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A computational study is made of mode-selective multiphoton excitation in a model nonseparable
anharmonic-oscillator system. The time evolution of quantal wave packets on the Henon-Heiles po-
tential surface is treated via Floquet theory; periodicity of the classical laser field, Eocoscot, is uti-
lized to formulate the propagator for the state amplitudes. In a previous study by Hose and Taylor,
a criterion was developed by which the quantum states corresponding to the classical quasiperiodic
motion are identified. Two types of quasiperiodic states exist in the Henon-Heiles system: Q, the
normal mode and Q", a local (bond) mode; highly mode-mixed states are designated as N (nonquasi-
periodic). In the present study it is found that efficient multiphoton excitation into a subset of the
Q' states lying between the classical critical energy and the dissociation barrier is obtained, provided
that the field strength is not too large and the frequency of the laser is tuned to the fundamental of
the Q ladder. Implications for mode-selective excitation in real systems are discussed.

I. INTRODUCTION

With the advent of the availability of high-power lasers,
the concept of photoselective multiphoton excitation and
dissociation of rnolecules was advanced. ' In photoselec-
tive excitation (PSE), it was envisioned that the mono-
chromatic laser would excite the molecule through a spe-
cial ladder of nuclear motion states into the dissociation
region. This special ladder would be a subset of all states,
roughly equally spaced in energy, and would have the
property of being either a local- (bond-) mode sequence or
a normal-mode sequence. Upon reaching the dissociative
continuum, the molecule would fragment in a pattern that
was a natural extension of the local or normal modes,
respectively. This attractive idea immediately ran into
difficulty as it was realized that it would be made unlikely
by two dynamical effects. The first was anharmonicities
which would detune the ladder spacings from the laser
frequency. Power broadening could not generally be
counted on to spread the rungs of the ladder to the correct
energy. The second effect was the quantum-mechanical
mixing of modes that would occur as the dissociation re-
gion was approached. Here the high density of local, nor-
mal, and other states would mix strongly. The states
would lose their character and form a mode-mixed
quasicontinuum. On one hand, the latter effect would
promote multiphoton dissociation by insuring that an op-
tically active state was available at most energies. On the
other hand, it would cause the rung to be non-mode-
specific and destroy the desired effect. Although some de-
gree of mode selectivity is claimed in some early experi-
ments, ' most experiments and theory" ' seem to sup-
port the unavoidable occurrence of a mode-mixed
quasicontinuum and hence nonspecific excitation and dis-
sociation.

One of the first glimmers of hope that mode-mode mix-
ing might be avoided came from classical mechanics.

Computations on systems of two coupled anharmonic os-
cillators were expected to show that for all allowed initial
conditions the resulting trajectory would eventually cover
the available energy surface in phase space and the classi-
cal X-F plane bounded by the potential walls. Amazingly,
for certain initial conditions a finite number of classes of
trajectories were found that seemed to be restricted to
toroidal subshells of the phase-space energy surface and to
specific regions of the allowed position space. These re-
stricted trajectories were mostly nonperiodic, but were
quasiperiodic (Q). Several recent reviews describe these
results in more detail. ' ' The fact is that restricted
motion could occur in nonseparable systems and for
reasons which were not immediately obvious. Moreover,
action variables could be computed for quasiperiodic tra-
jectories, giving rise after the fact to mathematical, but not
physically evident, constants of the motion.

Two questions were obvious from these results. The
first speculated that a quantum analog of the Q trajec-
tories might reveal subsets of states, nested among the to-
tal set, that were nonmixing in the mode-mode sense, local
or normal, and therefore usable as rungs on a selective
photodissociation ladder. The second question asked what
caused these quasiperiodic motions. In a recent paper by
Hose and Taylor' both questions were addressed and
answered. For a quantum two-dimensional anharmonic
oscillator it was shown that Q states do exist as subsets of
all states and that they have the following properties.

(i) The Q states are identified by purely quantum-
mechanical methods, given the wave function %(x,y).

(ii) Q states have wave functions that are dominated by
projections onto wave functions of systems that have
rigorous constants of the motion. Hence, with high proba-
bility the Q states act as if they have extra "quasi" con-
stants of the motion, i.e., they do not significantly mode-
mix.

(iii) The Q levels were the only levels that could be ap-
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TABLE I. Selective-excitation ladders in the Henon-Heiles system; rungs in the Q' (harmonic) ladder are characterized by large
overlaps with TDHO states of the type (n, +n ); rungs in the Q" ladder have significant overlap with states describing excitation along
the cubic X mode, i.e., (n„'&O,n~ =0) (cf. Tables I—III in Ref. 19).

Level
Q' ladder

States n &n+ l
—&n Level States

Q" ladder
cn & cn X

„c ) 6 c
x x

37E
20A )

27E
22E
12A ),7A2
15E
12E
7A l, 3A2
7E
5E
3A l, 1A2
2E
1E
1A(

111,112
94

80,81
65,66
54,55b

44,45
35,36
27,28b

20,21
14,15
9,10

5,6
23

1

13
12
11
10
9
8

7
6
5

3
2
1

0

14.085'
13.077
12.065
11.050
10.035
9.022
8.009
6.999
5.991
4.986
3.985
2.985
1.990
0.999

1.008
1.012
1.015
1.015
1.013
1.013
1.010
1.008
1.005
1.001
1.000
0.995
0.991

34E
19A 1

17A l

23E
19E
16E
13E
10E
8E
6E
4E
3E
2E
1E
1A l

102
90
77
67
57
46
38
29
23
16
12
7
5
2
1

14
13
12
11
10
9
8
7
6

4
3
2
1

0

13 584'
12.774
11.970
11.152
10.318
9.444
8.576
7.659
6.765
5.817
4.899
3.926
2.985
1.990
0.999

0.810
0.804
0.818
0.834
0.874
0.868
0.894
0.948
0.948
0.918
0.973
0.941
0.995
0.991

'Rungs above the classical dissociation barrier, D= 13.333.
Nearly degenerate levels.

proximated by the Einstein-Brillouin-Keller (EBK)
methods of semiclassical quantization.

(iv) The Q states are also known to be localized
(

~

0'(x,y)
~

) in the same regions in the X-1'plane that are
occupied by the Q trajectories that are used to obtain the
corresponding Q levels by semiclassical EBK quantization.

For the Henon-Heiles potential ' it was shown' that
two types of Q ladders exist (cf. Table I). The Q" ladder
comprises states whose wave functions are dominated by
separable functions with the excitation primarily in the
anharmonic X tnode. The Q" ladder is not amenable to
PSE because it rapidly detunes due to its large anharrnoni-
city. The other type of ladder, called Q', comprises states
whose wave functions are dominated each by a subset of
degenerate eigenstates of the two-dimensional harmonic
oscillator (TDHO). The Q states are of a normal-mode

type and are not mode-mode mixing as if they do not
"feel" the anharmonicity in the potential. All the Q'
rungs (cf. Table I) correspond to TDHO states of the type
(n, +n) which for a given radial quantum number n have
reached the highest possible absolute angular momentum
quantum number,

~

l
~

=n. Note that the cubic anhar-
monicity of the potential couples TDHO states with

~

l
~

&n —3 to less states than it does the states with

~

l
~

&n —3. This is the physical reason why these Q'
states remain non-mode-mixed. Similar arguments hold
for the high Q" states. Qualitatively, both Q and Q"
ladder states represent extreme motion of the respective
mode.

Hose and Taylor' quickly realized that the Q' ladder,
since it acted like a TDHO and would not detune or
mode-mode mix, is perfect for selective rnultiphoton exci-
tation provided the laser frequency would nearly fit its
fundamental and the field intensities are not so high as to
further mix (or detune) the states. The selection rules of
the TDHO perfectly fit the Q ladder: ( n, +n)~
(n+ 1,+(n+ 1)), that is,

~

An
~

=
~

b, l
~

=1. The high

overlap between Q' states and TDHO states indeed en-
sures high oscillator strengths. Not having the experience
and programs to carry out multiphoton dynamics calcula-
tions, Hose and Taylor simply pointed out' that if one
started in the ground state, which is essentially the TDHO
ground state (0,0), and mentally defined a sequence of ex-
citations chosen so as to minimize detuning and maximize
the X- or P-dipole matrix elements, that one could use the
Q' (and the system) fundamental to climb up the Q'
ladder. The last step in this ladder carries the system
from the highest Q' bound state to a continuum resonance
state whose prime projection is of the Q type and is sim-
ply the next Q' rung which missed being bound. From
this resonance the system could dissociate or, in turn,
climb higher to other resonant Q' rungs from which it
would eventually decay in what would be mode-specific or
non-mode-specific dissociation. The Hose-Taylor discrete
basis set calculation found Q resonances that were corre-
lated with Q trajectories appearing above the classical dis-
sociation barrier. In a later calculation these Q roots
were found to be stabilized. Coincidently, the Hose-
Taylor criterion for finding quasiperiodic states, when sa-
tisfied for a continuum energy eigenfunction, turns out to
be similar to the Taylor stabilization criterion.

The key point is that, albeit a model system which is
not a molecule but which exhibits features analogous to
coupled bond anharmonicity and mode-mode mixing, one
could anticipate, but not demonstrate, PSE and dissocia-
tion. The problem remained of obtaining a method that
could do multiphoton excitation calculations for a given
anharmonic-oscillator potential, namely, the Henon-Heiles
system. Recently, such a method has been developed and
tested by Wyatt et al. , who adopted Floquet theory for
the computation of the time development operator in sys-
tems with large number of states. Interestingly, Davis
et ai. , while carrying out calculations on the Hansel sys-
tem ' of coupled Morse and harmonic oscillators, found a
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behavior simijiar to what Hose and Taylor had predicted in
the Henon-Heiles system. ' At a certain frequency, the
harmonic-oscillator fundamental, the system seemed to
climb a ladder of equally spaced states without energy
spreading. The calculations at field frequencies differing
from the harmonic fundamental showed excitation
bottlenecks followed by energy spreading among many
mode-mixed states. However, the Hose- Taylor-type
analysis has not yet been done on the Hansel system. The
calculations of the present collaborative study demonstrate
that PSE indeed occurs via a Q ladder, as anticipated, in
the Henon-Heiles system which is known to exhibit re-
gions of severe mode-mode mixing.

II. THEORY

a2 a2 3

H 2 '+ 2
+2(X2+y2)+A xy2

1

2

1 0 1

r Qy y2 Qg2
+——+— 3

+ 2 r — cos30,2 kr

(2.1)

where A, =0.1118. Note that the polar form of this
Hamiltonian emphasizes the C3, symmetry of the system;
the quantum energy levels are therefore labeled as 3 &, A2,
or E which are doubly degenerate.

Clearly, the Hamiltonian (2.1) is not separable. The
first step in the analysis is to partition H into a separable
part called H„and mode-mode coupling terms H —H, .
The only requirement from H, is that it be a simple separ-
able Hamiltonian. For a given nonseparable H many
reasonable H, 's may be found. All of them should, in
principle, be examined according to the procedure
described below. However, in the application to the
Henon-Heiles system Hose and Taylor found that it is
enough to consider the two most obvious H, 's which they
denoted as H,' and H,". The former Hamiltonian is of
higher symmetry and the latter is of lower symmetry than
the full Henon-Heiles Hamiltonian.

H, is the Hamiltonian of the TDHO,

A,y
H, =H + cos30,

3
(2.2)

A. Quantum quasiperiodic states

In this subsection the Hose-Taylor criterion for the
detection of quantum quasiperiodic states is reviewed. '

Consider the Henon-Heiles system of coupled anhar-
monic oscillators which is known to exhibit classical
quasiperiodic and chaotic motion. The quantum Henon-
Heiles Hamiltonian is (dimensionless coordinates, Ace = 1)

with the corresponding eigenstates labeled by the mode
quantum numbers n„' and n". Aside from accidental
degeneracy the spectrum of H,' is nondegenerate, and each
pair of mode quantum numbers labels one energy subspace
of H'

The second step in the analysis is to examine the expan-
sion of the eigenstates of the full Hamiltonian in terms of
the eigenfunctions of the separable Hamiltonians. The
Hose-Taylor criterion says that an eigenstate of H is
quasiperiodic with respect to a certain H, (e.g. , H, or H,")
if the squared magnitude of the overlap of its wave func-
tion with any degenerate subspace of that H, exceeds 0.5.
Accordingly, the Henon-Heiles states are labeled as Q',
Q', or N, where the latter are nonquasiperiodic, meaning
that the squared-magnitude overlap with any particular
degenerate subspace of either H,' or H," is always less than
or equal to 50%.

%hen applied to the Henon-Heiles system the Hose-
Taylor criterion reproduced the known classical picture in
this system. At low energies all the quantum states are
quasiperiodic (either Q', Q", or both); at high energies
most of the states are nonquasiperiodic (X) and very few
are Q or Q". A small transition region between these two
behaviors begins just below the classical critical energy
E, =8.67, where the Kolmogorov-Arnold-Moser (KAM)
transition from highly quasiperiodic to highly chaotic
motion occurs. Moreover, there is a remarkable agree-
ment between the purely quantum results of Hose and
Taylor' and the semiclassical results of Noid and
Marcus, who had identified several quasiperiodic levels
in this system with the use of EBK quantization tech-
niques.

The requirement for the 50% squared-magnitude over-
lap is needed to ensure that for the state in question there
exists an energy-independent approximation to the effec-
tive Hamiltonian which is defined on the particular sub-
space of H, . This energy-independent effective Hamil-
tonian may be calculated to any desired accuracy by a con-
vergent iteration method and will yield the exact energy of
the eigenstate of the full Hamiltonian while operating on
the part of the wave function that lies in the subspace.
The degeneracy requirement from the subspace is to en-
sure that the effective Hamiltonian will commute with H„
the separable Hamiltonian, which will thereby become a
quasiconstant of the motion for that particular eigenstate
of H. This means that the major part of the correspond-
ing wave function (over 50%) is also an eigenfunction of
H, . Depending on the functional content of the degen-
erate subsp ace of H, (singly degenerate, etc. ) other
quasiconstants of the motion may exist. ' For example, in
the Henon-Heiles system, Eq. (2.1), it was found that all
states that could be obtained by semiclassical EBK quanti-

H,"=H —My =h'+by" (2.3)

where H is given by Eq. (2.1). The eigenstates of H,' are
labeled by the radia1 quantum number n and the azimu-
thal number l. The states (n, l) are simultaneously eigen-
states of H,' and the angular momentum I.~. Each n la-
bels thereof a degenerate subspace of states with l ranging
from —n to + n in increments of two.

H," is the Hamiltonian of two uncoupled oscillators, X
mode (cubic) and Y mode (harmonic):

Designation

p&

p2
p3
p4

TABLE II. Dipole functions p(x,y).

Function

x
0.9x+0.1x

0.4S(x +y)+0.033(x +xy+y )
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zation of quasiperiodic trajectories had to have two
quasiconstants of the motion: either H, and L, ~ or h„' and
hy. These states are of particular interest in the present
context as they are essentially normal- or local-mode states
which do not mode mix. Further discussion of these Q
states and the description of the energy-level structure in
this system will be given in Sec. III A.

B. Dipole functions

In the semiclassical dipole approximation the Hamil-
tonian describing a molecule interacting with a single-
mode laser field Epcoscot is

H'(t) =H —p cosg(Eocoscot), (2.4)

Four dipole functions were constructed with the use of the
above expression. The coefficients, shown in Table II,
were chosen so that the largest matrix elements would
have about the same magnitude in all four dipole matrices.
In all cases p was set to zero as it cannot contribute to
transitions between states. Dipole matrix elements

p,j = ti
~ p ~

j) were computed with the use of a 465-term
expansion of Henon-Heiles eigenstates in products of
harmonic-oscillator functions in the X and Y coordinates.

C. Time evolution: Floquet theory

The response of a quantum state 4, associated with the
molecular Hamiltonian H, to the classical single-mode
laser field Epcoscot will be treated with the use of Floquet
theory. This theory takes advantage of the periodicity of
the driving field in formulating the propagator which ad-
vances the state amplitudes forward in time. For com-
pleteness, a brief overview of the Leasure, Milfeld, and
Wyatt utilization of the Floquet method is presented
below.

The time-dependent molecular wave function, when the
field is turned on ( t & 0), is expanded in a finite set of
molecular eigenstates

N

4;(x,y, t)= g CJ., (t)fq(x, y), (2.6)

where i denotes the initial (t=0) stationary molecular
state. The state amplitudes evolve in time by the N&&N
propagation matrix,

C(t) = U{t,O}C(0) (2.7)

with the initial condition U(0,0)=C(0)=I. Inserting the
time-dependent Hamiltonian {2.4) and the expansion of 4;
in molecular eigenstates into the Schrodinger equation

where H is the Hamiltonian of the isolated molecule, for
example, the Henon-Heiles Hamiltonian Eq. (2.1); p is the
molecular dipole function and P is the angle between the
dipole moment and the direction of the applied field. To
simplify the picture we assume cosg= 1 and concentrate
solely on the effect of the laser parameters, i.e., Ep and co.

Assuming a dipole moment for the Henon-Heiles sys-
tem, we expand p(x,y} about the origin and truncate the
expansion at second order,

p 0 0 i 0 2 0 2p{x~y')=p +px&+pyy'+ 2 pxx& +pxyxy + 2 pyyy

(2.5)

yields the usual set of coupled first-order differential equa-
tions for the amplitudes CJ;.(t) or, in turn, the propagator
elements Uj,.(t):

N

iAU~; =e;UJ;+ g pjk Uk;Eocoscot,
k=1

(2.8}

which are products of functions periodic over the optical
cycle (~=2~/e) and a periodic exponential term whose ar-
guments are linear in t. p, the characteristic exponent ma-
trix, is a real-valued N &&N diagonal matrix. Propagating
F(t) across the first optical cycle [O,r] with U(r, 0), and
rearranging the propagation equation F(t)= U(&,0)F(0),
leads to the matrix eigenvalue equation

4~{0)U(~, 0)4(0)=e ' "—. (2.10)

Solution of this equation gives the characteristic exponents
p (eigenvalues of p), and the periodic functions N at
t=0. For any time which is a multiple of the optical
period, t =n~, use of F(n~) = U(n~, O)F{0) immediately
gives an explicit factored form for the propagator:

U(n~, O) =N(0)e'"" "—&~{0) . (2.11)

The fundamental (state-to-state) transition amplitudes are
then given by CJ, (n~) = Uj,-(n&,0}. The Floquet formalism
may also be used to generate U at an arbitrary t which is
not a multiple of ~. However, this is not necessary in the
present study.

In order to evaluate @(0) and p from Eq. (2.10) the
propagation matrix is needed at the end of the first optical
cycle. Several routes are available to evaluate U(~,0) in-
cluding direct numerical integration of the coupled equa-
tions (2.8), but in this study we have used the second-order
Magnus approximation [cf. Eqs. (2.23)—(2.29) in Ref.
29(a)]. This approximation has been extensively tested for
both single- and multiple-photon transitions. One- and
two-photon transitions are accurately handled, and ap-
proximations are provided for transitions of three, four, or
more photons. For the purposes of the present study this
level of approximation is sufficient.

In summary, Floquet theory provides a nonperturbative
method for treating the response of a quantized system to
a classical driving field. The advantage in this method is
that all the numerical effort is concentrated in solving Eq.
(2.10) at the end of the first optical cycle. Subsequent
time evolution follows trivially via Eq. (2.11).

Once the fundamental amplitudes are obtained as a
function of t, it is then straightforward to evaluate both
instantaneous quantities and long-time averages. In the
present context of multiphoton excitation we will be in-
terested in properties involving the ground state (i=1).
These are defined as follows:

(i) instantaneous transition probabilities from the
ground state to the molecular state j,

FJ(t) =
~
C, )(t)

~

'; (2.12}

where e; is the stationary energy of the ith molecular state
and the pjk are the dipole coupling elements.

At this point we shift emphasis from the "fundamen-
tal" amplitudes C(t) to Floquet amplitudes

(2.9)
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TABLE III. Average magnitude of dipole coupling elements
(i

I p I j ) for states in the Q' ladder (cf. Table I) above E„.cou-
pling elements included in the average satisfy
0 9fic.o&

I e; —ej.
I

&1.1%co with %co= l. 0; coupling elements of
magnitude below 0.01 were excluded from the average.

98, 99
95.96, 97

91,92I 3.0—
90 88,89

86,87 85~
84 82, 83
75 76 78,79
73,7 4
71.72

Q Q'IDipole function'80, 81

I2.0
QI. . . Q

II
Q NI

77 0.87
0.77
0.91
0.71

0.06
0.06
0.06
0.03

PI
p2
p3
p4

0.08
0.34
0.35
0.23

70
69
63,64
61
59, 60

65,66
67, 68

I I.0
62

'Cf. Table II.
57, 5854, 55

I O.0 52, 53
50,51 49,

46, 47 T
PJ ——lim —J PJ (t)dt

T
N

= 2 I4'. (0) I'l0. (o) I'

48
44, 45

9.0 42 40,41I
I

3743
38,39 (2.14)

n=1
35, 36

where P„J(0) is the nth molecular component of the jth
Floquet mode at t=O; and

(iv) long-time average number of photons absorbed,
N

(n) = g PJ(ej —e&)/fico . (2.15)
J=2

32 29, 30

27, 28
25.26"

22 23+4' 23, 24

7. 0

20, 21 l9

16,17 18

20, 21
All these quantities are evaluated for the Henon-Heiles
system with the use of the dipole functions in Table II.

6.0
Ie, 17

14, I55.0 14, l5 III. MULTIPHOTON EXCITATION
IN THE HENON-HEILES SYSTEMl2, 13

I I l2, 13

9, 10
4. 0

7, 8
9, 10

7,8

A. Energy levels and multiphoton
excitation ladders

The Henon-Heiles Hamiltonian Eq. (2.1) has 99 quasi-
bound states grouped into 66 energy levels below the clas-
sical dissociation energy, 3=13.333. Of these states, 44
are of type Q', 22 are of type Q" (15 states below E, are
both Q' and Q"), while 48 states are of type X (i.e., nei-
ther Q nor Q ). Figure 1 is an energy-level diagram inI II

which the Q' levels are shown in the left column, the mid-
dle column shows the Q" levels, and the right column the
¹ype levels. As the Henon-Heiles Hamiltonian has C3,

3.0
4

5,6

2.0 2, 3

I. O -'

O. O

FIG. 1. Energy-level diagram for the Henon-Heiles Hamil-
tonian, Eq. (2.1). Levels are grouped into columns according to
their types, Q', Q", or N (cf. text for details). Energies are from
Tables I—III of Ref. 19; the numbering of the states follows
their order of appearance in these tables. Near degeneracies of A

levels are unresolved in this diagram (e.g., states 9 and 10).
R.o

(ii) average number of photons absorbed from the
ground state at time t,

N

n (t) = g PJ.(t)(ej —ei)/fico;
l

a.o

(2.13)
J =2 FIG. 2. Average number of photons absorbed from the

ground state as function of frequency for the dipole function p&.
(a) Ep ——0.05, 0.10, and 0.20; {b) Ep =0.5.(iii) long-time average transition probabilities,

MODE-SELECTIVE MULTIPHOTON EXCITATION IN A MODEL. . .
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symmetry, there are several degenerate E levels in the
spectrum. In case of Q' E levels both states are Q'. This
is frequently not the case with Q

' E levels, particularly
above E, where only one state of the degenerate pair is Q"
(cf. Tables I—III in Ref. 19). This is due to the fact that
H, ' has a lower symmetry than the total Henon-Heiles
Hamiltonian. Note that the density of % states increases
rapidly above the critical energy. Roughly 60&o of the
states are above E, and about 70% of them are X states as
compared to about 10% below the critical energy.

A significant feature of the energy spectrum in this sys-
tem, as was pointed out by Noid et al. , is the existence
of sequences of levels in which the energy separation be-
tween successive states is nearly constant. For example, in
Table II a subset of the Q' states forms a ladder in which
the spacings between the rungs are constant with 2.4&o.
Multiphoton excitation up this ladder with photons of fre-
quency Ace =1.0 would require 13 photons for dissociation
(cf. the left column in Fig. 1). Now, the states in this Q'
ladder are characterized by large overlaps with the TDHO
wave functions {n,+n), for which the azimuthal quantum
number I has reached its highest allowed absolute value. '

For comparison, the left column of Table II shows a sub-
set of Q" states which have large overlaps with the eigen-
states of H," that describe successive excitations in the cu-
bic X mode and zero excitation in the harmonic 7 mode. '

The Q" ladder is evidently very anharmonic and, although
it reaches the dissociation region, it is clearly not a favor-
able route for multiphoton excitation as after the first few
steps it detunes from the fundamental frequency.

Another important feature of the Q' ladder which, as
Hose and Taylor' point out, is quite general for quasi-
periodic ladders of any kind is that due to the requirement
of large overlap with the separable functions, the selection
rules of the separable system apply to a good approxima-
tion to the Q ladders. Looking in Table II it is seen that
the effective radial quantum number n and the magnitude
of the azimuthal number

~

I
~

increases by unity as one
climbs from one Q' rung to the next. This precisely fits
the linear dipole selection rules for the TDHO, and it is
therefore predicted on this basis that the Q' ladder is
indeed a serious candidate for PSE in this system. We
would like to emphasize at this point that it is not a gen-
eral phenomena that Q ladders obey favorable selection

z,o

FIG. 4. Same as Fig. 3 but for dipole function p3.

rules as does this Q' ladder; in other systems even Q'-type
ladders may not do so.

In our discussion so far we have avoided the X states.
However, we do not ignore them, but it so happens that in
this system they only appear at high energies and therefore
cannot participate in the first steps of the multiphoton ab-
sorption {cf.Fig. 1). Nevertheless, above E, the N states
are in the majority, and once the system reaches this re-
gion, the X states cannot be discarded from the excitation
process. Table III shows the average magnitude of dipole
couplings involving the Q' ladder states above the critical
energy. These averages include only the couplings be-
tween states separated by Ace=1.0+0.1 i.e., 10% off the
fundamental. It is clear that for all four dipole functions
employed in this study, the Q' . Q couplings are negli-
gible and the Q' Q' are greater than the Q' . X cou-
plings. Yet, the couplings of Q' ladder states to N states
above E, is certainly not small. It is precisely the purpose
of this paper to show that although Q' ladder states cou-
ple to mode-mixed states, that under suitable laser condi-
tions a high degree of PSE may be achieved. This will be
demonstrated in the remainder of this section.

B. Average number of photons absorbed

In order to identify the laser conditions leading to max-
imum absorption, the variation of (n ), Eq. (2.15), with
the laser parameters Eo and co was studied for the four di-
pole functions listed in Table II. The absorption spectra

1

2.0

FICx. 3. Average number of photons absorbed from the
ground state as function of frequency for the dipole function p2.
{a)EO=O-1' {b) Eo=0.5 FIT&. 5. Same as Fig. 3 but for dipole function p~.
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TABLE IV. Long-time average probabilities (cf. text for details} as a function of laser parameters
computed with the dipole function pi.

0.900
0.900
0.900

0.05
0.10'
0.20

0.092
0.507
4.400

Pb

1.000
0.998
0.953

1.000
0.991
0.767

Prr

0.996
0.957
0.731

PN

0.000
0.004
0.137

P,

0.000
0.007
0.183

P,'/P,

0.000
0.007
0.062

0.950
0.950
0.950

0.05
0.10
0.20

1.368
5.450
6.280

0.990
0.978
0.959

0.928
0.601
0.607

0.884
0.536
0.514

O.OS4
0.297
0.271

0.046
0.293
0.328

0.166
0.045
0.117

0.965
0.975
0.982
0.98S
0.990

0.10
0.10
0.10
0.10
0.10

5.631
4.785
5.937
5.026
5.462

0.959
0.965
0.944
0.967
0.966

0.707
0.792
0.734
0.863
0.862

0.497
0.597
0.523
0.541
0.461

0.226
0.168
0.187
0.119
0.130

0.233
0.193
0.272
0.115
0.270

0.211
0.285
0.156
0.406
0.534

1.000
1.000
1.000

0.05
0.10
0.20

4.472
4.899
6.307

0.999
0.995
0.948

0.990
0.917
0.715

0.594
0.574
0.457

0.009
0.055
0.229

0.259
0.271
0.344

0.960
0.700
0.310

1.005
1.015

0.10
0.10

4.016
5.036

0.996
0.999

0.996
0.932

0.625
0.552

0.004
0.036

0.184
0.326

0.980
0.791

1.980
1.987
1.995
1.997
2.005
2.010
2.017
2.020

0.50
0.50
0.50
0.50
O.SO

0.50
0.50
0.50

0.291
2.601
1.283
1.463
0.990
1.710
0.464
1.926

0.999
0.997
0.999
0.999
0.999
0.999
0.999
0.989

0.994
0.997
0.998
0.997
0.997
0.979
0.999
0.938

0.982
0.562
0.762
0.772
0.850
0.687
0.944
0.634

0.002
0.003
0.002
0.002
0.003
0.020
0.001
0.060

0.001
0.337
0.129
0.164
0.105
0.144
0.032
0.293

0.135
0.990
0.984
0.982
0.973
0.853
0.967
0.790

'Assuming a molecular dipole of 1 debye, we have estimated from the power broadening and the funda-
mental level spacing that Eo——0. 1 would roughly correspond to a laser power of 50 GW/cm .

shown below were all calculated with the use of a basis of
110 Henon-Heiles eigenstates; the top 11 states provide a
crude "discretization" of the continuum above the classi-
cal dissociation barrier, a=13.333. On the basis of calcu-
lations done with fewer numbers of states, we expect
these results to show the main qualitative features of the
absorption spectra in the presence of the "true" continu-
um. The same basis was employed in the calculations re-
ported in Secs. IIIC and IIID. A total of 214 Floquet
time-evolution calculations were performed for all four di-
pole functions, each requiring about three minutes of
central-processing-unit (CPU) time on the Hitachi M-
200H computer.

Figures 2—5 display (n ) for the four dipole functions.
The dots indicate the calculated values, the smooth curves
were drawn between the dots for visual purposes only.
Sharp peaks and valleys due to high-order multiphoton
absorption may have been missed. Part (a) of each of
these figures is the spectrum near Ace=1.0 for Eo ——0.1

[except for Fig. 2(a)]; part (b) shows the overtone spectrum
near Acu =2.0 for Eo ——0.5.

Plots of (n ) versus fun computed with the use of the di-
pole function p& for three field strengths Eo ——0.05, 0.10,
and 0.20 are shown in Fig. 2(a). The sharp absorption
peaks appearing between Boo=0.9 and 1.1 are due to
high-order multiphoton absorptions. Note the decreased

TABLE V. Long-time average probabi1ities (cf. text for details) as a function of laser frequency
computed with the dipole function p&, Eo ——0. 1 for %co 1.0 Ep =0.5 for Ace =2.0.

0.990
1.005
1.020

5.033
4.073
3.447

Pb

0.982
0.999
0.997

Pg

0.881
0.997
0.948

0.503
0.635
0.717

0.114
0.003
0.040

P,

0.255
0.197
0.179

P I/P

0.558
0.985
0.709

1.990
2.000
2.005

0.957
1.438
0.417

1.000
0.999
1.000

0.999
0.997
0.999

0.785
0.642
0.853

0.000
0.003
0.001

0.005
0.114
0.024

0.929
0.974
0.969
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TABLE VI. Long-time average probabilities (cf. text for details) as a function of laser frequency
compared with the dipole function p3, Eo——0. 1 for Ace = 1.0, Eo ——0.5 for fico =2.0.

0.995
1.000
1.005

(nl
5.599
4.739
4.121

Pb

0.915
0.997
0.999

PI

0.932
0.962
0.995

0.481
0.546
0.600

0.063
0.032
0.005

P,

0.229
0.242
0.188

P, /P,

0.733
0.846
0.974

1.985
1.990
2.020

1.623
1.843
2.123

0.999
0.999
0.999

0.998
0.998
0.966

0.736
0.682
0.563

0.001
0.002
0.033

0.139
0.184
0.352

0.990
0.988
0.904

sharpness of these peaks due to power broadening as Eo
increases. Similar sharp features appear in the overtone
spectrum for p ~, Fig. 2(b), particularly in the range
%~=1.98—2.03. The spectra for the dipole functions pz,
p3 and p4 are shown in Figs. 3, 4, and 5, respectively.
These spectra are generally similar to the spectrum of the
p~ dipole function except that the multiphoton absorption
peaks occur at somewhat different frequencies. In all four
dipole functions ( n ) reaches peak values of between 5 and
6 near ~=1.0 and of about 2 near ~=2.0. Note that
the multiphoton absorption is red-shifted from the single-
photon fundamental or overtone frequencies. Further
analysis of the spectra, particularly near Sou=1.0 and 2.0,
is presented below in order to determine the extent of Q'
selectivity in this model system.

C. Long-time averaged probabilities

To demonstrate the extent of PSE in this system the fol-
lowing long-time averaged probabilities were evaluated:
Pb, the probability of occupying a bound state below the
classical dissociation barrier; P&, P», and P~, the probabil-
ities of occupying a bound Q, Q", and IV' state, respective-
ly; P, and P„ the probabilities of occupying a bound
state and a bound Q' state above the classical critical ener-
gy. These probabilities are obtained by summing the ap-
propriate long-time transition probabilities„Eq. (2.14) ~

Results for the four dipole functions p~, . . . , p4, are
compiled in Tables IV—VII. The calculations were usual-
ly done near ~=1.0 and 2.0, i.e., the fundamental and
overtone frequencies of the Q' ladder. A more detailed
analysis was performed for the dipole function p& includ-
ing a study of frequency and intensity dependences, and
distribution of state probabilities.

The breakdown of spectral probabilities near the Q
fundamental and overtone frequencies shows similar

features for all four dipole functions. It is clear that near
these frequencies the Q' states are dominantly populated
in the excitation process, Q" states are highly populated
whereas the probability of occupying X-type states is
small and significantly increases only at large field intensi-
ties (cf. Table IV). This result is, however, somewhat
misleading because the maximum average excitation al-
ways peaks around two %co = 1.0 photons below the critical
energy, while the density of X states is substantial only
above E, . Qbviously, the entire X-state probability is con-
centrated above the critical energy which is therefore the
appropriate energy region to be considered with regard to
PSE in this system. The probability of occupying Q"
states above E, is negligible indicating that these states
hardly participate in the multiphoton excitation at high
energies. The high values of Pqq are simply due to the fact
that many low-lying states are simultaneously designated
as Qr and Q (cf. Table I in Ref. 19). The population
probability above E, is divided between Q and ¹ype
states with the significant portion usually attributed to Q'
states. Comparing the columns for P, and P, /P, (the
fraction of P, which is Q') in Tables IV—VII reveals
several features in support of PSE via the Q' ladder. First
notice that within 1% of the Q fundamental and overtone
frequencies P, is always large (20—30%) with P,'/P, the
bigger fraction. For every dipole function there exists at
least one "Q' frequency" for which P, is large and P,'/P,
is over 95%. The detailed frequency analysis in Table IV
shows that as long as the frequency is near the Q' funda-
mental or overtone, then efficient excitation above the
critical energy occurs whether the laser is tuned on a peak
or a valley in the corresponding multiphoton absorption
spectra, Fig. 2. However, when the laser is largely off the
Q frequencies, P, /P, reduces significantly indicating that
mainly N states are now being populated above E, . Simi-
lar effects are observed when the field intensity increases,

TABLE VII. Long-time average probabilities (cf. text for details) as a function of laser frequency
computed with the dipole function p4, Eo =0.1 for Ace 1.0, Eo =0.5 for %co 2.0.

0.995
1.005
1.015

(n)
4.239
4.115
2.733

0.999
0.998
0.982

Pg

0.947
0.992
0.983

0.589
0.636
0.786

PN

0.041
0.008
0.005

P,

0.221
0.214
0.128

P,'/P,

0.765
0.962
0.865

1.980
1.995
2.005

1.089
2.051
1.328

0.999
0.999
0.999

0.997
0.984
0.981

0.790
0.628
0.792

0.002
0.015
0.019

0.017
0.272
0.146

0.867
0.943
0.871
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FIG. 6. Stick diagram showing long-time average transition
probabilities from the ground state for the dipole function p&,
computed at a frequency which is off the Q' fundamental. N
states are indicated by a dot at the end of the stick. (a)
Ep ——0.05; (b) Ep ——0.1.

on or off the preferred Q' frequencies. Note in particular
that, when the frequency is largely detuned from the Q'
ladder, then significant excitation above the critical energy
is possible only at high field intensities. But at Ace=1.0,
near the Q fundamental, efficient excitation above E, is
achieved at the lowest field intensity Eo ——0.05 (cf. Table
IV).

Additional support to the Q' selective excitation route is
found from examination of the dissociation probabilities
given by 1 —Pb. Note that whenever P,'/P, is large
(&95%%uo), Pb is always about 99%, corresponding to a
rather low dissociation probability. On the other hand,
note that when P,'/P, is low, i.e., when the X-state proba-
bility is large, Pb decreases to about 95%%uo, which corre-

FICx. 7. Same as Fig. 6 but at Q' fundamental frequency.

sponds to a reasonable dissociation probability in such
model system. ' The reason for this surprising result is
simply that the 110-state basis set used in the Floquet
method calculations just misses the first Q' rung above the
dissociation barrier (cf. states 111 and 112 in Table II).
This state has about 40% weight on the TDHO states
(13,+13), it is therefore not a real quasiperiodic state ac-
cording to the Hose-Taylor criterion. Nevertheless, this is
exactly the continuum resonance that will carry most of
the oscillator strength from the last Q' bound state. Real-
izing this fact we have performed a Floquet time-
evolution calculation with 120 states including the
"missed" Q' rung in the continuum. The resulting disso-
ciation probabilities increased to reasonable values 3—5%%uo,

without any significant change in P, /P, . Examination of
the state transition probabilities showed that it is exactly
the state 111 that accumulates probability above the disso-
ciation barrier when Ace = 1.0.
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A detailed analysis of the long-time averaged transition
probabilities from the ground state to the jth state Pz is
given for the dipole function pi. Figures 6—8 show stick
diagrams of the transition probabilities at the correspond-
ing energy levels. The states are labeled according to
Tables I—III in Ref. 19; X states are indicated by dots at
the end of the stick. Figures 6 and 7 display results ob-
tained at Ace=0.95 and 1.0, respectively, at each of the
two field strengths Eo ——0.05 and 0.10. It is clear from
Figs. 6 and 7 that there is a much greater tendency to oc-
cupy X states at the off-fundamental frequency Ace=0.95
than at the Q' fundamental fico=1.0. The population of N
states increases as Eo increases; this effect is much more
pronounced off the Q' fundamental. At fico=1.0 and
Eo ——0.10 only two N states, 79 and 91, receive significant
probability ()0.005). Note that Q' ladder states are al-
most exclusively populated at ~=1.0 and Eo ——0.05, and
are populated in the majority at Eo ——0.10. The stick dia-
gram at the overtone frequency Ace=2.00, Fig. 8, shows
qualitatively similar features to Fig. 7; the Q' ladder states
with even n receiving virtually all of the probability.

At this stage we would like to point out that if the basis
set on which the Floquet time-evolution calculations were
performed had been much larger, we would not expect to
see exactly the same long-time averaged transition proba-
bilities. However, it does not seem reasonable to us that
the inclusion of a true continuum above the classical dis-
sociation barrier would significantly alter the main results
drawn so far that at laser conditions appropriate for exci-
tation of the Q' ladder, PSE does occur in this system.

3.0
2E

(2 + 2)
D. Time evolution of excitation

probabilities

20 ——3 (I, + 1 )

I.O
1AI

E = 0.5
fig) = 2.00

1A (O, O) (0.40)—
1

0.0
I I

O. I 0.2 0.3
PRO BAH I L I TY

FIG. 8. Same as Fig. 6 but at Q' overtone frequency.

To complete the picture of selective excitation in this
system, the time evolution of ground-state to excited-state
transition probabilities, Eq. (2.12), is presented below.
Figures 9—11 display stick diagrams of instantaneous
transition probabilities at three times, t=8~, 16&, and 24~,
computed for three different frequencies. In Fig. 9 the
frequency is not favorable for multiphoton excitation
above E, . In fact, there is almost no excitation above state
11. At later times the probabilities merely Rabi-cycle

4.0- 4.0

(b)

5.0-

4.0

30. 6 30 6 3.0 =4

(0,68) I (0.67) (

t=87

I I

0.20 0.4 0
PROBABI LI TY

16 7

I I

0.20 0.40
PROBABI LI T Y

t = 247

0.40
PROBABILITY

0.60

FIG. 9. Stick diagram showing the time evolution of transition probabilities from the ground state for the dipole function p &.

Ace =0.900, Eo ——0.10, and ~ is the optical cycle, ~=2m. /co. X states are indicated by a dot at the end of the stick. (a) t = 8&, (b) t = 16~;
(c) t =24~.
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laser field. Interest in the Henon-Heiles potential was
stimulated by classical dynamics studies showing that this
system exhibits a regular (quasiperiodic) motion at low en-
ergies, whereas at high energies, above a critical energy,
the classical motion is predominantly chaotic and typical
of high mode-mode mixing with a low probability of find-
ing non-mode-mixed quasiperiodic trajectories. Semiclas-
sical and quantal' studies on this system had shown
that certain quantum levels correspond to quasiperiodic
trajectories. These states, amenable to semiclassical quant-
ization, were analyzed to be of two types: Q', the normal
(harmonic) mode; and Q", a local (bond) mode. ' Other
states which are neither Q' nor Q" are denoted as X
states, these are highly mode-mixed.

The quantum dynamics calculations show that efficient
mode-selective multiphoton excitation up a ladder
comprising Q states may be obtained by adjusting co and
Ep. The quantal wave packets representing the molecule
in the laser field then contain almost exclusively Q' states.
Analysis of long-time averages revealed that with suitable
laser conditions the probability of finding the system in a
bound state above the critical energy was almost entirely
in a Q state (&95%). Note that in the graphs of (n),
which are roughly the multiphoton absorption spectra, the
system absorbs over an energy range that is 10%%uo and is
red-shifted from the fundamental or overtone frequencies.
Table IV shows that even though absorption begins at

among six participating states. However, extensive excita-
tion above the critical energy occurs when fico=0.95 (Fig.
10). At t=8~, the only N state which is excited is state
number 31. When t=16~, several N states become occu-
pied; states 46, 48, and 58 (all below E, ) have probabilities
in excess of 0.05. Finally, when t=24~, a number of
high-energy states have probabilities in the range from
0.02 to 0.05. About ten N states above E, are populated
with probabilities greater than 0.01. Figure 11 shows the
Q fundamental case, fuu=1. 0. There is clearly a large
probability of occupying Q states above the critical ener-
gy. Only two N states, 52 and 64, are populated. Also
note the large buildup in state 94 when t=24~. However,
for t )24~, figures of this type do not accurately represent
the dissociation dynamics; probability bumps appear at
the top of the basis set due to its incompleteness.

IV. DISCUSSION

A. Summary: Mode-selective excitation
in the Henon-Heiles system

We have studied the quantum dynamics of laser-driven
wave packets on the Henon-Heiles potential surface. Flo-
quet theory was used to generate the time propagator for
the molecular eigenstates interacting with the classical

MODE-SELECTIVE MULTIPHOTON EXCITATION IN A MODEL. . .
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B. Mode-selective excitation
in another anharrnonic system

Using Floquet theory and the molecular Hamiltonian

Bx Bg

+D( 1
—a(x —ay) ~2 (4.1)

Davis and Wyatt have recently studied the quantum
dynamics of laser-driven wave packets. This system had
been studied classically by Hansel ' and by Martin and
Wyatt. For the parameters listed in Ref. 36, the poten-

about Ace=0. 92, at low field strengths very few states are
populated above E, until we reach Ace=0. 95. As we get
closer to the Q fundamental, lower powers are required to
excite above the critical energy. Moreover, as the laser
frequency approaches the Q' fundamental or overtone,
PSE via the Q' ladder is much more pronounced. Selec-
tive excitation was more favorable for low Eo, increasing
the field strength had a tendency to reduce the Q' selec-
tivity. Far from the Q fundamental, if the field intensity
is large, significant population above E, is obtained
without occupying Q states by climbing a quasicontinu-
um of N states (cf. results for iriro=0. 90 in Table IV).
However, close to the Q' fundamental significant popula-
tion (of mainly Q states) above the critical energy is ob-
tained with the use of much less power by climbing a
mode-selective Q ladder. All these conclusions do not de-
pend on the dipole function chosen to represent the cou-
pling to the radiation field. It has been suggested that
chaotic time evolution does not necessarily defy selectivi-
ty. In Sec. IVC we shall explain the reasons why PSE
does occur in this system, particularly at high energies in
the classical chaotic region.

Waite and Miller have recently considered a different
aspect of mode selectivity in the Henon-Heiles system, al-
though with different potential parameters than the ones
used here. They employed the complex coordinate method
to compute the unimolecular decay rate of tunneling
through the barriers for different quasibound eigenstates.
The decay-rate constants they obtained showed that
symmetry-induced mode specificity exists, but the rate
constants for states of the same symmetry species (e.g. , 2 ~,

A2, or E) increased with energy as predicted by standard
statistical models and no apparent change was observed
near the classical critical energy. However, even for the
smallest value of A' (0.02) considered in the Waite-Miller
study the system had only about 35 quasibound states. A
Hose-Taylor-type analysis showed that in this case there
are very few N states, appearing only near the dissociation
barrier. It is not suprising, therefore, that the Waite-
Miller results did not show any apparent change moving
from the classical quasiperiodic to the classical chaotic re-
gion. We intend to repeat the Waite-Miller calculation but
for the potential parameters used in this study. This po-
tential encompasses more quasibound states of the N type,
particularly near E„and it would be interesting to see
whether there are differences in the decay rate between
states of type Q, Q", and N, which belong to the same
symmetry species.

tial supports 117 bound states. The normal-mode frequen-
cies are m„=919 cm ' and co& ——1845 cm ", this is a 1:2
Fermi resonant system. The potential well near the origin
leads into a single dissociation valley along the X direc-
tion.

For the laser intensity I=13 GW/cm, plots of (n )
versus Ace were obtained through expansion of the time-
dependent wave function in 150 eigenstates. These plots
show a broad bimodal absorption profile extending from
650 to 1000 cm ', and a sharp "overtone" band between
1800 and 2000 cm '. At several frequencies, long-time
averaged and instantaneous probabilities were calculated.
There are again indications of mode-selective excitation.
For example, when Aco=1866 cm ', at the center of the
overtone peak, the quantal wave packet spreads dominant-
ly on the molecular eigenstates having 0,1,2,3,. . . nodes
along the Y axis as though this mode was being selectively
excited. These results persisted up to 0.73 ps where about
90% of the probability lies between E, and D. Note that
the overtone frequency is approximately the frequency of
the normal (uncoupled) F mode. We intend to carry out
Hose-Taylor-type analysis on this system to see whether
there exists a Q'-type ladder.
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C. Criteria for mode-selective excitation

The results of Sec. III clearly demonstrate that the Q'
ladder is an efficient route for selective multiphoton exci-
tation in this model system. What is particularly interest-
ing is the fact that at a particular laser frequency the
probability of occupying a bound state in the chaotic re-
gion, above E„is relegated exclusively to a Q state. Note
that in the chaotic region the Q' states are in the minority.
To explain these high probabilites of occupying Q' states
we consider a detailed analysis of the radiative couplings
below.

Figure 12 shows the pq dipole couplings between four
bands of states near the classical dissociation limit, which
are separated by about Ace=1.0. The right column shows
the Q' ladder states which are coupled successively by the
laser field. The cross-hatched region around each Q'
ladder state indicates the power broadening for single-
photon transitions. The upper and lower edges of the jth
band are given by ej+

I pj j,Eo I, where pj j, is the ma-
trix element of the p4 dipole function linking the succes-
sive Q' ladder states j and j—1. The requirement for ef-
fective excitation up the Q' ladder is

I pj,j —iEo
I
&~+ej —i &ej+

I pjj &Eo
I

This condition is always fulfilled in the Q' ladder. The
power broadening for the last four rungs at Eo ——0. 1 is
about 12% as compared to detuning of less than 1% (cf.
Table II). Note that

I pj j iEo
I

has about the same value
between successive Q ladder states.

There are some Q" and many N states which lie ap-
proximately within the power-broadened width of the Q'
ladder states; these Q" and N states are shown on the
middle-right and right columns of Fig. 12, respectively. A
survey of the dipole matrix elements linking Q" and N
states from one band to the Q' ladder states of an adjacent
band has revealed that the Q'. N and Q' . . Q" cou-
pling elements are about an order of magnitude smaller
than the Q'. Q couplings. This is precisely the reason
why excitation up the Q ladder is much more favorable.
The fact that Qi . Q" and Q' . . N dipole couplings are
relatively small compared to the Q' Q' couplings is
predictable from the Hose-Taylor criterion defining Q,
Q, and N states. This is because Q' ladder states
describe high excitation along one normal mode in the
sense that the major part of the wave function is simply
the normal-mode state itself. They cannot, therefore, effi-
ciently couple radiatively to states which spread the exci-
tation among many other modes. It is reasonable to ex-
pect that efficient radiative couplings occur between states
of similar character (e.g., Q' states). Note that this pseudo
selection rule is analogous to the restricted quantum ex-
change model discussed by Thiele et al. The radiative
couplings between the Q ladder states must follow to a
good approximation the selection rules of the separable
system which was used to define the Q'-type states (the
TDHO in this case). If the sequence of Q' states in the
system follows favorable selection rules, then efficient
PSE is possible, as is the case in this model system. It
should be realized that the existence of Q' states does not
necessarily guarantee PSE. Other systems may exist in
which sequences of Q'-type states defy the favorable selec-
tion rules, in which case PSE will not occur.

Finally let us turn to a discussion of the effect of the
field strength. As Eo increases it is obvious that the radia-
tive couplings will mix the Q, Q", and N states more
strongly. The power-broadening width of the Qi states
will become larger and more N states will effectively cou-
ple to the Q' ladder states. The net result would be a de-
crease in the probability of occupying Q' states above E, .
This is exactly what is seen in the calculations shown in
Table IV. We would also like to point out that at extreme-
ly high field intensities the Hose-Taylor analysis must be
carried in the presence of the field. The reason is that the
radiative couplings may exceed the potential anharmonici-
ties in which case the "free-field" designation of states as
Q', Q", and N is meaningless. In summary, to achieve
PSE it is desirable to use mild field intensities but suffi-
cient to compensate for detunings within the Q' ladder.

D. Mode-selective excitation in real molecules

It is reasonable to assume that some molecules should
have ladders of Q'-type states extending above E, into the
quasicontinuum and continuum. Provided the dipole ma-
trix elements connecting consecutive ladder states satisfy
the pseudo selection rules, it should be possible to find
laser conditions as to achieve mode-selective excitation in
real molecules. The main difference between this model
system and real molecules is the fact that real molecules
certainly have a much higher density of states, and, in par-
ticular, of N-type states. As seen in the previous subsec-
tion, N states within the power-broadening range of a Q'
rung will "rob" oscillator strength from the selective
ladder transition. On the other hand, it is also almost cer-
tain that Q' N dipole couplings are much smaller than
the Qi Q' type. It remains to be seen which of these
competing effects dominates in real molecules. Would the
weak Q' N couplings combined with the exceedingly
high density of N states reduce the possibility of PSE, or,
in turn, would pseudo selection rules, favoring selectivity,
prevail?

There is some strong, but as yet admittedly incomplete,
evidence that analogs of the Q' ladder exist in real mole-
cules. The strongest evidence is the experiment of Coggio-
la et a1.3s who create highly vibrationally excited CF++
ions, X=I, Br, and Cl, by electron impact ionization, and
then show that they are able to dissociate the ion into
CF3 +X using a single ir photon whose frequency distri-
bution is peaked around one of the ion fundamentals with
a width of about 30 cm '. The ions fundamentals are
known from the spectroscopy of the Rydberg states of the
corresponding neutrals whose surfaces are parallel those of
the ions. They fail to dissociate the ion in the X=C1 case
where the required ion fundamental is out of the frequen-
cy range of the laser. It is extremely hard to imagine that
a quasicontinuum-to-continuum transition would require a
near-fundamental frequency. Our model of a ladder that
has rungs in both the quasicontinuum and the continuum
exactly, but perhaps not uniquely, explains this experi-
ment. It is necessary to realize that the excitation and dis-
sociation processes must be thought of separately. Even if
mode-mode mixing is not important in the excitation up
the ladder rungs in the continuum, it could well be impor-
tant in their decay. Hence, we say nothing about the dis-
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sociation products. If decay widths consistent with the
Rice-Ramsberger-Kassel-Marcus (RRKM) theory are as-
sumed for Q -type rungs in the continuum, and give
agreement with the experimental evidence, this would only
persuade one that mode-mode mixing is important at this
point. Interestingly, in the above experiment the
CF3++X has the lowest energy and is the statistically ex-
pected dissociation channel. Yet the excitation process
seems to be definitely selective.

At this point we would like to note that even the ir
mutliphoton dissociation of SF6 to SF5 and F, a reaction
intimately related to the quasicontinuurn model, shows
strong signs of being interpretable in terms of a ladder of
Q'-type states. In Fig. 6 of Bloembergen and Yablano-
vich it is noted that at 1000 K, where SF6 must on the
average be in the quasicontinuum, the most favored ab-
sorption frequency peaks around the v3 fundamental with
a width of about 40 crn '. The explanation given for this

"surprising" result is that it is due to nonuniform distribu-
tion of oscillator strength. Why would such nonuniform
distributions exist in the quasicontinuum which is believed
to be extensively mode-mode mixed? Perhaps much of the
valuable work done on SF6 should be reevaluated with the
idea that Q'-type ladders exist, as they perfectly explain
such nonuniform distributions of oscillator strengths.
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