Multichannel quantum-defect analysis of the bound even-parity spectrum of neutral barium

M. Aymar and P. Camus

Laboratoire Aimé Cotton, Centre National de la Recherche Scientifique II, Bâtiment 505, 91405 Orsay Cedex, France

(Received 19 February 1982)

Extensive new data on the bound even-parity spectrum of neutral barium have been provided recently by two-step optogalvanic spectroscopy. Highly excited members of the Rydberg series $6sns {}^{3}S_{1}$, $6snd {}^{3}D_{1}, {}^{3}D_{3}$, and 6sng as well as perturbing levels of these series belonging to 5dnd configurations have been observed. By means of multichannel quantumdefect theory (MQDT), we have performed the analysis of all available energy data relevant to the J = 1, 3, 4, 5 even-parity bound spectra of barium. The behavior of $6sns {}^{3}S_{1}$, $6snd {}^{3}D_{1}$, ${}^{3}D_{3}$ series perturbed by levels pertaining to the 5dns (n=7,8) and 5dnd (n=6,7) configurations is clearly interpreted. The MQDT analyses of J=1 and 3 spectra complementary to that previously performed on the J=2 spectrum offer the possibility of studying the anomalous fine structures of highly excited 6snd configurations. The MQDT analyses of J=3-5 spectra explain the observed energies of $6sng {}^{3}G_{3,4,5}$ and ${}^{1}G_{4}$ Rydberg levels; the fine structures of the 6sng series are only partially resolved in the vicinity of 5d7d J=3 to 5 perturbing levels. Since the J=0 and J=2 bound even-parity spectra of Ba have already been analyzed by MQDT, we have now a full MQDT description of the bound even-parity spectrum for J values ranging from 0 to 5.

I. INTRODUCTION

During the last ten years, many laser experiments have investigated the even-parity levels of neutral barium. Firstly, the highly excited bound levels of the J = 0 and 2 spectra have been observed by Bradley et al.¹ and Rubbmark et al.² using absorption spectroscopy from excited levels populated by a dye laser; later, more extensive data concerning these spectra have been obtained by Aymar *et al.*³ (to be referred to as AC) with the use of two-photon absorption spectroscopy and space-charge detection. All the experimental data $^{1-3}$ concern the principal Rydberg series $6sns {}^{1}S_{0}$, $6snd {}^{1}D_{2}$, ${}^{3}D_{2}$ perturbed by levels of doubly excited configurations. These data have been successfully interpreted³⁻⁵ by the multichannel quantum-defect theory (MQDT) introduced by Seaton⁶ and elaborated by Lu, Fano, and co-workers.^{7–10}

More recently, the spectroscopy of the even-parity spectrum of Ba has been enlarged through the observation of a great number of new levels by Armstrong *et al*,¹¹ Wynne and Herman,¹² and Camus *et al*.^{13,14} Armstrong *et al*.¹¹ have observed members of $6sng {}^{1}G_{4}$ series in a three-photon process via the $5d6p {}^{1}F_{3}$ level. Wynne and Herman¹² have observed autoionized 5*dnd* and 5*dns* series with J=0, 1, and 2, converging on the $5d {}^{2}D_{3/2}$ and

 $5d^{2}D_{5/2}$ ionization limits. A more extensive investigation of bound and autoionized even-parity spectra is being performed by Camus *et al*^{13,14} using a two-step pulsed laser excitation combined with optogalvanic detection. Since the excitation process starts from the $5d \, 6s \, {}^{3}D_{1,2,3}$ and ${}^{1}D_{2}$ metastable levels populated in a discharge, the use of various $5d \, 6p$ intermediate levels allows the observation of bound and autoionized levels with J values ranging from 0 to 5. Extensive new data concerning the bound spectrum are presented in Ref. 14 (to be referred to as CD); the analysis of the autoionizing region is still in progress.

The aim of this paper is to analyze the new spectroscopic data presented in CD on the bound levels with J=1, 2, 3, 4, and 5 by using MQDT. This work completes the analyses relevant to the J=0and 2 spectra presented, respectively, in AC³ and Aymar and Robaux⁴ (AR). In fact, we expect that a good theoretical knowledge of the bound spectrum will help us in the analysis of the autoionized spectrum, which presents a more complicated scheme of interacting levels pertaining to the 5*dnd* configuration. The lowest 5*dnd* levels are bound, and the MQDT analysis involving interaction between 6*snl* and 5*dnd* channels should allow us to make contact with the autoionizing spectra.

The MQDT analyses presented below explain the behavior of the principal Rydberg series ($6sns {}^{3}S_{1}$,

<u>28</u>

850

©1983 The American Physical Society

 $6snd {}^{3}D_{1,3} 6sng {}^{1}G_{4}, {}^{3}G_{3,4,5}$ when they are perturbed by the 5d 7s, 5d 8s, 5d 6d, and 5d 7d levels. Moreover, the availability of data relevant to a large number of J values offers the possibility to analyze the fine structure of excited 6snl configurations and to examine the J dependence of the MQDT parameters.

II. BASIC FORMULAS OF MQDT

The MQDT analyses presented here closely follow AC³ and AR,⁴ and consequently, we will recall only some basic definitions. For an even-parity spectrum characterized by a given J value, the energies and wave functions of bound levels belonging to interacting Rydberg series converging to 6s, 5d, or 6p limits are expressed in terms of two sets of physically meaningful parameters. One set is formed with the elements of an orthogonal transformation matrix $U_{i\alpha}$ which connects the channel *i* of the dissociated system (electron and ion core) with the eigenchannel α of the same system in a closecoupling situation. The second set contains the eigenquantum defects μ_{α} of the close-coupling eigenchannels.

MQDT assigns to each energy level E as many effective quantum numbers v_i as there are relevant series limits (N); each of them is defined by the equation

$$E = I_i - \frac{R}{\nu_i^2} , \qquad (1)$$

where I_i is the *i*th series limit and *R* the mass corrected Rydberg constant. MQDT requires all the levels to lie on a surface \mathscr{S} in the *N*-dimensional space of the v_i , the analytical expression of which depends on μ_{α} and $U_{i\alpha}$. The N-1 independent relations

$$I_i - R / v_i^2 = I_j - R / v_j^2, \ i \neq j$$

deduced from (1) determine a curve \mathscr{L} in the same space. The theoretical positions of bound levels are given by the intersection of the curve \mathscr{L} and the surface \mathscr{S} . The optimal MQDT parameters corresponding to a given J value are determined by comparison of experimental and theoretical energies.¹⁵ The fitting has been carried out with Lu-Fano plots which present a graph of v_i vs v_j for various pairs of effective quantum numbers.

As in AC^3 and AR^4 we introduce a linear energy dependence of the eigenquantum defect as follows:

$$\mu_{\alpha} = \mu_{\alpha}^{0} + \epsilon \mu_{\alpha}^{1} \quad \text{with} \quad \epsilon = 1/\nu_{6s}^{2} . \tag{2}$$

We also follow AC^3 and AR^4 in factorizing the $U_{i\alpha}$ matrix, so that

$$U_{i\alpha} = \sum_{\bar{\alpha}} U_{i\bar{\alpha}} V_{\bar{\alpha}\alpha} . \tag{3}$$

The dissociated channels *i* are described in *jj* coupling, the intermediate $\bar{\alpha}$ channels are exactly *LS* coupled, and then the $U_{i\bar{\alpha}}$ are the elements of the well-known *jj-LS* transformation matrix. The $V_{\bar{\alpha}\alpha}$ matrix elements are expressed in terms of generalized Euler angles as described in Ref. 9.

III. ANALYSIS OF THE J = 1AND J = 3 SPECTRA

The J = 1 bound spectrum is formed by two principal Rydberg series $6sns {}^{3}S_{1}$ and $6snd {}^{3}D_{1}$ and levels belonging to doubly excited configurations: $5dns {}^{3}D_{1}$ (n = 7, 8), $5dnd {}^{3}D_{1}$, ${}^{3}S_{1}$, ${}^{1}P_{1}$, and ${}^{3}P_{1}$ (n = 6, 7), and $6p^{2} {}^{3}P_{1}$. The two $6snd {}^{3}D_{3}$, and $6sng {}^{3}G_{3}$ principal Rydberg series are perturbed by the $5dns {}^{3}D_{3}$ (n = 7, 8) and the $5dnd {}^{3}G_{3}$, ${}^{1}F_{3}$, ${}^{3}D_{3}$, and ${}^{3}F_{3}$ (n = 6, 7) levels. The new experimental data presented in CD¹⁴ concern the highly excited 6sns and 6snd levels (n > 11), some 6sng levels, and the 5d7d and 5d 8s levels. The energies of the lower levels are tabulated by Moore.¹⁶ Data relevant to

TABLE I.	J = 1	MQDT	parameters.
----------	-------	------	-------------

$\overline{\overline{\alpha}, \alpha, i}$	1	2	3	4	5	6	7
$\overline{\alpha}$	$6ss {}^{3}S_{1}$	$6sd {}^{3}D_{1}$	$5dd {}^{3}D_{1}$	$5dd {}^{3}S_{1}$	$5dd P_1$	$5dd {}^{3}P_{1}$	$5ds \ ^{3}D_{1}$
$i \\ \mu^0_{\alpha}$	$6s_{1/2}s_{1/2}$ 0.285	$6s_{1/2}d_{3/2}$ 0.7715	$5d_{3/2}d_{3/2}$ 0.805	$5d_{3/2}d_{5/2}$ 0.713	$5d_{5/2}d_{5/2}$ 0.779	$5d_{5/2}d_{3/2}$ 0.573	$5d_{3/2}s_{1/2}$ 0.1812
$\mu_{\alpha}^{\tilde{1}}$	0.4	1.0	0.85	1.65	0.67	0.22	0.44
	0.997	-0.004	0.030	-0.077	0	0	0
	0	0.884	-0.392	-0.197	-0.045	0	-0.155
	-0.037	0.292	0.721	-0.219	0.586	0	- 0.051
I /.		-0.225	-0.256	-0.580	0.212	0.707	0.040
$O_{i\alpha}$	0.050	-0.046	-0.441	0.485	0.752	0	0.008
	0.037	0.225	0.256	0.580	-0.212	0.707	-0.040
	0	0.173	0	0	0	0	0.985

FIG. 1. Lu-Fano plot of the J = 1 bound levels. Experimental points are +, $6snd {}^{3}D_{1}$; *, $6sns {}^{3}S_{1}$; \blacktriangle , perturbers. Note that the $6s \ 10d {}^{3}D_{1}$, the $6s \ 11s {}^{3}S_{1}$, the $6s \ 13s {}^{3}S_{1}$, and the $6p^{2} {}^{3}P_{1}$ levels are ignored.

 $6sng {}^{3}G_{3}$ series will be analyzed in Sec. V, and only results relevant to the $6sns {}^{3}S_{1}$ and $6snd {}^{3}D_{1,3}$ perturbed series are presented here.

A. J = 1 MQDT model

The J=1 bound spectrum is analyzed with a MQDT model involving seven channels and three limits. The labeling of the channels as well as the optimal parameters are compiled in Table I. The predicted Lu-Fano curve is plotted in Fig. 1.

The $6p^{2} {}^{3}P_{1}$ level is excluded from the fit because there is no evidence that it perturbs either of the principal series. Some levels belonging to the principal series are also ignored. Firstly, the lowest levels $(6snd {}^{3}D_{1}$ for n = 5 and 6 and $6s 7s {}^{3}S_{1}$) are discarded because they are affected by core-polarization effects. Secondly, the high-lying $6snd {}^{3}D_{1}$ $(36 \le n \le 38)$ levels having a large uncertainty are also ignored. Finally, the $6s 10d {}^{3}D_{1}$ and $6s 11s {}^{3}S_{1}$

levels, found in Moore,¹⁶ and the $6s13s^{3}S_{1}$ level given in CD^{14} are also excluded because their energy determinations appear to be questionable. The $6s \, 10d^{3}D_{1}$ and $6s \, 11s^{3}S_{1}$ levels are the highest J = 1even levels tabulated by Moore,¹⁶ and they lie in an energy range where the compiled $6snd^{3}D_{2}$ (n = 10, 11) levels have not been confirmed by the recent investigations of Refs. 1 and 2. The behavior of the $6s 10d^{3}D_{1}$ level cannot be interpreted by any perturbation as it clearly appears in Fig. 1. The interpretation of the $6s11s^{3}S_{1}$ and $6s13s^{3}S_{1}$ levels is rather difficult because the neighboring $6s 12s^{3}S_{1}$ is unknown. The anomalous small quantum defect of the $6s11s^{3}S_{1}$ level located near the $5d8s^{3}D_{1}$ level might be explained only by introducing a large interaction between the $6sns^{3}S_{1}$ and $5dns^{3}D_{1}$ channels. Since this mixing is expected to be vanishing in first approximation, we choose to neglect it. The interaction of the $6sns^{3}S_{1}$ channel with the 5dnd channels are parametrized in terms of only one angle which allows one to generate the $V_{\overline{\alpha}\alpha}$ matrix defined

TABLE II. Parameters of the seven-channel MQDT model for the J = 3 spectrum. The six-channel model (Sec. II) can be deduced by ignoring the last line and column.

<u></u> π,α,i	1	2	3	4	5	6	7
ā	$6sd {}^{3}D_{3}$	$5ds {}^{3}D_{3}$	5dd ${}^{3}G_{3}$	$5dd {}^{3}F_{3}$	5dd $^{1}F_{3}$	5dd ${}^{3}D_{3}$	$6sg {}^3G_3$
$i \\ \mu^0_{\alpha}$	$6s_{1/2}d_{5/2}$ 0.76	$5d_{5/2}s_{1/2}$ 0.1868	$5d_{3/2}d_{3/2}$ 0.763	$5d_{5/2}d_{3/2}$ 0.6576	$5d_{3/2}d_{5/2}$ 0.785	$5d_{5/2}d_{5/2}$ 0.826	6s _{1/2} g _{7/2} 0.0585
μ^1_{α}	0.66	0.46	1.18	0.4	1.36	0.86	-0.8
	0.918	-0.149	-0.102	0.089	-0.117	-0.321	-0.005
	0.139	0.989	-0.015	0.013	-0.018	-0.048	-0.001
	0.025	0	0.866	0.002	0.366	-0.337	0.043
$U_{i\alpha}$	0.040	0	0.349	0.705	-0.488	0.376	0.017
iu	-0.158	0	-0.339	0.704	0.503	-0.334	-0.017
	0.333	0	0.019	0	0.600	0.727	0.001
	0	0	-0.050	0	0	0	0.999

FIG. 2. Lu-Fano plot of the J = 3 bound levels. Experimental points are +, $6snd^{3}D_{3}$ and \blacktriangle , 5dnl.

in Eq. (3) by coupling the $6sns {}^{3}S_{1}$ and $5dnd {}^{3}S_{1}$ channels.

The Lu-Fano curve (Fig. 1) shows a reasonable agreement with the experimental data; the perturbation of high-lying levels are very well reproduced. However, further measurements in the intermediate energy range are needed for improving the fit.

B. J = 3 MQDT model

The J=3 bound spectrum is analyzed with a MQDT model involving six channels and three limits. The labeling of the channels and the optimal parameters are compiled in Table II. All J=3 levels except the two lowest $6snd {}^{3}D_{3}$ (n=5,6) levels, which are excluded from the fit, are successfully interpreted as can be seen from the Lu-Fano curve plotted in Fig. 2.

IV. FINE STRUCTURES OF 6snd CONFIGURATIONS

The fine structures of the 6snd triplets can be analyzed from the MQDT analyses presented above or in AR.⁴ The fine structure of the "unperturbed" 6snd triplets (i.e., neglecting the perturbations affecting the 6snd ³D series) can be studied from the eigenquantum defects $\mu_{3_{D_1}}$, $\mu_{3_{D_2}}$, and $\mu_{3_{D_3}}$. One must notice that, far from any perturbations, the 6snd ³D₂ and ¹D₂ series are well described in LS coupling.⁴ Consequently, the unperturbed 6snd ³D levels are expected to satisfy the Landé interval rule¹⁷; then the ξ_{nd} spin-orbit parameter of the outer nd electron can be deduced from differences between eigenquantum defect as shown on the following formula:

$$\xi_{nd} = \frac{2R}{n_*^3} (\mu_{3_{D_1}} - \mu_{3_{D_2}}) , \qquad (4a)$$

$$\xi_{nd} = \frac{4R}{3n_{\star}^3} (\mu_{3_{D_2}} - \mu_{3_{D_3}}) , \qquad (4b)$$

$$\xi_{nd} = \frac{4}{5} \frac{R}{n_*^3} (\mu_{3_{D_1}} - \mu_{3_{D_3}}) , \qquad (4c)$$

where $n^* = v_{6s}$ is the average effective quantum number of $6snd^3D$ levels.

The energy-dependent eigenquantum defect obtained for J = 1,2,3 are compiled in Table III. From μ_{α}^{0} values we deduce the asymptotical value $\overline{\xi} = n^{*3}$ $\times \xi_{nd}$ when $n \to \infty$. One can see that the Landé interval rule is well satisfied within the uncertainty of the μ_{α}^{0} values. If the energy dependence of eigenquantum defects is taken into account, the Landé interval rule is less well satisfied due to large differences between μ_{α}^{1} values; this point will be discussed later in Sec. VI. The ξ_{nd} values obtained from Eq. (4c) for n = 20 are also tabulated in Table III.

In Fig. 3 we have plotted part of the three theoret-

TABLE III. Fine structure of 6snd configurations: 6snd ³D eigenquantum defect and ξ_{nd} spin-orbit parameter calculated from eigenquantum defect with the Landé rule.

	Eigenquantu	Eigenquantum defect	
	μ^0_{α}	μ^1_{α}	
$^{3}D_{1}$	0.7715	1.0	
${}^{3}D_{2}$	0.7668	1.03	
${}^{3}D_{3}$	0.76	0.66	

Spin-orbit pa	arameter ((cm^{-1}))
---------------	------------	-------------	---

$\overline{\overline{\xi}} = n^{*3} \xi_{nd}$ for $n \to \infty$	· · · · · · · · · · · · · · · · · · ·	
1030	calculated from	$\mu^0_{3_{D_1}} - \mu^0_{3_{D_2}}$
990	calculated from	$\mu_{3_{D_2}}^{0^{-1}} - \mu_{3_{D_2}}^{0^{-2}}$
1010	calculated from	$\mu_{3_{D_{1}}}^{0^{2}} - \mu_{3_{D_{3}}}^{0^{3}}$
É20 d		
0.20	calculated from	$\mu_{3_{D_1}}^0 - m_{3_{D_2}}^0$
0.22	calculated from	$\mu_{3_{D_1}} - \mu_{3_{D_3}}$

FIG. 3. Lu-Fano plot of the 6snd perturbed Rydberg series. Curves and predicted energies reported on the curves are calculated from MQDT models either compiled in the tables or developed in AR. The symbols are ---, 6snd ${}^{3}D_{1}$; ---×--, 6snd ${}^{3}D_{2}$; -----, 6snd ${}^{3}D_{2}$; -----, 6snd ${}^{3}D_{2}$; -----, 6snd ${}^{3}D_{3}$. Perturbers are only noted by the vertical branches they cause in the curves; the symbols are ${}^{2S+1}L_{J}$ for 5d 8s levels and ${}^{2S+1}L_{J}$ for 5d 7d perturbers.

ical Lu-Fano curves obtained here or in AR⁴ for J = 1,2,3 spectra. One can see by following the point $({}^{3}D_{1})$, cross $({}^{3}D_{2})$, and plus $({}^{3}D_{3})$ marks along the $6snd {}^{3}D$ series that the triplet levels do not satisfy the Landé interval rules. This anomalous behavior is clearly related to the presence of 5dnl perturbers; some $6snd^{3}D$ levels are strongly repelled by perturbers, and moreover, the $5d7d^{-1}D_2$ perturber induces a singlet-triplet mixing in the high-energy range. Although experimental points are not included in the figure for purposes of clarity, the predictions of MQDT concerning the relative position of the three members of the same triplet are generally in very good agreement with experimental data. In particular, the coincidences or quasicoincidences predicted for n = 13 - 15 or for 19 < n < 24 confirm the experimental observations.

We recall that the previous identifications of the J = 1 and 3 levels in CD¹⁴ were facilitated by the knowledge of J = 2 levels from AC.³ Nevertheless, for high *n* values, the observed signals are difficult to identify because the experimental resolution is too low. Moreover, the uncertainty is of the same order of magnitude as the intervals between the components of the triplets, so the 6snd ${}^{3}D_{3}$ (n > 24) levels which were not identified are certainly unresolved from the 6snd ${}^{3}D_{2}$ levels.

V. ANALYSIS OF THE 6sng SERIES

In CD¹⁴ a great number of levels has been identified as the 6*sng* levels with $8 \le n \le 39$. Owing to the very small values of both the spin-orbit coupling constant for an *ng* electron and the exchange-

ā,α,i	1	2	3	4	5
α	$6sg \ ^{3}G_{4}$	$6sg {}^1G_4$	$5dd \ {}^{3}G_{4}$	$5dd {}^{3}F_{4}$	$5dd {}^1G_4$
i	$6s_{1/2}g_{7/2}$	$6s_{1/2}g_{9/2}$	$5d_{3/2}d_{5/2}$	$5d_{5/2}d_{3/2}$	$5d_{5/2}d_{5/2}$
μ^0_{α}	0.0585	0.0585	0.7647	0.6509	0.5372
μ^1_{α}	-0.8	-0.8	1.1	0.47	0.85
	0.744	0.667	-0.045	0	0
	-0.665	0.745	0.040	0	0
$U_{i\alpha}$	0.042	0	0.706	-0.316	0.632
	0.042	0	0.706	0.316	-0.632
	lo	0	0	0.894	0.447

TABLE IV. J = 4 MQDT parameters.

FIG. 4. Lu-Fano plot of the 6sng perturbed Rydberg series. Curves calculated from MQDT models compiled in the tables are - - , J = 3; - , J = 4; and - , J = 5. Experimental points are \bullet , unresolved 6sng $^{1,3}G$; \circ , 6sng $^{3}G_{3}$; +, 6sng $^{3}G_{4}$; \times , 6sng $^{3}G_{5}$; and \blacktriangle , perturber. Perturbers located out of the figure are noted by the vertical branches they cause in the plot; 5d7d perturbers are represented by $^{2S+1}L_{J}$.

electrostatic interaction between the 6s electron and an ng electron, the fine structure of the four $6sng {}^{3}G_{3,4,5}$ and ${}^{1}G_{4}$ is only partially resolved. Some $6sng {}^{3}G_{J}$ levels are identified near the 5d7dperturbers; the $6sng {}^{3}G_{3}$ are observed for n = 9, 13, 14, and 18, respectively, in the vicinity of $5d7d {}^{3}G_{3}$, ${}^{3}D_{3}$, and ${}^{3}F_{3}$ levels; the $6sng {}^{3}G_{4}$ levels are observed for n = 10 and 11 near the $5d7d {}^{3}G_{4}$ level and for $24 \le n \le 26$ near the $5d7d {}^{3}F_{4}$ level; the $6sng {}^{3}G_{5}$ levels are detected for $15 \le n \le 17$ near the $5d7d {}^{3}G_{5}$ perturber.

The interpretation of the perturbed 6sng series is obtained with three MQDT analyses: the previous J=3 model (Sec. III) is extended by adding a seventh channel, the 6sng channel; the J = 4 spectrum is analyzed with a five-channel model; and the J=5 spectrum with a two-channel model. The labeling of channels and the optimal sets of parameters are compiled in Tables II, IV, and V. Only one value of eigenquantum defect μ_G was optimized for the four 6sng channels from selected unperturbed levels. The high-lying 6sng levels (n > 25) affected by large experimental uncertainties are ignored. The strength of the interactions between 6sng and 5dnd channels were determined from the $6sng^{3}G_{I}$ perturbed levels; for each J value the interactions were parametrized in terms of only one angle θ_I ; these angles allow one to generate the $V_{\overline{\alpha}\alpha}$ matrix defined in Eq. (3) by coupling the $6sng {}^{3}G$ and $5dnd {}^{3}G$ channels. Notice that the three optimal angles

 $\theta_3 = 0.05$, $\theta_4 = 0.06$, and $\theta_5 = 0.05$ are nearly equal. The eigenquantum defect of the perturbing 5*dnd* channels are determined from the 5*d7d* levels observed in CD (3) and from the lower 5*d* 6*d* levels compiled by Moore.¹⁶

Parts of the three Lu-Fano curves obtained for the J = 3, 4, and 5 spectra are plotted in Fig. 4. Since the lowest 6sng levels for $n \le 7$ are unknown, we have only drawn the curves for $v_{5d_{3/2}} \ge 4.0$. Experimental points with error bars are reported for $n \le 28$ with the labels given in CD.¹⁴ Note that the 5d7d ${}^{1}G_{4}$ level does not appear since it is located above the 6s limit.

Our MQDT models predict that the $6sng {}^{1}G_{4}$ series are unperturbed and that the three $6sng {}^{3}G$ series are perturbed. Although deviations between theoretical and experimental levels are often larger than the experimental uncertainty, the behavior of the perturbed $6sng {}^{3}G$ series is rather well described.

TABLE V. J = 5 MQDT parameters.

<u>π</u> ,α,i	1	2
ā	$6sg \ ^{3}G_{5}$	5dd 3G_5
i	$6s_{1/2}g_{9/2}$	$5d_{5/2}d_{5/2}$
μ^0_{α}	0.0585	0.7758
μ^{1}_{α}	-0.80	1.02
T T	0.999	-0.050
$U_{i\alpha}$	0.050	0.999

FIG. 5. Variation of the eigenquantum defect μ_{α}^{0} for a given triplet as a function of J. Symbols are $\bullet - -$, 6sd; + - -, 5dd; and $\times - - -$; 5ds channels.

The perturbations due to $5d7d {}^{3}G_{3,4,5}$ and ${}^{3}F_{4}$ levels are successfully reproduced in spite of the simplicity of the involved MQDT models. The largest discrepancies appear for the J=3 spectrum: The two points corresponding to the perturbed $6s13g {}^{3}G_{3}$ and $6s18g {}^{3}G_{3}$ levels show significant differences. It should be pointed out that these levels were identified in CD¹⁴ from the observation for each of only one line starting, respectively, from the $5d6d {}^{3}P_{2}$ and $5d6d {}^{3}D_{3}$ levels. Thus it appears unreasonable to try to improve our MQDT models for taking care of them. Further measurements with a higher resolution and also a better J determination are needed for improving the fit.

VI. DISCUSSION ON MQDT PARAMETERS

The values of the various μ_{α}^{0} eigenquantum defects optimized for triplet channels in the MQDT analyses of the J=0-5 spectrum, obtained either in this paper or in AC³ and AR,⁴ are plotted in Fig. 5 against the J value. For a given LS term μ_{α}^{0} is nearly independent of the J value. In fact, the eigenquantum defect differences can be interpreted in terms of short-range interactions; the Coulomb interaction largely dominates the spin-orbit coupling so that the character of the LS coupled eigenchannel α is essentially the same for different J values. This property of eigenquantum defect was already emphasized in Refs. 8 and 18.

All the eigenquantum defects μ_{α} determined for the 6snl or 5dnd series decrease with increasing energy which means that the μ_{α}^{1} are positive with the convention defined in Eq. (2). This downward drift follows the normal trend of scattering phase shifts due to an attractive potential. However, the optimized μ_{α}^{1} values are only approximate. In fact, the μ_{α} value corresponding to a given 5dnl channel is determined from only two levels. Moreover, it has been shown¹¹ that an imprecise determination of interaction parameters, due in particular to the neglect of the energy dependence of these parameters, can lead to the determination of incorrect μ_{α}^{1} values. In

TABLE VI. Comparison of empirical eigenquantum defects [this work and AR (Ref. 4)] with *ab initio* values (Ref. 19) calculated by ignoring spin-orbit coupling.

Channel	Eigenquantur Empirical values	m defect <i>a priori</i> values
$6ss {}^{3}S_{1}$	$0.29 + 0.3\epsilon$	$0.24 + 0.38\epsilon$
$6sd {}^{3}D_{1}$	$0.7715 + 1.0\epsilon$	
$6sd \ ^{3}D_{2}$	$0.7668 + 1.03\epsilon$	$0.89 + 0.64\epsilon$
$6sd \ ^{3}D_{3}$	$0.760 + 0.66\epsilon$]	

our work the interaction angles are mainly determined only from the high-lying perturbed levels. The choice we have made for the interaction angles is not unique, and further measurements are very worthwhile in the intermediate energy range to check or improve the fit.

Recently, various alkaline-earth MQDT parameters have been determined by *ab initio* calculations performed by Armstrong *et al.*¹⁹ who used a local approximation for the exchange-correlation potential seen by the Rydberg electron. The quantumdefect parameters of 6sns ³S and 6snd ³D channels, calculated by neglecting interchannel interaction and spin-orbit coupling, are compared with our empirical values in Table VI. Our μ_{α}^{0} values are smaller than *ab initio* values, while the μ_{α}^{1} values are in good agreement taking into account the dispersion of our $\mu_{3D_{T}}^{1}$ values.

VII. CONCLUSION

The MQDT models presented in this paper in addition to those previously developed in AC^3 and AR^4 provide an accurate description of the evenparity bound spectrum of Ba. This MQDT treatment is by far the most complete of those carried out for a bound spectra of alkaline-earth atoms since almost all bound levels with J values ranging from 0 to 5 have been considered. A unified treatment of new data provided by laser spectroscopy^{3,15} and earlier data of Moore¹⁶ has been developed.

The behavior of all 6snl series (l=s,d,g) perturbed by many levels pertaining to doubly excited configurations is successfully interpreted. Although MQDT performs a J by J treatment of a givenparity spectrum, is permits us to obtain a good description of anomalous fine structure of highly excited 6snd and 6sng configurations. Additional experimental data are required to improve the MQDT analyses for some intermediate 6snd $^{3}D_{1}$ and 6sns $^{3}S_{1}$ levels and also for 6sng levels, the fine structure of which is only partially resolved.

The MQDT parametrization of energy levels pro-

vides information not only on energy determination but also on wave functions. Our study confirms the previous designations of levels. As already pointed out in CD¹³ the *jj* coupling scheme is better suited to describe the 5*dnd* levels than the *LS* coupling scheme. The accuracy of the wave functions can be checked when experimental data on atomic quantities are available: Very recently,^{20–22} lifetime measurements performed for $6snd^{1,3}D_2$ and $6sns^{1}S_0$ perturbed levels provided a good probe of MQDT functions previously published in AC^3 and AR^4 .

For the first time the J dependence of MQDT parameters in Ba is analyzed; this allows us to predict the ζ_{nd} spin-orbit parameter of the highly excited *nd* electrons.

ACKNOWLEDGMENT

We wish to thank O. Robaux for guidance in the use of the MQDT program.

- ¹D. J. Bradley, P. Ewart, J. V. Nicholas, and J. R. D. Shaw, J. Phys. B <u>6</u>, 1594 (1973).
- ²J. R. Rubbmark, S. A. Borgström, and K. Bockasten, J. Phys. B <u>10</u>, 412 (1977).
- ³M. Aymar, P. Camus, M. Dieulin, and C. Morillon, Phys. Rev. A <u>18</u>, 2173 (1978).
- ⁴M. Aymar and O. Robaux, J. Phys. B <u>12</u>, 531 (1979).
- ⁵J. J. Wynne and J. A. Armstrong, IBM J. Res. Dev. <u>23</u>, 490 (1979).
- ⁶M. J. Seaton, Proc. Phys. Soc. London <u>88</u>, 801 (1966).
- ⁷K. T. Lu and U. Fano, Phys. Rev. A <u>2</u>, 81 (1970).
- ⁸K. T. Lu, Phys. Rev. A <u>4</u>, 579 (1971).
- ⁹C. M. Lee and K. T. Lu, Phys. Rev. A <u>8</u>, 1241 (1973).
- ¹⁰U. Fano, J. Opt. Soc. Am. <u>65</u>, 979 (1975).
- ¹¹J. A. Armstrong, J. J. Wynne, and P. Esherick, J. Opt. Soc. Am. <u>69</u>, 211 (1979).
- ¹²J. J. Wynne and J. P. Hermann, Opt. Lett. <u>4</u>, 106 (1979).
- ¹³P. Camus, M. Dieulin, and C. Morillon, J. Phys. (Paris) <u>40</u>, L513 (1979).

- ¹⁴P. Camus, M. Dieulin, and A. El. Himdy, Phys. Rev. A <u>26</u>, 379 (1982).
- ¹⁵O. Robaux and M. Aymar, Comput. Phys. Commun. <u>25</u>, 223 (1982).
- ¹⁶C. E. Moore, Atomic Energy Levels, Natl. Bur. Stand. (U.S.) NO. 467, Vol. 3 (U.S. GPO, Washington, D.C., 1958).
- ¹⁷E. U. Condon and G. H. Shortley, *The Theory of Atomic Spectra* (Cambridge University Press, Cambridge, England, 1963).
- ¹⁸M. Aymar, O. Robaux, and C. Thomas, J. Phys. B <u>14</u>, 4255 (1981).
- ¹⁹J. A. Armstrong, Sudhanshu S. Jha, and K. C. Pandey, Phys. Rev. A <u>23</u>, 2761 (1981).
- ²⁰T. F. Gallagher, W. Sandner, and K. A. Safinya, Phys. Rev. A <u>23</u>, 2669 (1981).
- ²¹M. Aymar, R. J. Champeau, C. Delsart, and J. C. Keller, J. Phys. B <u>14</u>, 4489 (1981).
- ²²M. Aymar, P. Grafström, C. Levinson, H. Lundberg, and S. Svanberg, J. Phys. B <u>15</u>, 877 (1982).