U7 ——0 0 0
0 0 1 0 1 0 0

(3.4)

0 0 1

U8 ——i 0 00
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where in terms of thc density-matrix elements, we have

1 1
Qi =7( —~3~i+~2» Q~ = --(u i2 —»3»

FIG. 3. Three-level system in which the incident laser fields
arc cqUallp dctUncki from thc atomic transition &cqUcncies.

with thc foHowlng Idcntlflcatlon:

I Ui, Up, U3 I = IL„,Ly, L, I

The generators Uo —Us can be verified to satisfy Eq. (2.6),
Rnd thc complete sct of commutation fclatlons 8IQOQg
them is given in Appendix 8, These commutation rela-
tions can be represented symbolically by

[L L]=L [L Q]=Q [Q Q]=L
Notice the structural dissimilarity, compared with (2.15}.
From Eqs. (3.7), (2.8), and (2.7}, and by noting that the
Hamiltonian of the system can be expressed, in this case,

The "octet" in this case can be characterized by 8 one-
dlmenslonal diagram based on simple spin-1 addltlon, ln
contrast to thc famous hexagon-shaped octet of Gcll-
Mann symmetry.

It ls lntcrcstlng to note that thc condltlolls foI thc two
special cases we considered, Figs. 2 and 3, become ldentl-
cal when a=P, 6=0, and, in this case, considerations of
Gell-Mann SU(3) symmetry still predict population trap-
ping which considerations of Elliott SU(3) symmetry fail
to predict.

A generalization of Elliott's type of SU(3) symmetry to
an X-level problem fol which the angular momentum
operators are of spin (N —I)/2, is actually the model of
Cook and Shore, although they did not exploit the
underlying symmetry structuI'e. Let us assume a plane-
wave incident electric field E(z, r) with N-I distinct fre-
quency components, in which the frequencies IvJ I

are
chosen to be nearly resonant with the successive transition
frequencies

I ~j I+i I
in a chain of X dipole-connected en-

ergy Icvcls ln Rn atomic oI' molecular system. The condl-
tlons which must bc sRtlsf lcd for the system to possess thc
generalized Elliott type of SU(3) symmetry [i.e., the gen-
eralization of Eqs. (3.1) and (3.2)] are the following.

we find that the matrix A for the evolution of the cohcr-
encc vcctoI'

Ly L. Qi Q2 Q»Q4 Q5)

is a block-diagonal matrix of dimensions 3 and 5

0
A= 0

(i) The X-I laser fields must be equally detuned from
the respective atomic transitions, i.e.,

~]Z= ~23=

(ii) The respective Rabi frequencies must satisfy the re-
lation

&,;,, i [j (& J)J'"n——„j=—1,2, . . .,X —1, (3.13)

where Qo can be Rn arbitrary function of time and. posi-
tion.

9 —5 0
0 ~2a

0 —v2a 0

Then wc find that ln thc abscncc of decays, not only thc
length of the coherence vector S is conserved, but also

I +I@ +2, =k (3.14)

The lengths in the two subspaces of S are thus separately
conscrvcd

L 2+12+L2

Qi+Qz+Q3+Q4+Qs=& .~;...

[j (N —j)]'~ u i(r)
j=1
N —1

g [i (& J)]'"U,;,+i(r»—
j=l

X—1

—,
' g [ 2 j(J + I)]'"~,(r) .

The u's, U's, and ra's are given in Eq. (2.20) with
1&j&k &X, 1&3&%—1. The equations of motion in
the dynamlCRl SubSPRCC lnVOlVlng L~s Ly~ and Lg alC
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L„
d L
dt

Lz

0 0
2Qp

0 —2Qp 0

L„
Ly

L,

where (=t —z/V, V being the velocity of the pulse, and r
the pulse length, would emerge from the medium unal-
tered if 0 is an integral multiple of m. The evolutions of
the atomic variables during the propagation of the pulses
are given by

Considerations of Eq. (3.16) with the reduced Maxwell
equations

2m~+ Ji+& = "J J J+&( J'i+I'J
Bz B(ct)

(3.17)

2[j(N —j)]'~ b,~ 0 k—o
QJJ+ I() —WI3(0)

1q(hg)
sech —

)

u . .+ I(g) = —w ~3(0) sech2[j(N —j)]'/ (—(o
1~(hr)' 'T

where ~ is the atomic density, further lead us to a set of
simultaneous solitary pulses not previously discovered. ' '

First, consistency requirements with the Maxwell's equa-
tions impose the following additional conditions, besides
(3.12) and (3.13), for the existence of these solitary pulses.

~ tanh
p

1/2

wJ(g') =w, 3(0) j(j+1)
2

(3.22}

(i) The chainwise dipole-connected level configuration
must be of the cascade type, i.e., the atomic energy levels
are such that E»E&» . - &E&.

(ii) The laser field frequencies and the atomic dipole
moments must satisfy

, 0—ko—1 ~2 sech2
7

j=1,2, . . . ,N —1

2 2
~j j,j+1 1 12) j ) ) ~ ~ ~ )+ 1 ~

(iii) The initial-level populations must satisfy

wJ J+~(0)=wI3(0) &0, j=2, 3, . . .,N —1

where

(3.18)

(3.19)

All other atomic variables are equal to zero. When 6=0,
the above simultaneous solitons solution reduces to the
solution given by Konopnicki, Drummond, and Eberly. '

IV. SUMMARY

j,j+1 Pjj pj+1j ~1

When these conditions are satisfied, incident simultaneous
pulses of the shape

JJ+& Ji +»d . .8'. (~)
jj+1

j =1,2, . . . ,X —1 (3.20)

We have shown that a full exploitation of the
dynamical-symmetry properties requires appropriate
choices of the SU(N) representation. We have shown in
particular that two distinct realizations of the SU(3) sym-
metry (Gell-Mann's and Elliott's) can actually be em-
ployed in the same dynamical problem, but under dif-
ferent experimental conditions, in intense-field electro-
dynamics. With the appropriate choices of representation,
multilevel, multiphoton, and symmetry-breaking effects
can be grouped and classified accordingly.

AC KNO%"LEIDCx MENTS
and area

O(z, r)=f, , Q»(z, r')dr'—~ (N —1)'~

4—4o=4 tan ' exp
7

(3.21)

I have greatly benefited from many discussions with
Professor J. H. Eberly whose comments and persistent
questions have been extremely helpful. It is a great pleas-
ure for me to thank him. This research is partially sup-
ported by the U.S. Department of Energy, Division of
Chemical Sciences.

APPENDIX A

A A A A A A AThe complete set of commutation relations among the generators (U, V, 8', v», k', P, ~,9') given by Eq. (2.23),A A A A A A A A
which we rename {A],A2, A3, 81,B2,B3,B4,C), are as follows:

[A ),A3] =2~A3y [A3,A3]=2iA I,

[AI,BI]=—iB3, [A),B3]=iBI,

[A3,BI ]=lB3y [A pB z]=3iB4,

[A 3,A I ]=2iA3

[A I,B3]= iB4, —

[A3,B3]= iBi, —

[A, , C]= [A 3,C) = [A 3 C]—0

[A3,B)]= iB4, [A3,B3]= IB3, [A3,B3]=lB3—,

[A ~,B4]=iB3

[Az, B4]=iB3

[A 3,B4]=iB )
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[B),82]= —iA), [8),Bs]=iAq, [B)&Bq]= —i (As —W3C)

[82,83]= t—(A s +M3C)& [82&84]= —lA2

[Bs,B4]= iA—)

[Bt,C]= iv—384, [Bp,C]=iv 38s, [Bs&C]= iv—382& [84,C]=iV 38)
A A. A

The operators A,B,C defined by

A =A ]+A 2+A 3

B '=B,'+B,+B ', +B, ,

or in matrix form

(A2)

ap
0 B

p2
J

a 0 a +2P 0 —aP
2 0 ~2

2
0 e 0 (A3)

aP 0 —aP 0 2a~+P
A2 A2

are also of interest because we find that A, B, and C all commute with A], A2, A3, and C, and hence commute with

H(t), Eq. (2.28), the Hamiltonian of the laser-atom system under the two-photon resonance condition. This implies
that (A2), (8 ), and (C~) (or (C)) are all constants of tnotion. It should be noted, however, that Eqs. (2.31) which
are obtained from the block factorization of A in Eq. (2.28), do not follow from these results.

Neither A nor B commute with any members of the B group. The commutators are given by

[8&,A ]= 3i84, [82,A ]= —3i83, [Bs,A ]=3i82, [84,A ]= —3iB,
(A4)

[B),B ]= 2i84, [8—2,8 ]=2iBs, [Bs,B ]= 2i82, [8—4,8 ]=2iB)

APPENDIX B

The complete set of commutation relations among the generators ( U, , Uq, . . . , Us) given by Eq. (3.4), which we rename

(L„,Lr,L„g,, . . . , Qs ), is as follows:

[L„,L&]=iL„[L&,L, ]=iL„,[L„L„]=i'
[Ql &Q2] =~ ~&Ls&, [Qi, Qs ]=i~~L. , [Qi, Q~] = [Qi Qs] =o

lg2&gs] tLs& [Q2&Q4] =«„[Q2&gs]
[Q» Q4] = iL [Qs, gs ]= i~y

[Q4, Qs]= —2',
[L„,g)]=i& 3gs, [Ly,g)]=i v 3Q2, [L„g)]=0
[L„,Q2] =igs, [Ls„Q2]= —i(V 3Qt —Q4. ),

[L Qsl= —i(t 3gi+Q4» [Ls Q3] igs

[L„,Q4]=tg3& [ «, Q4] = —tg2, [L»Q4] = ig2

[Lx Qs]= —ig2 [Ls Qs]= —igs [L. Qs]=2ig4
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