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The line shapes of the 6sns, !S(-6P, ,ns transitions in Ba as a function of the laser intensity are
modeled with the use of two-channel multichannel quantum-defect theory and the isolated-core-
excitation model. An analytical expression for the line shape is derived and used to obtain a value of
|{g|r]e)|=4.1 a.u. for the dipole transition moment of the Ba* ionic 65s-6P,, transition, in

agreement with a recent theoretical calculation.

INTRODUCTION

In a number of recent studies of autoionizing states of
alkaline-earth atoms, the isolated-core-excitation (ICE)
scheme has been used to excite the inner valence electron
after the other valence electron had already been excited to
a high-n, Rydberg state.'? In barium for example, a 6snl
Rydberg state has been excited to a 6P; ,nl/ autoionizing
state by the absorption of laser light near the ionic
Ba™ 65-6P, ,, transition. Since this ionic transition has a
very large oscillator strength (~1/3), it is often possible to
deplete the initial 6snl Rydberg state population when the
laser is near the center of the 6snl-6P, ,,nl transition, even
at very low laser powers. This depletion saturates the ab-
sorption at the line center and thus gives rise to an ap-
parent broadening of the transition.> This broadening has
characteristics much like power broadening but it typical-
ly occurs at powers that are orders of magnitude smaller
than that needed to power broaden a transition.

In a previous work we showed that by using this de-
pletion broadening to increase the apparent width of an
autoionizing transition, one can spectroscopically measure
an autoionization rate that is smaller than the linewidth of
the laser used to probe the transition.® For that analysis
we used a Lorentzian line shape to represent the natural,
unbroadened transition. However, for autoionizing Ryd-
berg states there are additional complications due to satel-
lite transitions, such as 6snl-6P, ,,(n +1)I. These satellites
not only give extra peaks, but also affect the signal size be-
tween peaks and produce asymmetries since a proper sum
over all transition moments must be done.

In this work, we will show that the 6520s 'Sy-6P, /,ns
transition can be well modeled over a power range of two
orders of magnitude above that required to depletion
broaden the line, by using a two-channel multichannel
quantum-defect theory? (MQDT) to sum the satellites
properly and an ICE transition moment model.’

In the following section an analytical expression for the
depletion broadening of a transition is derived using ICE
and MQDT. The experimental technique and data show-
ing the line shapes of the 6520s 1Sy-6P, ,ns, J =1 transi-
tion in barium as a function of laser intensity are present-
ed in the third section. In the final section the data and
theory are compared and a value for the transition mo-
ment for the 65-6P,,, transition in the barium ion is de-
duced.

THEORY

The wave function of a two electron atom in a bound
Rydberg state consists predominantly of a single configu-
ration having an unexcited core electron and a highly ex-
cited Rydberg electron. Owing to the large value of the
principal quantum number #, the Rydberg electron spends
most of its time orbiting far away from the core. The core
electron, therefore, responds strongly to optical frequen-
cies close to the resonant frequencies of the Ba™ ion.
When a bound Rydberg state absorbs an additional optical
photon to excite its core electron, the atom is promoted to
an autoionizing state.

The cross section for such a process is comparable
(=107'7 cm?) to that for a bound-bound transition and is
therefore usually much larger than the cross section for
direct photoionization of the Rydberg electron (which is
very close to the ionization threshold). However, when the
core electron makes a transition, the Rydberg electron
suddenly sees a potential due to a different core structure
and finds itself in a superposition state formed from the
new Rydberg series whose quantum defect matches the
new boundary conditions at the new core. Using the
isolated-core-excitation model, which merely projects the
initial Rydberg wave function onto the new Rydberg
series,’ it has been shown that the dipole transition mo-
ment for such a transition is given by
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Here (g |7 | e) is the transition moment for the isolated
ion transition from the ground state g to excited state e.
The Rydberg electron’s initial and final state is represent-
ed by ngl and n; I, respectively, where ng and n; are ef-
fective quantum numbers and W, and W, are the energies
of these states relative to ionization limits which corre-
spond to the ground and excited states of the ion. & is
the Kronecker 8 function. The factor + appearing in
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front of equation (1b) is a geometric factor for the transi-
tions we are interested in, namely, 6s20s'Sy-6P, ;ns,
J =1. It depends entirely upon the angular momenta cou-
pling and the laser polarization, and in general will be dif-
ferent from case to case.

In the autoionizing region of the spectrum, a wave func-
tion cannot be properly represented by a single configura-
tion since at least some admixture of a continuum config-
uration is required to account for the autoionization pro-
cess. A two-channel MQDT wave function which allows
for this continuum admixture can be written as*

b=(nS VA X.p(n; ) +Xgd(eD) , @)

where X represents the core wave function (either excited
or ground) and ¢ is a Coulomb wave function. In the first
term, the Coulomb wave function is bound and has an ef-
fective quantum number n; while in the second term, the
Coulomb wave function is unbound, having energy €. 4,
is the relative admixture of the bound channel. The
(n¥)*/? factor normalizes the bound wave function per
unit energy, as is appropriate for a continuum wave func-
tion. The expression for the dipole moment, therefore, has
to be modified by (n))3/24,. The square of the dipole mo-
ment will also be normalized per unit energy. Note that
the decaying of an autoionizing state to an electron-ion
pair is automatically taken into account by the MQDT
mixed wave function. For two channels, the MQDT ex-
pression for 4, is

14e 172

Ad,=—R|5—| , (3a)
€;+R

€. =tan[m(n) +85,)] . (3b)

Here R represents the interaction between the continuum
and bound configurations and 8, is the quantum defect of
the doubly excited, autoionizing Rydberg series.

Because the tangent function is cyclic, 4, has a series of
peaks separated by integer changes in the value of n).
Each peak is approximately Lorentzian for values of
ny +8, near an integer. For small R, the spectral full
width at half maximum (FWHM) for each peak may be
identified:

2R?

T oanX)?

(4)

The (n})~3 factor accounts for decreasing energy spacing
between peaks as #, increases. This FWHM is normally
attributed to lifetime broadening of the doubly excited
state due to the rapid autoionization process.

The number of electron-ion pairs produced by a laser
pulse of duration 7 and electric field & exp(—iwt) then
would be

N =Ny[l—exp(—27|Q|*7)], (5a)
Q%= |u&|?, (5b)

where the modified expression for the square of the dipole
moment is
, 1+ eg

e +R*
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and we used Fermi’s golden rule to evaluate the transition
rate.® Again, note that |u& |2 has units of inverse time,
due to the continuum normalization of the wave function.
The first factor has the largest contribution when the ar-
gument m(n; —ng) of the sine function is near zero. The
other maxima decrease in size rapidly because of the ener-
gy denominator. The second factor is the MQDT line-
shape factor representing the series of Rydberg state reso-
nances. For large powers the central peak (where n; zn;' )
saturates as the exponential function in Eq. (5a) ap-
proaches zero, representing the depletion of the initial
state. However, the side peaks, where

n:+8ezn;+83il ,

will then show up. For small powers where the main
maxima cannot make the exponential function vanish, the
side peaks will usually be very small. Therefore, for small
powers the most interesting part of the spectrum is where
ns +8, is close to an integer. For such a situation the
sine, tangent, and exponential functions can be replaced by
their arguments so that

{(g|rle)|*r
NN, 81 1e)] Lz NG
O (We—W,)*+(L/2)
which is the Lorentzian referred to earlier. At lower

power densities, therefore, the use of only one broadened
transition is justified.

EXPERIMENT

We studied the 6s20s !Sy-6P; ,ns, J =1 absorption by
measuring the ionization of an effusive atomic beam of
excited 6s20s 'S, barium atoms. The atomic beam passes
between two parallel plates (Fig. 1), where two lasers, one
at the 6s”'So-6s6p 'P, (5536 A) resonant transition and
one at the 6s6p 'P;-6s20s 'S, (4248 A) transition, excite
the atoms to the Rydberg states as shown in Fig. 2. A
third tunable laser near the Ba™ 6s-6P,,, transition, then
drives the 6s20s 'S¢-6P, ,ns, J =1 transition to produce
autoionizing states. We measured the total absorption of
the third laser by collecting the electrons produced by the
autoionizing atoms, since all but a very small fraction
(10~3) of the atoms produce ion-electron pairs rather than
reradiate to bound states. A small voltage (5 V) on the
bottom plate drives the electrons through a hole in the top
plate, through a small collimating magnetic field, and to a
channeltron detector. By reversing the collection voltage,
we could alternatively collect ions (which are essentially
unaffected by the magnetic field) and obtain similar re-
sults.

;'To electronics

L MChonneltron

e >|_
4 asers

Atomic Beam

L
ES

FIG. 1. Schematic diagram of the experiment.
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FIG. 2. Excitation diagram. The arrows represent the three
laser excitations. The first ionization limit for Ba is at 42032.4
-1
cm™l.

Each of the three laser pulses arrived slightly delayed
from the previous one in order to avoid any possible spec-
trum complications due to ac Stark effects.” All three
lasers had the same linear polarization, 5 ns duration and
a linewidth of 0.4 cm™! or better. The 5536 A laser had a
very weak focus of 1.0 cm? since so little power was need-
ed to saturate the first transition. The second laser had a
focus of + mm? to accurately define the interaction re-
gion, while the third laser had again a weak focus of 0.9
cm?. This ensured that the third laser power density was
uniform over the entire interaction region. We directly
measured the absolute power density of the third laser by
passing it through a calibrated aperture and measuring the
output with a Scientech model-380101 energy meter. The
typical maximum power density was 29 kW/cm?, al-
though this value varied by 20% approximately linearly
over the tuning range used for the third laser scan. We
used calibrated neutral density filters to vary the third
laser’s relative power.

A computer controlled stepping-motor scanned the
third laser while part of the beam was split off and passed
through a 1.68 cm™! free-spectral range (FSR) etalon to
calibrate its relative wavelength. At 20207.49 cm~! a
two-photon resonance

6s6p 'P-659d 'D,-6P, ,,9d

served as an absolute wavelength calibrator.2 The spec-

trum, and the etalon marker, were converted using 12-bit
(binary digit) analog-to-digital convertors (A/D’s) and
stored on a floppy disk. To account for the nonlinearities
in the laser scan rate, a computer program interpolated the
data to obtain a constant number of data points between
successive etalon peaks.

To compare Eq. (5a) to the data, we obtained a value for
N, from the maximum of the highest-power scan. Since
the wavelength (or energy) scale was calibrated absolutely

by the interpolated data and the two-photon marker reso-
nance, the only remaining parameters in Eq. (5a) are those
relating to the atomic structure. Three of these are docu-
mented already in the literature, namely, the effective
quantum number of the 6P, ,,20s,J =1 state,® n§=15.696
(or &, =4.304), the effective quantum number of 6s20s 'S,
state, ng =15.809 (or 8, =4.191), and the natural linewidth
of the 6P,,,20s, T—1 state, I'=3.1 cm~! (or
R?=0.0857).> We chose the last parameter, the square of
the dipole moment of the ionic transition Ba™ 6s-
Bat 6P, | (g |r|e)|? to fit the width of the highest-
power data scan, leaving no adjustable parameter for the
successive low-power scans. In using Eq. (5) we accounted
for the observed 20% decrease in our laser’s output power
at the lower-wavelength end of the spectrum, by using a
linear power decrease with frequency.

DISCUSSION

Figure 3 shows the comparison of Eq. (5a) and data us-
ing a value of | (g |r|e)|=4.1 au. Over two orders of
magnitude, even though the shape of the spectrum
changes dramatically, the data and our model are in excel-
lent agreement. In particular, notice the detailed agree-
ment in the shapes, asymmetries, widths, and heights of
the different peaks. The narrow peak at n*~14.9 is the
two-photon calibration transition referred to above. The
major source of uncertainty in this measurement is the
power density which we estimate is accurate to better than
15%. Since our fits are insensitive to a 5% variation in
the value of the | (g |7 |e) | % we estimate a 15% uncer-

I=29 kW/cm?
1=12.3 kW/cm?
[ —jL

1=0.36 kW/cm
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FIG. 3. Experimental data and comparison to theory for vari-
ous laser powers. The vertical axis is the total number of detect-
ed electrons and has the same normalization for each plot. The
horizontal scale is the effective quantum number n* relative to
the Ba® 6P, , ionization limit. A change of 0.1 in n* represents
about a 1.3 A change in laser wavelength. The feature at
n*=14.9 is the two-photon resonance at 20207.49 cm~' which
was used as the absolute wavelength reference.
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tainty in our value of the |(g|r|e)|% A value of
|[{g|r|e)| =43 has been calculated using Coulomb
wave functions, and empirical Bat energy level data.’

The height of the peak on the long wavelength side of
the spectrum, which is due to a transition to the 6P ,19s,
J =1 state, is smaller than our model predicts. The reason
for this discrepancy becomes clear when we look at Eq. (6)
again. The asymmetries and heights of the side peaks are
extremely sensitive to how close they are to the zeros of
the sine function. Our model, which is based upon a two-
channel MQDT, assumes the same quantum defect for the
whole Rydberg autoionizing series. The experimental
value for the quantum defect for the 6P, ,,19s, J =1 is,
however, slightly greater (by 0.02).1° This slight increase
in the quantum defect of 6P, ,,19s, J =1 pulls it slightly
towards the zero of the sine function resulting in an ap-
propriate reduction of the height of the 6P;,,19s, J =1

peak. We did not incorporate this into our model, since
that would require more than two channels and the
discrepancy is not sufficiently severe to determine the ad-
ditional atomic parameters that would be required. How-
ever, this extreme sensitivity suggests that it might be
more accurate to measure the quantum defects of autoion-
izing states, by measuring their amplitude in a satellite
transition. Such a technique has been used recently by
Tran et al.!!
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