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The threshold laws for electron-atom scattering processes in a magnetic field are shown not to
contain singularities in general. Observed modulations of photodetachment cross sections are due to
the presence of true resonances rather than divergence of phase space. These resonances may be as-
sociated with thresholds, or they may be analogous to the quasi-Landau resonances observed in pho-

toionization.

I. INTRODUCTION

Theoretical work on low-energy electron-atom scatter-
ing in magnetic fields has been motivated by the anticipa-
tion of its importance in some problems of plasma physics
and astrophysics,' ~® and by the need to interpret existing
experimental data.”® It has been asserted®—® that various
cross sections exhibit singular behavior, being proportional
to the inverse of the escape velocity near excitation thresh-
olds. I shall argue here that this singular behavior does
not generally occur. In addition, I shall express an alter-
native view of the results of experiments on photodetach-
ment of negative ions in a magnetic field. It differs quite
considerably from the theory proposed® by the original in-
vestigators, and is more akin to the prevailing interpreta-
tions> !0 of experiments!"!? on photoabsorption by neutral
atoms in magnetic fields. Several distinct mechanisms
may indeed be responsible for the observed modulations of
photodetachment cross sections. Since their separate in-
fluences cannot easily be discerned in the currently avail-
able data, further experimental and theoretical work may
be thought worthwhile.

II. FREE ELECTRON IN A MAGNETIC FIELD

This paper will primarily treat problems which can be
described in terms of the scattering of an electron by an
electrically neutral target atom, in the presence of a mag-
netic field. (Cases when the target atom has a net charge
are of sufficient interest and importance to warrant a
separate treatment.) In such cases, the electron-atom col-
lision occurs in a limited interval of time, after which the
electron and atom move without mutual interaction in the
magnetic field. It is therefore appropriate to recall the
properties of the motion of a free (nonrelativistic) electron
in a magnetic field; these are well known and have been
expounded with considerable elegance elsewhere.'?

In atomic units, the Hamiltonian for an electron in a
magnetic field Bis

H=1(P+c A2, (1)

where the vector potential A satisfies VXA =B. For the
present purpose it is most convenient to choose
A= —3TFXB, so that Eq. (1) becomes

=18 /2L + Hw/2%? @

where B=B? defines the z axis of a conventional cylindri-
cal polar-coordinate system p,¢,z; @ is the cyclotron fre-
quency (w=eB/mc in Gaussian units, in atomic units
®=4.25%10""B/kG); and [, is the z component of the
angular momentum of the electron. This choice of gauge
is motivated by the fact that the most detailed experimen-
tal data on these processes have been obtained by produc-
ing the free electron by photoejection from an atom; in
such cases only a few values of I, are relevant because of
optical selection rules.

The eigenfunctions ¢ of the Hamiltonian in Eq. (2) may
be chosen to have definite values of /,=m, in which case
they are separable in cylindrical polar coordinates

'ﬁnm(f,?):f(f,Z)Xnm(P,w »
Hipm(e,T)={eF+0ln+5+m+|m |)/21¥nm -

The “Landau orbitals” X, are defined in Eq. (A8) of the
Appendix, and f (¢,z) is a solution of

(3)

fle,z2)=0. 4)

The Landau orbitals X,, are just wave functions of a
two-dimensional harmonic oscillator (n >0 is the radial
quantum number); and the f(e,z) describe free motion
along the z direction, with kinetic energy €. The
correspondence with classical electrodynamics is fairly ob-
vious: a charged particle moves with constant velocity
along the magnetic field, and executes simple harmonic
motion (a circular orbit) in the plane perpendicular to the
field.

Equation (4) does not completely specify f(€,z). Since
the Hamiltonian of Eq. (2) is invariant under reflection in
the plane z=0, one may require f to be either even or odd
in z:

fHe,z)=(mk)~%cos(kz) ,
f(e,2)=(mk)~%sin(kz) , (5b)
where k =(2€)!”2. This choice of continuum functions
again anticipates the imposition of optical selection rules.
The polarization of an absorbed photon will dictate the in-

version symmetry of the final-state wave function of the
electron. The coefficient (7k)~!/? ensures'* that the f’s

(5a)
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are normalized on the energy scale, e.g.,
7 dzlf e fHe,2)=8le—¢) . (6)

This normalization of the continuum incorporates the
density of states per unit energy p(€) into the amplitude of
the wave function, and so eliminates the need to include
p(€) explicitly in expressions for transition probabilities.
An alternative continuum normalization, which has been
frequently used in this problem,’—? is obtained by confin-
ing the z motion of the electron to the range
—L/2<z<L /2. The wave function is then normalized
to unit probability in this interval, e.g.,

fi(e,2)=(2/L)" *cos(kz) , @)
and the density of states is
prle)=L /(27k) . (8)

The spin of the electron has not been written explicitly
in this section. In a uniform magnetic field the electron-
spin projection s, is a constant of the motion, so that the
existence of spin can be indicated simply by a uniform
shift of all the energies in Eq. (3) by the amount gBs,.

III. EFFECTS OF INTERACTION

Equations (3)—(5) provide the basis for describing the
effects of interaction between the electron and a target
atom, on subsequent motion of the electron in the magnet-
ic field. When electron and atom are sufficiently far
apart, their joint wave function X can be expressed as a
sum of products of electron and target wave functions.
The word “channel” denotes a specific state of the target
and values of n,m,s, of the electron; these are discrete
quantum numbers, associated with quantities which are
susceptible to measurement at infinite electron-atom
separation. The motion of the electron along the z direc-
tion, on the other hand, is characterized by the continuous
energy €. In the complete absence of interactions the
channel index i would be a constant of the motion. For
systems treated in this paper it is assumed that the mixing
of channels, though it may be arbitrarily strong, is due to
electron-atom interactions of finite range.

The practical consequences of this assumption are
developed in the Appendix, by an R-matrix description of
the equations of motion. With the atom sited at z=0 and
localized in the region —zy <z <z, the total wave func-
tion in the region |z | >z, is expanded in all channels i,

X= EXanimi(p7¢)j}(6iyZ) ’ (9)

where the X; denote products of target states and the spin
states of the scattering electron, as in Egs. (A7) and (A11)
of the Appendix. Each f; is a solution to an equation
identical to that of Eq. (4) in the region |z | >zy, with
€=¢; determined by energy conservation [e.g., Eq. (A16)].
Closed channels are those for which e= — +-«% < 0; at large
|z | the closed-channel components of Eq. (9) must van-
ish as f; ~e "%,

All effects of the electron-target interaction can then be
expressed in terms of a set of boundary conditions at
z =2z, for the open-channel (¢; > 0) wave functions f; only.
These take the form

fleod) |, _, = ERij(E)%ﬁ(ej,z) , (10
J z

=ZO

the sum being over open channels only, as in Eq. (A20).
The derivation of Eq. (10), including an explicit expression
for the matrix R;;, is given in the Appendix. Since Eq.
(10) is quite general, there is little that can be said a priori
about the behavior of the R matrix in any particular case;
it should be remarked, however, that R depends principal-
ly upon the wave function of the electron-atom system in
the region |z | <z,.

Within each channel one has the possibility of states
which are either even or odd under the inversion z— —z.
Imposition of parity conservation on the system will select
one class of these which needs to be considered. Equation
(10) is therefore to be supplemented by the condition
fil—z)==%f;(z), the sign as appropriate. The R-matrix
elements for even and odd states will in general differ;
however, the effect of the boundary condition (10) on
even- and odd-channel wave functions is qualitatively the
same, since both are sinusoidal functions. For free motion
in three dimensions, on the other hand, parity is correlated
with orbital angular momentum: Channels with different
inversion symmetry are subject to centrifugal potentials of
unequal magnitude, and their behaviors at small distance
or low energy will differ.

The contrast between one- and three-dimensional
scattering is seen clearly when only a single channel is
open. Its even- and odd-parity wave functions f¥(z) can
then be written in symmetric form

(k)= V2%sin(kz +64), z>zq (11a)

fEez)=
(11b)

(k)™ 2%sin(Fkz £8.), z< —zq .

The phase shifts 8, are then determined by application of
the condition (10) to Eq. (11a) alone,

tan(kzo+84)=kR 4 (E) , (12)

where R, are the R-matrix elements for even and odd
states in the open channel. Equation (12) implies that as
k—0,

81—>k[Ri(E0)—zo]=—kai (13)

with Eg=FE (k =0), and a. are scattering lengths defined
by this equation. In particular, if a, is finite (i.e., the
even-parity wave function does not have an antinode at
z =2z), then at low energy the even-parity function of Eq.
(11a) is shifted in phase by 7 /2 from the free solution of
Eq. (5a). Such behavior does not occur for motion in
more than one dimension, and is related to the ability of
any attractive one-dimensional potential to hold a bound
state.!> Therefore, in the absence of zero-energy reso-
nances (@ < «), the low-energy behavior of energy normal-
ized wave function is

fle,z)—(k /m)"*(z —a) (14)

for z > z,, irrespective of parity. Resonances at zero ener-
gy can in fact occur, as a result of some particular feature
of the electron-atom interaction, just as they can occur in
field-free electron-atom scattering. However, they should
be expected to appear in exceptional circumstances, rather
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than as a matter of course. The threshold law for any
scattering process in a magnetic field should therefore be
formulated in terms of the usual low-energy behavior of
final-state wave functions.

IV. PHOTODETACHMENT IN A MAGNETIC FIELD

Blumberg et al.® have explained the results of their im-
pressive photodetachment experiments using a channel
description similar to that employed here. They have ex-
amined photodetachment of the sulfur negative ion S™
held in an ion trap in magnetic fields of the order of 10
kG. This process is appropriately treated by application
of the Fermi golden rule to an electric dipole transition.
The initial state |i) is one of the Zeeman levels (i.e., de-
finite M;) of the 3p°2?P;,, state of S™. The final state
| £) consists of an electron escaping from a neutral S
atom, which experimental procedure requires to be in one
of the Zeeman levels of the 3p*3P, state; therefore, the
asymptotic form of | f) is given by Eq. (9) with each X;
being a product of one of the Zeeman levels of S 3p*3P,
with the outgoing spin state of the electron. The rate of
photodetachment I'j¢ is then proportional to the square of
the electric dipole matrix element (i | T | f).

To evaluate this matrix element Blumberg et al. take
the asymptotic form [Eq. (9)] of |f) to be valid at all z,
so that the rate of transition to a final state with Landau
quantum numbers n,m is

i~ [ GIT|/) 2
fd?¢§p(f’)rf(e,z))(,,m(p,¢) i )

where W is a product of core overlap and angular momen-
tum recoupling factors. The only energy dependence in
Eq. (15) enters via the function f(¢€,z). Selection rules im-
ply that f is even in z. Blumberg et al. take f from Eq.
(5a), which is the appropriately normalized even function
for a free electron in a magnetic field. With this choice,
f~k~12 in the limit e—0; therefore, the photodetach-
ment cross section appears to have singular behavior
T~k ~!, at each Landau threshold. Blumberg et al. at-
tribute the observed modulations of the photodetachment
cross section to the existence of such singularities. Singu-
larities are not directly observed, of course. The experi-
mental data show a cross section which is averaged over
the (unknown) velocity and state distribution of the S~
ions in the trap, as a result of which the singularities
would be “washed out.” The observed data can be fit
quite well by adjusting the population-distribution param-
eters in the theoretical expressions derived from the argu-
ments summarized in this paragraph.

However, the arguments of Sec. III indicate that there
are generally no singularities in the photodetachment cross

=W (15)

section. This is obvious in the case where only one chan-

nel is open. Examination of Egs. (11)—(14) shows that in
the neighborhood of the atom the appropriately normal-
ized continuum function becomes proportional to k!/?
rather than k ~!/2, near threshold. The true threshold law

is therefore
I~k (k—0). (16)

When more than one channel is open, e.g., when the
photon energy is sufficient to permit the escaping electron

to occupy a number of Landau levels, the same behavior is
obtained. The multichannel case requires somewhat more
careful formulation of the final-state wave function. If,
for instance, one is interested in the yield of electrons in a
particular Landau orbital n;,m; escaping along the +z
axis, then the final state must correspond to incoming
waves in all channels and an outgoing wave in channel i in
the +z direction only. These partial cross sections must
be summed to obtain the net photodetachment rate. It
turns out that, subject to the qualification expressed by
Eq. (18) below, the total cross section is continuous as the
energy increases across the ith Landau threshold, and the
cross section for escape in the ith Landau orbital starts off
proportional to k;. This can be seen in an eigenchannel
formulation of the problem. If i channels are open, one
can find i solutions of each parity for which the channel
functions f; take the form

Ak sin(kjz +-8%), 2>z

7 (e,2)= a”n

A,fjkj"l/zsin(ikaiﬁf), z< —2zp .
The 8§,A fj (=1, ...,1) are, respectively, the eigenphase
shifts and eigenchannel vectors; they are determined by
substituting Eq. (17) in Eq. (10). As each new channel
opens a new eigenphase appears. If at the energy of the
ith threshold the determinant

| 8,58in(kyz0) — k' R,k cos(kyzq) | 0 (18)
(rs=1,...,i—1), then the ith eigenphase §; ~k; near
threshold, and with 4; =1 the lower channel eigenvector

2] s . ..

components  A;;~k;’%,  j=1,...,i—1. Similarly
Agi~ki”? for a<i. Therefore the wave function in the
ith channel behaves as in Eq. (14), and the threshold law
for each partial cross section is the same as for the one-
channel case, Eq. (16). Exceptions are permitted when Eq.
(18) is not satisfied, but this is a condition for a threshold
resonance analogous to the existence of an antinode at z,
in the one-channel case.

It is therefore apparent that the formulation of Blum-
berg et al. does not provide a correct threshold law, since
their description is valid only in the special (and hypothet-
ical) case of vanishing electron-target interaction. It must
be noted, however, that their treatment does on the whole
provide a satisfactory fit to the experimental data. This
may be due in part to the use of adjustable parameters,
such as initial-state population and ion temperature; but
any theoretical analysis of those experiments must employ
such parameters, and there is no indication that the adjust-
ed values used by Blumberg et al. are greatly at variance
with those which might be obtained by independent mea-
surement. In addition, Blumberg et al. present an argu-
ment showing that their k ~! threshold law reduces to the
familiar Wigner threshold law (for an s wave in this case,
I' ~ k) in the limit of zero magnetic field.

This latter point will be addressed first, since its resolu-
tion will help set the stage for more detailed considera-
tions. As a simplified model problem, suppose the
electron-atom interaction to be represented by a simple
spherical-box potential V(r)=—V, for r less than some
ro. The wave function can then be expanded in the form
of Eq. (9) throughout all space (the 6; being simply Lan-
dau orbitals), and the equations of motion then take the
form of Eq. (A15) of the Appendix
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1 32
—7?4-]/;,‘(2)-—6,- f,~=§V,’j(Z)fj(Z) (19)
with
V(@) =8mm, [, dpp¥((p*+2%)'7)
XX (0o (P) 5 (20)

where X, (p) is the normalized radial part of Eq. (A8).
The effective upper limit of radial integration in Eq. (20)
is p=(r3—z2)!% V,;(z2)=0 for z>ry,. The root-mean-
square radius p of an electron in a Landau orbital nm is
p=[2(2n + |m | +1)/w]'/? in atomic units. Since v ~B,
p will become arbitrarily large as B—0. Therefore, the
Xum in Eq. (20) may be replaced by their values at p=0;
for m =0 it is seen from Eqgs. (A8) and (A9) that
Xnolp=0)=w'/2. Thus, for m =0,

Vi2)=—Voo(r§—22)/2, |z|<ro 2D

in the limit ®—0. The effective potentials of Eq. (19) be-
come arbitrarily small as the field vanishes. Recall that in
one dimension, any attractive potential holds a bound
state; as the potential goes to zero, so does the energy of
the bound state. If channel coupling is ignored for the
moment, it is seen that there is a bound state attached to
each Landau threshold; in the zero-field limit it becomes a
zero-energy resonance. Therefore, in the zero-field limit
the threshold law becomes k ~! [it is more accurate to say
that the range of validity of Eq. (16) goes to zero, and the
cross section becomes dominated by threshold resonances];
Blumberg et al. then show® that the simultaneous coales-
cence of thresholds leads to reproduction of the Wigner
law in zero field.

Accessible laboratory fields yield values for  in the
10~%-a.u. range: For a typical field strength employed in
the photodetachment experiments, 10.7 kG,
®=4.56x 105 With reasonable guesses for the strength
and radius of an effective electron-sulfur potential V(T),
this could lead to resonances very near their associated
thresholds. Such states would have very diffuse wave
functions, of mean radius p in the plane perpendicular to
the field but with much greater extent along the field
direction. Note, however, that the interaction Vj;(z) be-
tween channels given by Eq. (21) is just as strong as the
“central” potential V};(z); and both are comparable to the
energy spacing o between successive Landau thresholds.
A resonant state of this type will be degenerate in energy
with free states in channels associated with lower Landau
levels. Therefore, it is not clear what role such states will
play in the photodetachment spectrum.

In experiments on atomic photoabsorption in a magnet-
ic field as well, substantial modulations of the cross sec-
tion are observed'""!? above the ionization limit. These are
attributed®!° to an entirely different type of resonant state
than that which has just been described. In photoabsorp-
tion the ejected electron experiences a long-range Coulomb
attraction. In the naive view this would result in a Ryd-
berg series converging to each Landau threshold, with the
total photoabsorption cross section being continuous
across the threshold, and partial cross sections starting
from finite values at their respective thresholds. The most
prominent features in the spectrum are, however, not asso-
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ciated with the Landau thresholds at all; the modulations
are spaced in energy by an amount which decreases from
3w /2 at the ionization threshold to  at high energy.

The explanation of this phenomenon which has come to
be accepted is that these modulations are associated with
“quasi-Landau” resonances, which are states in which the
electron remains fairly localized in the plane z =0 which
contains the residual ion. At large electron-ion distances
the motion of the electron is governed by the combined
Coulomb potential and diamagnetic potential of Eq. (2)

V()= —1/r+ +w%2%in%0 . (22)
The direction z=0 (@=/2) corresponds to the most
repulsive part of the potential surface (22) at fixed . The
quasi-Landau resonances are therefore described as states
which are confined to the ridge of this potential surface.
Details of the mechanism responsible for this confinement
are by no means entirely understood, although evidence
that it may be of fundamental importance has been accu-
mulating.'$

The quasi-Landau resonances decay by, so to speak, fal-
ling off the ridge; the electron escapes along the direction
6=0, into those Landau orbits which its energy may al-
low. There has been no determination of the branching
ratios for decay of a quasi-Landau resonance into alterna-
tive Landau final states. For typical laboratory fields,
however, the wave function of the first quasi-Landau level
above the ionization limit has ~40 radial nodes in the
plane z=0. The lowest Landau orbital at z= 0, on the
other hand, has no radial nodes. One cannot therefore ex-
pect a unique correspondence to exist between a quasi-
Landau resonance and a dissociation limit of the system.
The quasi-Landau levels are formed as a result of com-
petition between two forces—Coulomb and magnetic—of
comparable strengths but incompatible symmetries; they
have little relationship to states which are governed by one
of those forces alone.

It seems reasonable to inquire whether resonances of the
quasi-Landau type exist in the case of photodetachment.
The distinction between quasi-Landau states and the
threshold resonances described previously is similar to
that between Feshbach and compound nucleus resonances.
A threshold resonance is loosely “attached” to a particular
Landau level; a quasi-Landau state is instead a transient
mixture of a large number of Landau orbitals. A mechan-
ism for the formation of this latter type of state is suggest-
ed by Eq. (21), in which interchannel coupling is indepen-
dent of channel number. I am unable to state firmly
whether quasi-Landau resonances will show prominently
in photodetachment spectra, but some preliminary investi-
gation of their expected characteristics is not too difficult.

The quasi-Landau resonances in photoionization are lo-
calized in a region where the Coulomb and magnetic in-
teractions are of comparable strength. In photodetach-
ment the long-range Coulomb interaction is not present;
higher electric multipole potentials constitute the dom-
inant electron-atom interaction at large separation r. The
electron-atom interaction at small r is, for laboratory
fields, much stronger than the magnetic interaction; but
over the energy range of interest (say, 100 cyclotron fre-
quency units) it can be adequately represented by a scatter-
ing length. It will be shown that if these combined finite-
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range forces result in quasi-Landau resonances of the same
type that occur in photoionization, the energy e, of the
nth such resonance (for given m) is

m|+m+1

2 ) (23)

ep=w |n—pu—+

where pu varies slowly with n. An estimate will then be
given of the value of u for the case of S~ in a magnetic
field of 10.7 kG.

For u=0, Eq. (23) reduces to the energies of the Landau
orbitals, as in Eq. (3). It is reminiscent of the formula
which gives the energies of atomic Rydberg states by re-
placement in the hydrogenic formula of the integer princi-
pal quantum number n by n*=n —pu, where pu is the
quantum defect. It is perhaps easiest to justify Eq. (23) by
development of this formal correspondence. If, as in pho-
toionization, we treat the quasi-Landau levels as confined
to the plane z=0, then their wave functions &, satisfy the
two-dimensional Schrodinger equation

1118 38 m?| 1 5,
2 |0 3" 3 P +70p"+V(p) |En

(24)

m
ep———w

o |6

where V(p) is the finite-range electron-atom interaction.
Over a limited energy range the effect of V(p) can be
represented by requiring that

(25)

P=Po

and solving Eq. (24) with V(p)=0 in the region p > py,
subject to Eq. (25). Setting ¥=0 and y =wp?, Eq. (24) be-
comes

103 8 (m/p)
y 8y~ 9y y?

1
2

£ ]g,,:o , 26)
y
where {=e, /20w —m /4, and Eq. (25) becomes

d
'y__gn

=b/2.
&n Oy

y =wp]

27

For even m, Eq. (26) is recognizable as the Schrodinger
equation for a two-dimensional hydrogen atom with nu-
clear charge ¢ and energy E = — 4, subject to the short-
range boundary condition (27). Without this condition E
would be one of the energies of the two-dimensional hy-
drogen spectrum

2
E=—+ &

2
n4 m2+1]

(28)

where n is an integer, the radial quantum number. The ef-
fect of the condition (27) on the hydrogenic spectrum is to
cause n to be replaced by n*=n —u. Therefore,

87
2
n* 4 m —|—1J
2
so that
=0 2§+L;— =w n*+J—m*J%H—|. (30)

In this model, then, the quasi-Landau spectrum is dis-
placed from the Landau thresholds by a constant energy
wp. 1 have attempted to estimate the magnitude of u for
the m =0 states of S~ in a 10.7 kG field by the following
means. I employ Eq. (24) with V(p)=—a/2p* for
p> 10ay, where a is the dipole polarizability of neutral
sulfur, taken to be 10.42 a.u.!” Since w=4.56x10"° for
this field strength, the polarization and magnetic poten-
tials become equal in magnitude at p~125a,, and the cy-
clotron radius p=(2/w)"*=660a,. The electron-sulfur
interaction in the region p < 10a, is represented by Eq.
(25) with b=0.91. This value for b was obtained by using
the doublet scattering length given by Rau and Fano!® to
determine the slope of the field-free zero-energy wave
function at infinity, and then propagating the logarithmic
derivative £~ 193¢ /9p inwards to p=10 by using the known
solutions for a wave function of zero energy in a polariza-
tion potential. The resulting equations equivalent to (24)
and (25) were then integrated numerically, and the effec-
tive oscillator quantum numbers were found to be (for the
first four states with m=0)

*

n n

0 0.093
1 1.101
2 2.106
3 3.109

The “quantum defect” p is thus of the order —0.1 and
varies slowly with n as expected.

This elementary calculation is intended to illustrate the
order of magnitude of the quasi-Landau shift rather than
to provide a firm prediction of its value. The electric
quadrupole interaction and the presence of nondegenerate
m sublevels of the residual sulfur atom, have not been ac-
counted for. There are no physical grounds for restricting
the range of values of u; and since the electron-sulfur in-
teraction does not appear to be exceptional in any way, it
may be expected that, in general, the quasi-Landau shift
will amount to an appreciable fraction of the cyclotron
frequency. In this sense quasi-Landau states should be ex-
perimentally distinguishable from threshold resonances.
Since the experiments of Blumberg et al. do not determine
the absolute values of threshold energies, it is not possible
to make this distinction in their data. In addition, the mix
of possible initial and final states, which obtains when an
open-shell target atom is employed, results in considerable
averaging of effects. Experiments on alkali-metal negative
ions may be better able to examine this question. Alkali-
metal polarizabilities are 10—20 times that of sulfur, so
that competition between magnetic and atomic potentials
occurs over a greater volume; and the multiplicity of ini-
tial and final states is reduced.
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V. OTHER SCATTERING PROCESSES

The considerations of Secs. III and IV have implications
for scattering processes in which a continuum electron is
present in both initial and final states. Because of the
one-dimensional nature of the continuum, it is more con-
venient to formulate such processes in terms of transmis-
sion and reflection matrices rather than scattering ampli-
tudes. A process in which a unit flux of electrons in chan-
nel i enters the reaction zone from the —z direction, is
described by

8j,'kj_l/zeika+R,-jkj_l/zeika, Z—>— o0
fj(ej’z)= (31

— ik;z
Twukj l/ze 1, Z—+ o0

using the notation of Eq. (9). The squared moduli of the
R;; and Tj; in Eq. (31) give the outgoing flux in the jth
channel in backward and forward directions, respectively.
Onda and Schmitt et al.® have calculated these matrix ele-
ments by direct numerical solution of coupled differential
equations of the type (A15); other published work®*>
which deals with the determination of R and T has, how-
ever, relied on Born-type approximations.

If applied to low-energy finite-range potential scattering
in three dimensions, the Born approximation yields results
which are quantitatively wrong, but in one sense qualita-
tively correct: it gives the proper energy dependence of
phase shifts 8;~k#*!. In one dimension, however, the
Born approximation is qualitatively wrong. This seems to
have been pointed out first by Ventura,? in the context of
electron-ion scattering in a magnetic field. It is a fact
which has perhaps not received adequate attention in later
work, so I think it appropriate to emphasize it here.

The contrast between Eq. (5a) and Eqgs. (11a) and (13)
indicates the degree of error which can be introduced by
substitution of the free-particle wave function for the ac-
tual wave function at low energy. In the single-channel
case, use of Eq. (5a) in a Born approximation yields a T-
matrix element which goes to a constant value as k—0;
this gives a k —! singularity in the cross section.” Equa-
tions (11a), (11b), and (13), however, give T~k at thresh-
old, in the absence of a resonance. In the multichannel
case, eigenchannel analysis gives a similar result. If Eq.
(18) holds, then near the threshold of the ith channel

T]t-:TuNk,l/z (J <l)

Ri=Ry~ki"? (j<i) (32)

Ti~ki; Ry——1.

(The equalities T;;=Tj; and R;;=Rj; hold if the Hamil-
tonian is invariant under z— —z; equality of the square
moduli holds generally.) For finite-range interactions,
then, scattering cross sections do-not generally show
singularities at Landau thresholds.

When a long-range Coulomb field is present, Eq. (10)
provides a suitable boundary condition for the channel
functions f;. In the absence of interchannel coupling in
the region |z | >zg, the f; become solutions to the one-
dimensional Coulomb equation in that region. With each

Landau threshold there are then associated two Rydberg
series (of even- and odd-parity states), the members of
which are broadened by interaction with the continua of
lower Landau thresholds. The threshold laws for various
scattering processes should be identical to their three-
dimensional counterparts, e.g., partial Landau excitation
cross sections should start at a finite value at threshold.

However, a detailed description of Coulomb scattering
in a magnetic field requires an account of the specific
variation of Eq. (10) with respect to energy. In the only
resolved experimental data on this process now
available—atomic photoabsorption spectra—the most not-
able feature is the series of quasi-Landau resonances. The
properties of electron motion in the asymptotic region ap-
pear to have only indirect relevance for the understanding
of these phenomena.
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APPENDIX

This appendix provides the formulas underlying Eq.
(10), which are derived along the same lines as convention-
al R-matrix treatments!® of electron-atom scattering.
Atomic units are used throughout.

Consider the system of an electron and a target atom
(containing N electrons) confined to a region I': |z | <z,
where z is the coordinate in the magnetic field direction
and the atomic nucleus lies in the plane z=0. The width
2z, of this region is chosen to be sufficiently large that the
target electrons have negligible probability of reaching its
boundary; so that, in other words, for |z | >z, only the
motion of a single electron need be considered. Let zy
denote the z coordinate of that electron, and ® a wave
function of the combined electron-target system. Under
the restriction just mentioned, which precludes the treat-
ment of ionizing collisions, the imposition of the boundary
condition

d

dzy 41

L] =0

zy 41=%2g

(AD

on ® suffices to produce a set of solutions ®; to the equa-
tion of motion

H®,=E;®,; , (A2)

which is complete in the region I'. In Eq. (A2), H is the
Hamiltonian operator for the N +1 electron system in T,
defined in the usual way, and E; is the energy of the ith
eigenstate. The solutions ®; are normalized in the follow-
ing sense:

(@ | @)= [ -+ [dF) - dfy 1 ®f0=1,
(A3)
the range of integration of each electron coordinate T; be-
ing T'. By construction, it is supposed that for

i=1,...,N the integral is practically the same as if taken
over all space. Equations (A1)—(A3) thus yield the ortho-

gonality condition {®; | ®; ) =3§;;, since
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dzy 41
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Therefore, any wave function ¥ which corresponds to a single electron being present in the region outside I', may be

represented within I' by an expansion in the ®;:

i
(in T). The coefficients a; are then determined from
(E—Eja;=(®; | HY) —(HD; | )
i . Zy 1 a? 92
= fr e frdrl Tt drNde+ldyN+l f—lodzN+15 ¢*m¢.—¢r az§+1 Ip
; -
=_7fr... frdrl"‘dyNH @} 62N+1¢_z(, . (A6)

E is the total energy of the system in the state 1.

On the surfaces |z | =z of I" the ®; themselves may
be expanded in products of target wave functions X; and
Landau orbitals X,,. The X; are eigenfunctions of the
Hamiltonian of the N-electron atom and can also include
the spin of the N + 1 electron

Xj EX;(?I) .. (A7)

is understood to be fully antisymmetric under inter-
changes (77, 0;)«(T;,07;) for i,j=1,...,N. For brevity
the variables of X; will not be written explicitly, and all
overlap integrals, etc., involving X; are to be interpreted in
the conventional manner. The X, are the wave functions
for electron motion in the plane perpendicular to the mag-
netic field, written in the polar coordinates p,¢ of that
plane

.,rN;Ul,...,5N+])

em$ o(n!) . (wp?/8)
= : —(ap
Xom(p:4) V2 [(n+|m|) ¢
|m|/2
X %’-p2 L™ (wp?/2) , (A8)
where
n+m
LMx)= n Fil—nm +1,x) . (A9)
Thus, for zy = *z,
®;= 2 Xjaijnm(zN+1=i20)Xnm(PN+h¢N+l) s
n,m
(A10)

where the sum over target states j is restricted to those
whose wave functions X; are negligible for |T;| >z,.
This justifies the expression (A10) for the fully antisym-

metric function ®;, since additional terms deriving from
interchanges of Ty, ; and T; will be exponentially small.
The wave function ¥ may be expanded outside I' as
well,
¢= 2 ijnm(pN+l7¢N+1)fjnm(zN+1) .

jn,m

(A1)

Since the full Hamiltonian of the system is invariant
under inversion in the plane z=0, i.e., z,——z;,
i=1,...,N+1, ¥ may be taken to be even or odd under
that inversion. The X; also possess definite inversion sym-
metry, and therefore so do the fj,,,. The coefficients a;j,n,
of Eq. (A10) must thus have the same inversion symmetry
as the fj,,, which is opposite to the inversion symmetry
of the derivatives dfj,y, /92, ;. Therefore, Eq. (A6) can
be further developed as

(E—E)ai=— 3 Glum ;’—zf,-,,,,, (z) (A12)

J,n,m

z=+2,

By inserting this result in Eq. (AS), and equating the coef-
ficients of the product X ;X ,,, on either side, it is seen that

- .
Qijnm Qikn'm'’ d
2 fkn ‘'m ’(Z)

fjnm(zo)zi,k’"”m, (E, —E) —a;

z=z,
(A13)

Thus a boundary condition for the z motion in each
channel jnm can be computed solely from the solutions of
Egs. (A1) and (A2) in " (which give the a;j,,,,) and the to-
tal energy E. It will be convenient to designate by a single
index j the three-channel quantum numbers j,n,m, so that
Eq. (A13) may be read in the matrix form

Fi(zo)= 3 Ru(E) 2 f(2) (A14)
k oz z

=z,
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The interaction between the electron outside I" and the
residual target atom is presumed to be described by a po-
tential V=V (Ty ;T ..., Ty). The Schrédinger equa-
tion for the channel functions f;(z) for z > z, is then

1 9

2 9z 2 Vij(Z)fj ) (AIS)

—5 +Vil)—€ |filz2) =3,
j

where

6,~=%k,~2=E—e,~—%[2n,~+1+(mi+ | m; |)/2]

(A16)
and

Vi@ =AXiXpm, | V [X,-X,,j,,.j> (A17)
and ¢; is the energy of the residual target state X; plus the
paramagnetlc energy of the spin of the scattering electron
gSN+1 B. For most practical purposes V will consist of
electric multipole and polarization potentials ¥ ~r ¥, In
such cases the V;(z) may be evaluated in terms of ex-
ponential mtegrals and error functions. The diagonal
terms V;(z) represent the average, over a probability dis-
tribution in the plane z=constant, of a potential which is
strongest at p=0; therefore the numerical value of V;(z)
must be less in magnitude than that obtained by substitut-
ing z for rin V.

Equation (A 14) determines the solution of the system of
equations (A15) for z>z,, up to boundary conditions
which are imposed at infinity (the solution for z < —z,
can be obtained by invoking the inversion symmetry of the
fi1). The conservation of the projection of the total angu-
lar momentum on the magnetic field axis will simplify
this system of equations, for instance, by permitting

separate treatment of channels associated with different
values of m. All simplifications which may be made on
the basis of symmetry arguments nevertheless still result
in infinite systems of equations, whereas for any given en-
er y E only a finite number of channels are open (i.e., have

£>0). Elimination of the closed channels (those with
kz— —«?<0) is, in general, a laborious procedure which
must be carried out iteratively. However, when the
electron-target interaction vanishes in |z | >z, this elim-
ination is fairly straightforward. The basic idea is that
since the closed-channel wave functions must die off ex-
ponentially, f, ~e ‘z, there is a fixed relationship in each
closed-channel ¢ between the value of f, and df, /0z at the
boundary zy. This takes the form of an additional con-
straint upon the linear relations (A 14), which can be elim-
inated in the usual way to reduce (A 14) to an equation in-
volving open-channel wave fllmctgons only.

Specifically, let ?o, ?c, ?o, Tc, denote the sets of open-
and closed-channel wave functions and their z derivatives,
respectively, and let (A 14) be cast in the form

—

£, =R*T, + R T,

z2=zy

(A18)

fo=Ref,+R“f.|,_,, .
For a closed channel i, f;(z)=F;e ~"i* (z > zy), which may
be written in matrix form as

—t

f,=—«f,, (A19)

k being diagonal. Routine manipulation of Egs. (A18) and
(A19) then yields

—

f,=Rf,,
R=R00_KROC(1+KRL'C)—1RCO.

(A20)
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