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Exactly soluble model of continuum-continuum transitions in strong laser beams
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A model of continuum-continuum transitions induced by very intense laser beams is
solved. The energy distribution of the photoelectrons is found and it exhibits the broadening
and the splitting induced by the laser field. Similar effects are known for bound-bound
transitions, but our model made it possible to study them systematically in the continuum.

I. INTRODUCTION

There is renewed interest in the dynamics of the
continuum-continuum transitions in atoms induced
by laser light, owing to the recent experimental evi-
dence of such a process. ' Following Larnbropoulos,
I will use the term continuum-continuum transition
(cc transition) to describe an optical transition from
a lower state in the continuum to a higher state in
the continuum, when this transition is coherent with
the whole process of excitation from the initial
bound state. When the laser field is not too strong,
the cc transition can be adequately described with
the help of the perturbation method. For very high
intensities the perturbation method fails and the
problem is very difficult to solve. However, it be-
comes somewhat simpler when, owing to the ex-
istence of autoionizing states, there are regions in
the continuum with an exceptionally high density of
states and the cc transitions occur between the states
lying in those regions. Such processes may be
viewed as something intermediate between the cc
transitions in a smooth continuum and the transi-
tions between bound states. Therefore we can expect
that an intense laser light will cause in those pro-
cesses effects similar to the saturation phenomena in
bound-bound transitions, but that they will be modi-
fied by the presence of the continuum. Certain
theoretical aspects of these problems have already
been studied by Rzyzewski and Eberly and by Lam-
bropoulos and Zoller.

The purpose of this work was to evaluate the ef-
fects of a strong laser field on the cc transitions in a
a simple, exactly soluble, theoretical model. I be-
lieve that the results obtained in this way are at least
qualitatively valid in a more realistic theory.

II. THE MODEL

(;E ~,E')=5,J6(E —E'), ij =1,2.
(la)

I assume an especially simple form of the interac-
tion between the atom and the electromagnetic field,
which leads to the solubility of the model. The in-
teraction Hamiltonian Ht has the following form
(R= 1 =c):

The physical system described by the model is
composed of an atom and two kinds of photons with
the frequencies co

&
and co2. The atom is assumed to

have one discrete bound state
~ g ) with the energy

Ez and two families of states
~

&E ) and
~
2E ) be-

longing to the continuous spectrum with the energy
E extending from Eo to infinity. The states

~
2E )

have the same parity as the bound state
~ g ),

whereas the states
~

&E ) have the opposite parity
and can be reached from the bound state by a single
photon transition.

The atomic state vectors will be normalized as
follows:

HI= E D1 1 gal+ E ED1E g lEa1
0 0

+k f && f&&&z &''~Ã(K~ z&(')(,&
~

az+X f d& fd&Ã%') (&D') ~,&')(,Z
~

ay~,

where a &, a2 and a &, a 2 are the annihilation and the
creation operators of the photons with the frequen-
cies to& and co2. The energy-dependent profiles
D &(E) and D2(E) measure the strength of the cou-

pling of the laser field to the states in the continu-
um. They will be specified at the later stage. They
have the dimension of the square root of energy,
whereas the coupling constant A, has the dimension
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of one over energy.
The first two terms in the Hamiltonian HI

describe the transitions between the bound state
I g &

and the states in the continuum of the first kind

I
]E & induced by an absorption or an emission of a

photon with the frequency co]. The last two terms
describe the transitions between the states

I
]E & and

I
2E& in the continuum, induced by a photon with

the frequency co2.
In writing the interaction Hamiltonian in the

form (2) I made two simplifying assumptions. The
first one is an analog of the rotating-wave approxi-
mation and consists of neglecting all "antiresonant"
terms ot' the form

l g ) ( EtIa t, lg ) g]l a t,

I
2E & ~ ]E

I
a2 and

I

]E' & & 2E
I
~ 2' Th]s s]mp»f]ca-

tion can be justified only if the functions D](E) and
D2 (E) are peaked around the energies E, and E2 ly-
ing in the vicinity of E~+co] and E g+co +]co ,2
respectively. Therefore my model will not be well
suited to describe the cc transitions in the smooth
continuum, but it should work rather well for nearly
resonant cc transitions in the presence of autoioniz-
ing states. The second simplifying assumption was
made in the last two terms in the formula (2).
Namely, I assumed that the atomic formfactor,
which is in general a function of E and E', has the
factorized fo]in D](E)D2(E'). Owing to these two
approximations, the model can be explicitly solved.

The kinematics of the model can be described
with the help of the energy diagram shown in Fig. 1.

My model can be viewed as a simplification of the
theory developed by Lambropoulos and Zoller (see
Sec. V of Ref. 6), which deals with two strong laser
beams and two autoionizing resonances. The con-
figuration interactions between the autoionizing
states and the corresponding continua, together with
the laser-induced interactions with the continua, are
replaced in my model by a simple interaction be-
tween the two continua. The density of states in
both continua and the effective coupling formfac-
tors are described by two functions D, (E) and
D2(E), which, by assumption, are peaked around the
energies corresponding to the positions of the origi-
nal autoionizing states.

Owing to its solubility, this model can also be

E,
EQ+ w, + w~

A, j--.
E,
Es+ w]

FIG. 1. Energy diagram for the continuum-continuum
transition.

considered as a modification of the soluble model of
Beers and Armstrong to accommodate for the pos-
sibility of cc transitions.

Since I will not introduce any additional relaxa-
tion mechanism I can solve directly the Schrodinger
equation for the state vector

I
g(t) &,

I
y(t)&=(H, +H, )

I
q(t)&,

dt
(3)

where Ho is the unperturbed Hamiltonian of the
system,

Ho
I g & =E,

I g &,

H I;E&=E I;E&,

HQ
I
n], n2& =(n]co]+n2ct&2)

I
n], n2& .

(4a)

(4b)

(4c)

I will assume that initially (for t =0) the atom is in
its bound state and the electromagnetic field is in a
number state with large numbers of photons in both
modes,

I]tj(t =o)&= Ig;n], n2&, n], n2»1 .

At a later time t the state vector has the general
form:

l
tNr&) =U tt& lg'a) "t&+ Js st& Utte r&

l

t&'a —t «t&+ Js tt&Utt@r& le&at —t at —t)
0 0

My aim is to determine the probability amplitudes Ug(t), U](E, t), and U2(E, t) as functions of t and E.
The following set of equations follows from the Schrodinger equation (3) when n] n2 »1:

(6)

i Ug(t)=(Eg+n]co]+n2co2)Ug(t)+~n, dED*, (E)U](E,t),
dt

(7a)

U](E, t)=[E+(n] —1)n]+n2ct&p]U](E, t)+V n]D](E)Ug(t)+XV n, D, (E) dE'Dz(E')U, (E',t),
t

(7b)
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Uz(E, t)=[E+(nt —1) tnt+( nz—1) ntz]U z(Et)+, )~nz Dz(E) f dE D't(E )U't(E', t) .
E Eo

(7c)

They will be solved with the use of the Laplace transform. The Laplace transforms Gg(p), G](E,p), and
Gz(Ep) of the time evolution amplitudes Ug (t), U] (E,t), and U2(E, t) are given by the standard formulas,

G;(p)= f dt z z'Ui(t), i =g, (,2.

In what follows I use the variable z =ip and define the functions 6;(z) as G;( i—z) T. he functions Gg(z),
G](E,z), and Gz(E, z) satisfy the following equations, which follow from Eqs. (7) and the initial condition (5):

(z Eg —n]co] ——n2co2)Gg(z) —~ni dE'D] (E')G](E',z)=i,

[z —E —(n t
—1)tnt — n t]nGtt(E,t) —zV nt Dt (E)Gz(z) —))t nzDt(E) f dE'Dz (E )Gz(E'', z) =0

E (Sb)

[z E (n]———1)co]—(nz —l)rdz]Gz(E, Z) —A~n2D2(E) dE'D](E')G](E', z)=0 . (8c)

The inverse Laplace transform in this case has the following form:

] eo

U;(t)= lim dx e '"'G;(x +i@), i =g, 1,2.
e~o+ 27T

The solution of Eqs. (8) has the following form:

1 An—z X ,] (z)Xz(z)
Gg(z)=l

( )

~niD] (E) 1
G, (E,z) =i

z E —(n] ——1)co] nzco—z H(z)

A,Qn ]nzDz(E) X](z)
Gz(E, z) =i

z E —(n] ——1)cU)] —(n2 —1)co2 H(z)

where

H(z) =(z Eg ]neo] ———n2C02)[1 —A, n2X](z)rz(z)] n]X](z), —
and the two analytic functions X](z) and Xz(z) are defined by the following integrals:

00
~

D](E)
X,(z)= f dE

~o z E (n ] ——1)co ] ——n2coz

(loa)

(10b)

(10c)

X,(z)= f, dE
OO

o z E (n ] —1—)co—] —(n 2
—1)co2

(12b)

The s««Eqs. (10) and (11) gives an analytic
solution of our model for arbitrary functions D](E)
and Dz(E). Notice that those functions enter not
only as proportionality factors in the expressions for
G](E,z) and Gz(E,z), but also through the functions
X](z) and Xz(z). The Laplace transforms Gg(z),
G](E,z), and Gz(E,z) through Eq. (9), describe the
time evalutian of the system.

For those model profiles
i
D](E) i

and
~

D2(E)
~

which will be considered later, the func-
tions Gg(z), and G2(E,z) have two branch points at

Eo+(n [ —1)to]+n2coz

Eo+ (n ] —1)co ] + (n2 —1)co2,

introduced by the functions X](z) and Xq(z). For-
mulas (12a) and (12b) define the functians X](z) and
X2(z) on the first (physical) Riemann sheet. These
functions can be analytically continued to the
second Riemann sheet, which is reached from the
first sheet when one crasses the branch cut on the
positive real axis, while going to the lower half
plane. Therefore the analytic functions Gg (z),
G, (E,z), and Gz(E, z) are also defined on a mul-
tisheet complex surface. They may have also, in
general, real and comp1ex poles.

In order to obtain the time-dependent amplitudes
Ug(t), U, (E,t), and Uz(E, t) one could close the con-
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tour of integration, which appears in Eq. (9), by add-
ing the half-circle in the lower half of the second
Riemann sheet and a contour around the negative
part of the real axis (up to the branch point) which
would take one back to the starting point on the first
Riemann sheet.

Here, I will concentrate only on the long time
behavior of the atomic system, having in mind the
ionization process induced by a cw laser or a pulse
of long duration.

III. ENERCs Y DISTRIBUTION
OF THE PHOTOELECTRONS

The behavior of the system at t = oo is determined
by the residues of the analytic functions Gg (z),
G&(E,z), and Gz(E,z) at the real poles. The remain-
ing poles and other singularities contribute only to
the transient effects. The function Gg(z) has no real
poles. It means that at the end the bound state will

I

zz E+ (——n )
—1)co ) + (n2 —1)coz,

respectively. The probability densities to find the
electron with the parity specified by the indices 1

and 2 are given by the expressions

W, (E)=
I
Ui(E, taboo)

I

8;(E)=
I
U, (E,t ) I',

(13a)

or, in other words, the functions W&(E) and 8'z(E)
describe the energy spectra of the final electrons.

Using my solution (10), I arrive at the following
expressions for W, (E) and W2 (E):

be completely depopulated; the atom will be com-
pletely ionized. Functions G&(E,z) and G2(E,z)
have one real pole each, at

z, =E+(n~ —1)co&+nzco2

and at

II'~ «) =ni
I
Di «)

I

'~
I
(E —E, —~, ) I 1 —&'n, [S,(E)—i y, (E)][S,(E+~,);y,(E+,)] I

n)[S)( —E) —iy)(E)]
I

z, (14a)

~z«) =~' ~nz I
D2«)

I

'
I
Si(E —~z) —y)(E —~z)

I

'I
I
(E Eg —co, —coz)—I 1 —$2n&[S&(E —~, ) —iy (E ~ )]

X [Sz(E)—iyz(E)] I

—n, [S,(E —m, ) —iy, (E ~,)] I
(14b)

The functions S~(E) and y&(E) are the real and the
imaginary parts of the analytic function X&(z) calcu-
lated at the point z, +i e (@~0+),

$, (E)=PJ dE' I

Di(E')
I

+0 E —E'
(15a)

where the symbol P indicates the principal part of
the integral. Similarly, S2(E) and yz(E) are the real
and the imaginary parts of the function X2(z) calcu-
lated at the pole zz+ie (e—+0+),

Eg(E)=PI dE', I

Dz(E')
I

'

(15b)

To proceed further, we must specify the functions
ID, (E) I'and ID, (E)

I
.

As a special case I will consider now two sym-
metric, Lorentzian profiles

I
D, (E)

I
and ID&(E)

I

2,

both centered far from the ionization edge Eo. In
accordance with the assumptions of the model, I as-
sume that

I
D

&
(E)

I
is centered at the energy E

&

close to Eg+to~, whereas IDz(E)
I

is centered at

E2 which lies close to Eg +co ~+coz (see Fig. 1).
2

ID(E)I = z, i=12.
(E E;) +At-

If E; —Eo ~~A; for both profiles, then it is a good
approximation to shift the lower limit in the integral
defining S;(E) from Eo to —oo and to obtain'

S;(E) iy;(E)= — . , i =1,2.E —F-;+id; ' (17)

The quantities g, and g2,
2

E Dl E, i=12
l

Wi(E) =0 iA i [(E Ez+toz) +A z] IMP(E),—
(19a)

(19b)Wz(E) =nzn $A2/mP(E c02) y—
where

measure the strength of the effective coupling with
the whole profiles.

»serting those expressions for S„Sz,y, , and yz
into the general formulas for 8'&(E) and W'z(E), we
obtain
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~(E)= I (E —Eg —ru ~ )[(E—E~ )(E —E2+co2) —A ~A 2
—Q2] —Q

~ (E E—2+co2) I

+ I (E E—
g

—co) )[(E E—) )A2+(E E2—+co2)A )]—Q tA2I

and I have defined

Qi (nag——i )', Q2 ——A(npgig2)' (21)

The quantity Q, can be interpreted as a general-
ized Rabi frequency of the first transition, as will be
seen later. Similarly, Q2 plays the role of a general-
ized Rabi frequency of the second transition (within
the continuum). Notice that the intensities n

&
and

n2 of two laser beams, as well as the quantities g&
and g2, enter only through Q

&
and Q z.

Both energy distribution functions W& (E) and
8'2(E) were studied numerically for different values
of widths A, and A 2 of the profiles

~

D
~ (E)

~

and

~

D2(E) ~, for different detunings 6& and 52,

E) —(Eg +——co ) ),
h2 ——E2 (Eg +co ) +—co2),

and for different ratios of the two Rabi frequencies,

t

indeed play the role of the generalized Rabi frequen-
ClCS.

Despite some similarities, the shapes of two func-
tions 8'&(E) and 8'2(E) are quite different. In
W2(E) the central peak always dominates, whereas
in JY~(E) outer peaks are often quite pronounced.
For narrow profiles they will dominate.

This splitting of the spectrum is analogous to the
ac Stark splitting known for bound-bound transi-
tions. I believe that it is not due to the special form
of my model. It is, probably, a characteristic feature
of the cc transitions induced by very intense laser
beams, when they are nearly resonant with some au-
toionizing states or other singularities of the density
of states in the continuum. Unfortunately, this
splitting would be very difficult to observe experi-
mentally. It would probably be easier to observe the
structure of the spectrum indirectly, in the experi-
ment in which one collects photoelectrons above a

R =(Q2/Qt) (23)

Since I use the units in which fi= 1 =c, all quantities
have the dimensions of powers of energy (frequen-
cy). The quantity Q~ will serve as a universal unit
of energy.

The spectrum of the photoelectrons consists of
two parts: one centered around Eg +co, and
described by 8'&(E) and the other centered around
Eg+co&+co2 and described by 8'2(E). Both parts
have an interesting structure due to the strong influ-
ence of the laser beams, which causes the effects
analogous to the dressing of the atom in the bound-
bound transitions. If the widths A& and A2 of the
profiles

~
D&(E)

~

' and
~

D2(E)
~

' a«sm»i, as com-
pared to the Rabi frequencies, each part of the spec-
trum will be split into three peaks. The typical
shapes of the spectra are shown in Fig. 2 at the ex-
act resonance (A~ ——0=62) and for equal Rabi fre-
quencies (R = 1). We see that the splitting is clearly
visible for A& ——0.25Q, =A2 and disappears when
A

&

——Q
&

——A2. It is worth noticing that the splitting
will appear also when only one profile is narrow (for
example, the splitting was observed for A

&
——Q &,

A z ——0.2Q
~ or for A

&
——0. 1Q &, A 2

——2Q
&
).

The distance between the central peak and outer
peaks [the same for 8 ~ (E) and for W2(E)] for nar-
row profiles is equal to

when A2 vanishes. This shows that Q& and Q2

(a) A, 0.25=A,

0.5p

(b)
1.0 A,=o.5 =A, (e)

(c)
A,=1.0= A,

0.5

E+a E-o
2 E, E+n,

FIG. 2. Energy distribution of photoelectrons. The
first part of the spectrum, described by W, (E) is shown in
(a), (b), and (c). The second part, described by 8 z(E) is
shown in (d), (e), and (f). This part is shifted from the po-
sition of the first part by the energy co2. All functions
were calculated at the exact resonance (b, ~=0=5,2) and
for equal Rabi frequencies (8 = 1). Diagrams (a) and (d)
correspond to A

~
——0.250, =A2, diagrams (b) and (e) to

A~ ——0.50~ =A2, diagrams (c) and (f) to A~ ——Q~ ——A2.



EXACTLY SOLUBLE MODEL OF CONTINUUM-CONTINUUM. . .

certain threshold energy Vo. The measured number
of photoelectrons from the first part of the spectrum
with energies above the threshold deterinines the
probabilityP ~,

p) =f dE W, (E) . (24)

This is a function of the energy difference V,

(25)

The function P& was calculated from Eq. (19a)
and is plotted in Fig. 3 for the same values of all the
parameters that were used to obtain the spectrum
shown in Fig. 2(a) (i.e., for A

&

——0.250
&

——A z,
h~ ——0=6,z, R =1). Notice that the negative values
of V correspond to the threshold energy Vo larger
than the central energy E~ of the profile D~(E) (E&
coincides with Es+co& at the exact resonance). We
see that the probability P& increases with increasing
V. This is quite obvious, because with lower Vo
more electrons are being collected. What is worth
noticing is the slope of the curve. There are two re-
gions where P, grows rapidly (near V= —1.4A,
and near V = 1.40

&
). They coincide with the posi-

tions of the outer peaks in the spectrum 8'&(E).
The evidence of the central peak in P& is weak be-
cause of the smallness of the peak itself.

We will now study the integrals

P) —— E )E
and

P)+Pp ——1,
because at t = oo the atom is completely ionized.

The probability Pz is plotted in Fig. 4 as a func-
tion of R (i.e., a function of the intensity nz of the
second laser beam when the intensity n ~ of the first
beam is kept fixed). Both curves in Fig. 4 corre-
spond to the exact resonance; they are calculated for
different values of the widths A

&
and Az. We see

that Pz is a nonlinear function of R and that the
nonlinearity is stronger for smaller values of A

~ and
Aq. However, the ratio Pz/P& is almost linear in R
for values of R from Q2 up to 2.5 (see Fig. 5). This
property was checked for different values of A

&
and

Az (not necessarily equal) at the exact resonance.
The probabilities P& and Pq also depend strongly

on the widths A& and Az of two profiles D~(E) and
Dz(E). This dependence was checked at the exact
resonance. The results for equal Rabi frequencies
(R =1) are given in Table I. We see that for narrow
profiles the probability Pz is greater than P~,' the
second part of the spectrum contains more electrons
than the first. For wider profiles (of the order 0&)
the situation is reversed; P& & Pz, and there are more
electrons in the first part of the spectrum. This
property is also evident in Fig. 5, where the ratio
P~/P& is plotted as a function of R for different
values of A& and Az. We see that the line (d) for
A

~
——0& ——Az lies below all remaining lines that cor-

respond to the smaller values of A
~

and Az.
The effects of detunings on the numbers of the

Pp —— E pE (26b)

P& and Pz are the probabilities that a photoelectron
belongs to the first or the second part of the spec-
trum, respectively. Those two groups of electrons
differ not only in their energies but also in parity;
they are described by different partial waves. Of
course, P& and Pq must satisfy the relation 0.6

0.3

P,

04

0.2 0.2

0.1

0 0.5 2.0 2.5

FIG. 3. Probability P~ [defined by Eq. (24)] vs the dis-
tance V between the resonant energy E~+~~ and the
threshold energy Vo. This probability was calculated at
the exact resonance (b, , =0=6,q) for equal Rabi frequen-
cies (R = 1) and for A, =0.250, =A ~.

FIG. 4. Probability Pq [defined by Eq. (26a)] vs the ra-
tio of the Rabi frequencies squared (Qz/II&) calculated at
the exact resonance. Function Pz in (a) was calculated for
narrow profiles, A, =0. I f1 ~

——A z. Diagram (b) corre-
sponds to broad profiles, A ~

——Q~ ——3~.
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TABLE I. The values of the probabilities P~ and P~
calculated at the exact resonance and for equal Rabi fre-
quencies for different values of the widths A ~ and A z. A ~

and 3~ are measured in units of 0 &.

]0

0.1

0.25
0.5
1.0
1.0

0.1

0.25
0.5
1.0
0.1

P)

0.34
0.36
0.43
0.60
0.50

Pp

0.66
0.64
0.57
0.40
0.50

0 0.5 1.0 2.0 2.5

FIG. 5. Ratio of probabilities P~ /P j vs
R =(Qq/Q~), calculated at the exact resonance for (a)
A) ——0. 10), Ap ——0), (b) A) ——0. 10) ——Ap, (c) A) ——fl),
/i& ——0. 10~, and (d) A~ ——0, =A~.

photoelectrons in the first and the second part of the
energy spectrum was also studied. In Fig. 6 the
probability Pz is plotted for equal Rabi frequencies
(R =1) and narrow profiles (A& ——0.250& ——Az) in
three different situations. The curve (a) corresponds
to the situation when the frequency co& of the second
laser beam is fixed at the resonant value and the fre-
quency co~ of the first beam is swept across its
resonant value. Both detunings b.

~ and Az are equal
in this case, since hz denotes the total detuning. The
curve (b) corresponds to the situation when the fre-
quency ro, is fixed at the resonance (b,

&

——0) while roz
varies around its resonant value (b,z varies around
zero). We see that this curve differs little from the
curve (a). It indicates that a partial detuning in the

first transition affects Pz only slightly if there is a
total detuning. In both cases the probability Pz de-
creases with increasing total detuning. The curve (c)
corresponds to the situation when the frequency co&

is swept across the resonant value, but there is no to-
tal detuning (b,z ——0). In this case the probability Pq
attains its minimum at the resonance. It is worth
noticing that all peaks are very broad, their widths
being much larger (about eight times) than the
widths of the profiles which, in this case, are both
equal to 0.250 ~.

All effects discussed above occur when both pro-
files D~(E) and Dz(E) are located so far from the
edge of the continuum that the position of the edge
has a negligible infiuence on the dynamics of the
process. I shall now study the effect of the edge of
the continuum on the energies of the photoelectrons
when one profile D&(E) is centered close to the edge.
The second profile Dz(E) is centered at a much
higher energy in the continuum; the functions Sz(E)
and yz(E) will be assumed in the previous form [see
Eq. (17)].

The function ~D&(E)
~

will be assumed in the
form

f i (E —Eo)'
/

D 1 (E)
/

'=
[(E E)) +A )][(E) E—o) +A )]—2 2 2 2 1/4 (27)

y)(E) =

The function (E Eo)' is chosen in a—ccordance with the general results obtained by Wigner' in his study
of the threshold effects. The factor [(E~ Eo) —2

&

]'~ was in—troduced in order to guarantee that, in the limit
of a very large distance between the edge Eo and the center E& of the profile, the function

~
D&(E)

~

collapses
to its previous form.

Inserting Eq. (27) into Eq. (15a), which defines the functions S,(E) and y& (E), we obtain

rrf i (E —Eo)'~'
2 2 2 2iy4' (28a)

(E E) ) +A ) [(E,—Eo) +A—, ]

mf) 1Si(E)=
(E E& ) +2 i 2[(Ei —Eo) +—2 i ]2 2 2 2 1/2 sing cosP

(28b)
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FIG. 6. Effect of detunings on the probability P2. (a)
P2 vs Az for b, ~

——Aq, (b) P2 vs b2 for h~ ——0; (c) Pz vs b,
&

for 62——0. All three curves were calculated for equal
Rabi frequencies and for A

&
——0.250

&
——32.

FIG. 7. Effect of the edge on the probability P~. (a) P~
vs the distance D between the edge Ep of the continuum
and the resonant energy E~+co~, calculated at the exact
resonance for equal Rabi frequencies. (b) Integral

dE
~
Dt(E)

~

in arbitrary units vs the distance D of
the edge.

where

tI) = —,arctan [A &
l(E ~

—Ep ) ] .

In what follows, the distance between Eg + rp
&

and
the edge Ep (see Fig. 1) is denoted by D,

D =Eg+cu) —Ep .

The curve (a) in Fig. 7 shows the dependence of the
probability P, (which determines the number of the
photoelectrons in the first part of the spectrum) on
the distance D. It was calculated at the exact reso-
nance (b, &

——0=b,2) for equal Rabi frequencies
(R =1) and for the widths A ~

——0.250& ——A2. Again,
we see the evidence of a strong influence of the laser
light on the energy structure of the atom. There is a
pronounced change in P& for D around the value of
1.4 Q~ although in this case the edge Ep of the con-
tinuum is separated from the center of the profile
D~(E) by a distance which is six times larger than
the width of the profile. The curve (b) in Fig. 7
shows the integral

f dE
~

Di(E)
~

in arbitrary units as a function of D. We see that in
the region around D =1.40& this integral varies
very little. Its decrease cannot be responsible for a
rapid decrease of P, .

IV. CONCLUDING REMARKS

The properties of the energy distribution of the
photoelectrons, studied in this paper, indicate that a
strong laser field not only induces optical transitions
in the continuum, but also modifies its structure.
The appearance of several distinct maxima in the
energy distribution is an analog of the ac Stark split-
ting of the discrete energy levels. The light broaden-
ing was observed in all lines in Fig. 7 obtained when
one or both frequencies of laser beams we're being
swept across the resonance. Thus the atomic system
which consists of one bound state and the continu-
um with two regions of high density of states resem-
bles a three-level atom. However, the presence of
the continuum introduces one essentially new
feature. Strong laser beams may depopulate com-
pletely the initial bound state. The dressing of the
atom in the laser field manifests itself also in vari-
ous edge effects, which can, of course, be studied
only in the presence of the continuum.
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