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The quantum close-coupling (CC) treatment of collisions of an atom in a I' electronic state with a
structureless target is developed, based on earlier work of Mies [Phys. Rev. A 7, 942 (1973)],and a

j,-conserving [coupled-states (CS)] simplification presented. There is no direct coupling between the
J=0 and J=1 levels; transitions between these levels will occur only as a result of Coriolis coupling
involving the J=2 state. Actual CC and CS calculations are reported for collisions of Ca 4 P' with
He, based on the potential curves of Malvern [J. Phys. B 11, 831 (1978)]. In the CC results, of the
three independent cross sections, J=2—+1 is predicted to be largest, and J=2~0 smallest, over the
entire range of collision energies sampled. By contrast, the CS approximation predicts the 1~0
transition to be forbidden, and yields only fair accuracy for the CC 2~1 and 2~0 transitions. The
coupling between spin-orbit states is also interpreted within an adiabatic model. A comparison with
the experimental results of Yuh and Dagdigian (preceding paper) is made by averaging the CC cross
sections over the experimental translational energy distribution. The experimental cross sections for
the 2~1 and 2~0 transitions are 3—4 times larger than the theoretical values, and the 2~0 cross
section is found experimentally to be -3 times larger than the 1~0 cross section, in direct contrast
with the theoretical prediction for this ratio.

I. INTRODUCTION

There has been much interest in the past in the theory
of fine-structure changing collisions in atomic collisions,
in particular collisions of atoms in P electronic states
with closed shell atoms. Nikitin and collaborators' have
carried out a continuing series of investigations of these
processes, within a semiclassical treatment of the collision
dynamics. There have also appeared a number of fully
quantum studies, ' based on formalisms presented first
by Reid and Dalgarno ' and by Mies. Relatively little
attention has been paid to collisions of atoms in P states,
where three distinct fine-structure-changing transitions
will occur, as compared with the unique transition which
characterizes the well-studied P systems. There have
been several studies of P systems using semiclassical
methods' ' or elastic-scattering models'7; Cohen, Col-
lins, and Lane' have determined cross sections for the
Ne(3P)+Ne system using an approximate close-coupling
treatment; and, recently, Aquilanti and co-workers
have discussed quantum decoupling approximations which
may be suited to this type of collision. Ab initio potential
curves for the interaction of noble-gas atoms with
alkaline-earth atoms in P electronic states have been re-
ported by Malvern and by Demetropoulos and Lawley.

Motivated by the recent experimental study by Yuh and
Dagdigian, we have undertaken a companion theoretical
investigation of fine-structure changing collisions of
alkaline-earth atoms with helium atoms, using a fully
quantum description of the collision dynamics. The for-
malism, presented in the next section, is an extension of
the work of Mies. The Ca-He potential curves of Mal-
vern, discussed in Sec. III, were used to describe the in-
teraction. Calculations were carried out within a full
close-coupling treattnent and within a j,- (or 0-) conserv-
ing simplification, identical to that described by various
authors io, ls, zo, zi, 25 Our goal is to explore the range of va-

lidity of this dynamical approximation and to investigate
the degree to which accurate quantum-scattering calcula-
tions can reproduce the experimental data of Yuh and
Dagdigian. These calculations are described in Sec. III
and the results presented and discussed in Sec. IV. These
results are interpreted in terms of an adiabatic formula-
tion" ' in Sec. V. The comparison between our calcula-
tions and the experimental intramultiplet cross sections re-
ported in the preceding article is made in Sec. VI. A
brief conclusion follows.

II. FORMULATION OF THE DYNAMICS

As stated in the Introduction, we follow the approach
presented by Mies for collisions of F(2P) with H+.
Asymptotically, the wave function for the M( P)+N('S)
system will be written as

~
X)

~

AXnLS), where
~
N)

denotes the wave function of the noble gas and the wave
function of the metal atom is specified by the orbital and
spin angular momenta (L and S), their projections along
the M-X axis (A and X), and an index n which denotes the
electronic state of the metal atom. The total electronic
Hamiltonian is given by

HMw(rM rx &)=Hatt(rM rtv &)+ &t.s

where

HMN(rM rN + ) HM(rM)+~X( rx)+ +Mtv(rl rN + )

Here HM and H& denote the electronic Hamiltonians of
the M and N atoms; VLz is the spin-orbit operator; the
coordinates of the electrons are denoted by rM and r&,
and VM~ denotes the electrostatic interaction between the
two atoms, which depends parametrically on R, the M-X
distance. We assume that V~& vanishes as R ~ op.

Within the Born-Oppenheimer approximation the elec-
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lim 8'A~„LS(R) =E„L,S +ER~ ac
(5)

where E„ls and E~ denote the electronic energies of the M
and N atoms.

The electronic states which correlate asymptotically
with atoms in the P and 'S states are H and X. The re-
flection symmetry of the latter state will be X+ if the
atom has an sp configuration (3P„) and X if the atom
has a P configuration ( Pz). The electronic energies are
independent of the signs of A and X, and for simplicity
will be denoted as Wn(R) and W~(R). Since the quantum
numbers n, L, and S have the same values for both the H
and X states, these indices will be dropped unless explicit-
ly needed.

Linear combinations of the electronic eigenfunctions
can be taken which are eigenfunctions of the total angular
momentum J =L+S, namely,

i R,JQ& = g (LASX
i
LSJQ)

) R,AX&,

where 0 is the projection of I along the M-N axis and
(LASX

~

LSJQ) is a Clebsch-Gordan coefficient. The ma-
trix elements of the electronic Hamiltonian between these
total angular momentum states are given by

tronic eigenfunctions of a diatomic system are traditional-
ly designated by the quantum numbers A, X,I.,S. %'e
have

Hsr~ ( R,AXnLS) = W„~„l.s(R)
~
R,AXnLS), (3)

where, as before, the index n will designate the particular
electronic state of the two-atom system. The eigenfunc-
tions ~R, AXnLS& are the adiabatic electronic states of
the molecular system, as would be given by an ab initio
calculation, and behave asymptotically as

lim
~

R,AXnLS& =
~
X&

~
AXnLS& .

R —+ oo

The corresponding relation for the Born-Oppenheimer en-
ergies is

(R,J'Q'
i HMN i

R,JQ&

=g (LASX
i LSJQ )(LA'SX'

i
LSJ'Q')

~(R,A'X'iH~~ iR, AX) . (7)

Since

&R,A'X'
~
HM~ I

R, AX& =5..5» W.,(R),
it follows that the matrix elements vanish unless Q=Q',
so that Eq. (7) becomes

(J'Q'
~
HM~

~
JQ&

=5nn [(2J+1)(2J'+ 1)]'~

I. S J L, S J'
AX —Q AX —Q»('

A, X

where

I. S J I. S J'
A X —0 A X —0

are 3j symbols.
The spin-orbit interaction can be written as

VLs(R)=a(R)L S= , a(R)[ J —L ——S] . (10)
~2 ~2

Since the
~
R,JQ & functions are eigenfunctions of J, L,2

and S, it follows that the spin-orbit Hamiltonian is diago-
nal in the

~
JQ & basis. These diagonal terms can be added

to Eq. (9) to give an expression for the matrix elements of
the full electronic Hamiltonian [Eq. (1)]. Since the Born-
Oppenheimer energies are independent of the signs of A
and X, it is easy to show, using the orthogonality proper-
ties of the 3j symbols, that the summation over A and X
in Eq. (9) can be evaluated analytically. This leads to the
following expression:

(J'Q'iH~~
i JQ&=5nn 5' Wn+ [J(J+1) L(L+1)—S(S+1)]-a (R)

2

L, S J L, S J'+[(~+'"~'+"]'"(W& Wn) 0 Q QO —Q —Q

TABLE I. Matrix elements of electronic plus spin-orbit Hamiltonian in body-frame basis.

foo}
/
20)

/
10)

(00&

~20&

i
10&

~
2X2&

—,[2 Wn(R)+ Wx(R)] —2a(R)

[Wn(R) —Wx{R)]
3

F1*1&
—,[Wn(R)+ Wg(R)] a(R)—

+ 2 [ Wn(R) —Ws(R)]

~2+2&
W„(R)+a~Z)

[Wn(R) —Ws(R)]
3

—,
'

[Wn(R)+2Ws{R)]+a(R)
0

+ —,[ Wn(R) —Wg(R)]

2 [W„(R)+Wx(R)]+a(R)

8'g(R) —a(R)

'See Eq. (11);the states are denoted
~

JQ & with L =S= 1 understood.
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Explicit expressions for these matrix elements are given in
Table I.

We notice that in the Q=O block the J=1 state is not
coupled with either the J=0 or J=2 states. This is be-
cause the 3j symbols in Eq. (11) vanish when
1.=S=J=1 and Q=O. Since the J=O state only ap-
pears in the Q=O block, this implies that there is no cou-
pling at all between the J=0 and J= 1 levels (the J=1
and J=2 levels are coupled in the Q=+1 blocks). The
physical origin of this lack of coupling involves the sym-
metry of the wave functions with respect to reflection in a
plane containing the M-X axis. The electrostatic potential
HM& is, of course, symmetric under this operation, and,
for Q =0 the symmetry of the

~
R,JQ & functions is given

by ( —1) +'. Thus within the Q=O block, the even-J
states will never be coupled with the odd-J states, regard-
less of the detailed nature of the electrostatic potential.
Since the J=0 state only appears in the 0=0 block, it can
thus never be coupled with any odd-J level. Alternatively,
in line with the discussion given by Voronin and

I

H~~(r, R) = g V~(r, R)Pq(cosg), (12)

where 0 is the angle between r, the vector describing the p
electron, and R. For the case of collisions involving an
nsn'p P atom, one can show, with a little angular mornen-
tum algebra, that only the A, =O and A, =2 terms will con-
tribute and that the body-frame matrix elements [Eq. (11)]
are now given by

Kvlividze' or Cohen et al. , ' we can say that the

~

J=2,Q=O& and
~

J=O,Q=O& atomic states correlate
with linear combinations of the IIO and X molecular
wave functions, while the

~

J= 1,Q =0 & atomic state
correlates with the II + wave function.

Another formulation of the dynamics, which follows
the initial approach of Reid and Dalgarno, ' is to expand
the electrostatic Hamiltonian H~~ [Eq. (2)] as an effective
interaction involving only the lone p electron, namely,

&J Q IHMN I
JQ&=~un &JJ' Uo(R)+ [J(J+1) L(L+1)——S(S+1)]a (R)

2

J 2 J' J J' 2'+"j '
Qo —Q (13)

where

JJ'2
1 1 1

v2(R) =5[Wx(R) —Wn(R)]/3 . (15)

An expression for the body-frame potential matrix ele-
ments, analogous to Eq. (13), but for the case of collisions
of I' atoms, has been given by Fitz and Kouri. As
pointed out by Aquilanti and Grossi, '9 Eq. (13) facilitates
the connection between the present problem and the
scattering of an atom by a rigid rotor, where Uo(R) would
be the spherically symmetric potential and U2(R), the an-
isotropy.

Up to this point we have expanded in body-frame states;
the space-frame

~
JMz& states are related to the

~
JQ&

states by the transformation

~
JM, &= +DM,„(e,y, o)

~
JQ&, (16)

where e,p describe the orientation of R in the space

is a 6j symbol and the Uo(R) and Uq(R) potentials are ob-
tained by integrating the Vo(r, R) and Vq(r, R) terms over
the coordinates of the p electron. , The requirement of
equivalency between Eqs. (11) and (13) implies, as previ-
ously derived by Aquilanti and Grossi, '

Up(R) =[8'x(R)+28'n(R)]/3
and

I

frame, and our definition of the Euler angles follows that
of Brink and Satchler. To describe the collision we ex-
pand the total wave function in eigenfunctions of the total
angular momentum g = J + I, where I denotes the orbi-
tal angular momentum of the two-atom system. We have

I
JlgM&= g (JMJlml

I
JAM)

I

J

(17)

where the ket
~

lm~& is a spherical harmonic. As dis-
cussed by Mies, the coupling scheme used corresponds to
Hund's case (e). The spherical harmonics in Eq. (17)
can be expressed in terms of rotation matrix elements
the resulting product of two rotation matrix e1ernents can
be collapsed; and the sum over the Mz and mI indices
can be performed, using the orthogonality properties of
3j symbols. We find

~
Jlg M & =[(2g +1)(21+1)/4']'~ ( —1)+

I J
0 Q Q D4nlJQ& ~

Q

(18)

The matrix elements of the Hamiltonian HM~+VLz
can be evaluated from Eq. (18) by integration over all
values of 0,$ and using Eq. (11). We find, after some
straightforward angular momentum algebra,
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1 fi,Ji(R):—(J'1'gM
I ~M+

I

Jig

M�
&
= oJJ'fill' ~n+ [J(J+1)—L(9L + 1)—S(S+ 1)]

a (E)

+[(2l +1)(2l'+1)(2J+1)(2J'+1)]'"(W, —W„)

l J g l' J' g L S J L S J'
~& on n— on —n on —n on —n (19)

As in the case of the simpler body-frame potential [Eq.
(11)],one can show from the restrictions on the 3j symbols
in Eq. (19) that there is no coupling between the J =0 and
J=1 states. Collision-induced transitions between these
states will occur only through the second-order sequence
J=O, l=g~ J=2, l=g, ++2~ J=1, /=g. As dis-
cussed by Aquilanti and Grossi, ' the space-frame poten-
tial matrix [Eq. (19)] for a given g will separate because
of parity into a 5&(5 matrix involving states of parity
( —1)++' and a 4)&4 matrix involving states of parity
( —1)+. An expression, equivalent to Eq. (19), for the
space-frame potential in terms of the vo(R) and v2(R)
terms [Eq. (13)] has been given by Aquilanti and Cxrossi. '

The total Hamiltonian for the collision can be written as

~2
~R +~Me (2o)

2p

where HM~ is defined by Eq. (1). We will expand the total
wave function in terms of the

1
Jig M ) states as

q(R, r)= g &,«~(R)1JlgM) .
J,l,g, M

(21)

where

+ Ufi, ji(R)]CJ tyM(R }=O (22)

D(R)
~' a' 2 8
2p gg 2 g Qg

l(l+1)
R

(23)

where E designates the total energy and Vfi Ji(R) is de-
fined by Eq. (19). The third term on the left-hand side
(LHS) of Eq. (22) designates the so called non —Born-
Gppenheimer terms and is written

The CJ~&M expansion coefficients satisfy the usual close-
coupled (CC) equations

g [&ii 4J D(R)+ vfi, ji(R)
J', I'

g2 02 fi
Ufi, Ji(R}=, J'/&M lii —l(l +1)—R', 2R Jl—g M — J'1'g M Jlg M

2I.z' ' a,' M 2p BR BR
(24)

where 1 z ——g —J.
If these non —Born-Qppenheimer terms are neglected

the coupled equations become entirely equivalent to those
which appear in the treatment of atom-molecule rotation-
ally inelastic scattering, and which have been presented
and solved by several authors ' ' ' in the case of col-
lisions of atoms in P electronic states with noble-gas tar-
gets.

Furthermore, if the centrifugal term in Eq. (23) is re-
placed by a constant value l(1+1)/R for all channels,
then, exactly as in the coupled-states (CS) approximation
for rotationally inelastic collisions, ' a centrifugal
decoupling of the CC equations can be achieved. This re-
sults in a block diagonalization in the index Q with the
potential matrix given by Eq. (11). Qbviously, then, from
the discussion following Eq. (11) we see that within this
CS (j,-conserving) approximation, there will be no cou-
pling between the J=0 and J=1 states. The CC equa-
tions become reduced to three uncoupled equations
(J=2,A=+2 and J=1,Q=O) and three sets of two cou-
pled equations (J=0,2;A=O and J=1,2;0=+1). This
quantum decoupling approximation has been applied to
the study of fine-structure changing collisions by several
different groups, ' ' ' ' ' apparently independently.
Several semiclassical treatments containing a similar
decoupling approximation have also appeared in the litera-

1 26 33

The CC equations (22) are solved subject to the boun-

I

dary condition

Clice M(R) ~JJ'~ll'exp[ i(kj' z l 'tr)]R~ oo

(kJ /kJ)' Sf—i,ji

&& exp[i(kJR ——,
'

lm. )), (2S)

kJ ——[2p(E Ej„tg)IR ]'r—
with the internal energy EJ„is being defined by

a(Z = ~)EJ.Ls =E.is+Ex+
2

&& [J(J+1)—L(L+1}—S(S+1}]. (27)

(28)

where Pf J, the weighted partial opacity, is defined by

(2g +1) 2

(2J+ 1) X 14J &ii Sfi,jiI—
The inelastic cross section for the J~J' intramultiplet
transition, averaged over projection quantum numbers, is
given by the expression
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In the CS approximation the scattering equations are

g [5Jj'D(R)+ VJ'Q JQ(R)]CJ'Qg M(R) =0, (30)

Xexp[i(kqR ——,
' ln. )] . (31)

The degeneracy-averaged integral cross sections are given
in Eq. (28) with the weighted partial opacity defined either
by the so-called l =g choice

(32)

or by the l =If„gf choice

Pf J —— g g (2l+ 1)(10J'0
~

lJ'g 0)+ 0 I

lQ 2 (33)

In the latter case, the range of I values which contribute to
the sum is restricted by the triangular relation contained
in the Clebsch-Gordan coefficient. Equations (32) and
(33) lead to identical expressions for the integral cross sec-
tion.

III. POTENTIAL CURVES
AND SCATTERING CALCULATIONS

Malvern has reported potential curves for a large
number of electronic states of the Ca + He system, deter-
mined within an extension of the model potential method
of Bottcher. Only the two outer electrons of the alkaline
earth atom are considered explicitly; the remaining elec-
trons and the two nuclei are treated as two polarizable
cores. Explicit representations of the potential curves for

Co-He

E (eV)

0.2-

o.o-
6 8 JO

R(bohr)
FIG. 1. Potential curves in eV for the II and X+ electronic

states arising from the interaction of a Ca atom in the 4s4p 'P
electronic state with a He atom, as determined by Malvern
{Refs. 22 and 37). The curves correspond to the quantitites
8'Ax„L,~(R) defined by Eq. (3).

where D(R) is defined by Eq. (23) with I replaced by l.
The potential matrix, which is independent of I, is defined
by Eq. (11) or, equivalently, by Eq. (13). These equations
are solved subject to the boundary condition

lim Czn&~(R)=5qq'exp[ i(kJ—'R —
2 lm)]

R —+ oo

—(kJ/kg) SJ J1 /2 lQ

the II and X states which correlate asymptotically with
Ca( P)+He were obtained by a spline fit of Malvern's
tabulated values. ' Figure 1 displays the dependence on
R of Wg and 8'g for the Ca-He system. At values of R
less than 5 bohr, Malvern's curves were continued using
exponential extrapolations. We observe that the X curve is
considerably more repulsive. This is because the Ca4p or-
bital lies along the internuclear axis in the X state, and
thus experiences a more repulsive interaction with the
filled helium 1s shell.

If we refer to the formulation of the collision in terms
of a spherically symmetric potential and a P2(cos8} aniso-
tropy [Eq. (13}],we see from Eqs. (14) and (15) that at
moderate to large values of R the effective anisotropy will
be much larger than the spherically symmetric term. This
should be contrasted, obviously, with the case of atom-
rotor collisions, where the anisotropies are in general signi-
ficantly smaller than the spherical component of the po-
tential.

The CC and CS equations were solved using, respective-
ly, the logarithmic derivative ' and renormalized
Numerov ' ' algorithms developed by Johnson. The
spin-orbit constant a (R) in Eq. (19) was assumed to be in-
dependent of R and was taken equal to the value appropri-
ate to the Ca( P) atom, 52.5 cm

IV. RESULTS

Before presenting the results of our calculations, it will
be worthwhile to discuss first the expected magnitude and
behavior of the cross sections, based on conclusions de-
rived from earlier studies of intramultiplet transitions. As
indicated in Table I, the coupling between the various
spin-orbit states is proportional to the splitting between
the H and X potential curves, which, as we see in Fig. 1,
is large. A rough fit of 8'~ —8'~ to an exponential indi-
cates that the range of the coupling potential, p, is on the
order of 1—1.5 A. The Massey parameter, defined as" '

g=(b8/fi)/(v /p),
where EE is the fine-structure splitting, and U is the velo-
city of the Ca atom relative to the noble gas, will be on the
order of unity for Ca-He collisions at the relative veloci-
ties which characterize the experiments of Yuh and Dagdi-
gian. Thus the collisions are neither adiabatic (g»1),
nor sudden (g' « 1). Since we are not in the adiabatic lim-
it we expect fairly large cross sections.

Of particular interest will be the accuracy of the CS
(j,-conserving) approximation. If the scattering is dom-
inated purely by first-order electrostatic coupling, then, as
discussed in Sec. II, we would expect the J=O~ 1 cross
section to be considerably smaller than the J=O—+2,
1~2 values, since the J=O and J=1 levels are not
directly coupled by the electrostatic potential. This pre-
diction would be consistent with the experimental in-
tramultiplet rates for collisions of CH4 with Cd( P) and
Sn{ P) reported by, respectively, Breckenridge and Mal-
min and by Husain, Wiesenfeld, and co-workers. As
we have seen in Sec. II, the coupling with the rotational
motion of the nuclei does allow the J=0 and J=1 levels
to mix by means of the J=2 level. Thus, if the J=0~ 2
and 1~2 coupling is strong, we would expect significant
J=O~ 1 cross sections, arising from second- and higher-
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FIG. 2. Weighted partial opacity curves [Eq. (29)] as a func-
tion of the total angular momentum for collisions of Ca( I') with
He at total energies of 0.14651S eV and 0.036515 eV. The CS
(j,-conserving) curves (dashed lines) were calculated with the /-

final definition of the partial opacity [Eq. {33)]. Within the CS
approximation the 0~ I transition is forbidden.

order processes. Physically this would imply a strong de-
gree of coupling between the rotational motion of the nu-
clei and of the p electron on the alkaline-earth atom.

The model studies of Aquilanti and co-workers sug-
gest that the CS approximation will not be accurate when-
ever the fine-structure splitting is small, but not negligible.
Also, the study by Fitz and Kouri of Na-He collisions at
0.04 eV indicates that the accuracy of the CS approxima-
tion may be dependent on the particular choice of interac-
tion potential.

Figure 2 displays the weighted partial opacity curves for

Ca-He collisions at total energies of 0.146515 eV and
0.036575 eV which are equivalent, respectively, to transla-
tional energies of 0.14 eV and 0.03 eV in the J=1 chan-
nel. These values straddle the range of translational ener-
gies sampled in the beam-gas experiments of Yuh and
Dagdigian. We recall that the (J=O)-(J'=1) splitting is
0.0064 eV and the 1-2 splitting, 0.0130 eV. For both en-
ergies, the values of Jbeyond which the opacity curves fall
to zero correspond roughly to the semiclassical value of
the impact parameter for which the electrostatic coupling,
8'~ —Wrt (Table I), becomes equal in magnitude to the
average splitting between the three fine-structure levels.

The pronounced oscillatory structure in the partial opa-
city curves, similar to that seen for collisions of various
alkali-metal —noble-gas pairs, ' ' especially in the case of
strong-coupling potentials, reflects the strength of the
electrostatic coupling. As we have discussed in the
preceding section, the anisotropy in the effective-coupling
potential [Eq. (1S)] is much larger than the spherically
symmetric term. We note that the amplitude of the oscil-
lations is less pronounced for the 0~ 1 transition. Since
these two states are not directly coupled, the transition
must proceed through various intermediate states, which
will tend to damp out the oscillatory structure. At the
lower energy the de Broglie wavelength of the system is
now considerably larger, so, as we might expect, there are
now only a few oscillations in the 0~ 2 and 1~2 partial
opacity curves, and none in the 0~ 1 curve.

The structure in the CS and CC partial opacity curves
agrees reasonably well for both the 0~ 2 and 1~ 2 transi-
tions, although, as observed by Fitz and Kouri in the
case of Na-He collisions, the minima in the CS partial
opacities are deeper.

Table II lists both CC and CS integral cross sections at
a variety of energies. As expected, the cross sections rise
rapidly as the energy increases. To investigate more clear-
ly this energy dependence we plot in Fig. 3 the CC deexci-
tation cross sections 2~ 1, 0, and 1~0 as a function of
initial translational energy. The 2—+ 1 transition is clearly
the strongest, at all energies. We see that despite the ab-
sence of direct coupling the calculated cross sections for
the 1~0 transition are much larger than those for the
2~ 0 transition. The dominance of 1~0 process may re-
flect an energy gap which is a factor of 3 smaller than the

0
TABLE II. Intramultiplet integral cross sections (in A') for collisions of Ca( P) with He. Exponents

for multiplicative factors of 10 are enclosed within parentheses.

Transition

E (eV)'

0.014015 28
0.021 515 28
0.026 515 28
0.036 515 28
0.056 515 28
0.081 515 28
0.146 515 28
0.306 515 28

0
CC

1.17( —2)
1.14( —1)
3.38( —1)
1.18
3.79
7.45

15.27
24.22

3.45( —6)
5.49( —4)
1.75( —2)
3.15(—1)
1.48
7.67

25.43

0~2

1.43( —6)
4.29( —4)
1.14( —2)
1.56( —1)
5.94( —jI )

2.76
9.69

c
2.31(—3)
9.40( —2)
6.29( —1)
4.61

13.76
35.67
58.82

2.35( —3)
4.25( —2)
5.51( —1)
2.82
6.61

15.1S
28.95

'Total energy in eV.
CS cross sections are identically zero for this transition.

'The J=2 channel is closed at this energy.
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2

oJ J -(2J'+1) .

This prediction clearly does not app ya 1 well to the present
1 the 0~2 cross sections ares stem. As an examp e, e

1 the 0~ 1 values, which is no
~ ~

redicted to be —, as arge as e
s

'
h CC values listed in Table II. Recent-substantiated by t e va ue

~

1
0

d -workers have demonstrated the uti ity,
int estu yo roh d f otationally inelastic collisions, o e s
ing relations w ic can en' h be derived within an energy su-
den limit. e cross sTh sections for transitions between any
two rotational levels can be expressed in terms of the cross

f h J=O level, as given by the followingsections out o t e
47.expression

k J J J'
2(~'+ "& o o oJ J

(36)

O. O l-

I I I 1 I I
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E(ev)

FIG. 3. CC deexcitation cross sections
'

ns for Ca( PJ)+He col-
lisions as a unc

'
function of the translational energy in the initial

(higher-energy) channel.

0.04

2~0 gap. t ig eA h' h energy this consideration wil become
that the difference between the 1~0 anirrelevant, so t at e

2~ 0 cross sections should become ess pron
ther ex lanationwhich is what we see in Fig. 3. Also, anot er p

of the 1—+ 0 cross section, relative to the
2~ 0 value, is that the 1~0 transition represents t e on y

a for the J=1 level, while twoexoergic relaxation pathway or
such transitions (2 1 and 2 0)~ 0) exist for the J= eve .

ntuall at very low translational energies, we mig t
expect to enter a regime in w ic t e co ' '

adequately descri e y e'b d b the first-order Born approxima-
e the 1~0 transition would become for-tion, in which cas

bidden. However, we see no indication in ig. o w
this regime might begin.

nd CS cross sections isThe agreement between the CC and cross
h h the CS values are consistently tooreasonable, alt oug e

11 often b a factor of 2 or greater. Since e
0~ 1 cross sections are so large &re.a ive o

ling between the nuclear and the electronic rotation must

siderable error, even for the transitions (0~2, 1~
led b the electrostatic potential. The corn™

sections for intramultiplet transitions in Na( I')+ e co-
iderabl more favorable than the present

one. As discussed in the Introduction, Co en, o
have published CS cross sections for

N ( P)+Ne('S) collisions. In hght of e pe
it would be interesting to compare the'their cross sections
with the results o a uf f 11 CC treatment on the same sys-
tem.

lculated cross sectionsIt ' t resting to compare our calcuis in e
h redictions of simple statistica 1 or scalingwit t e pre ic

theories. The simplest statistical model wou pould redict at

1 this relation to the present problem we predict

sections at high energy, where the sudden limit mig t e
expected to be valid:

2 —+ 1=1.2%]~p . (37)

We see from Fig. t a3 h t the actual ratio is considerably
greater.

V. ADIABATIC INTERPRETATION

W 'I' Jl(R)= JJ' ll' 2 + I J!
2p

Th linear combinations of the Jl M ) states [Eqs.en,
(17) and (18)] are taken to diagonalize t
These new eigenvectors are de 'gsi nated n M ), where

i
n g M ) = Q A„gi(R ) i

Jlg M ),
J, /

and the coefficients A„qi(R) are chosen so that

(39)

W (R)= g Az g i (R)Az Ji(R) ivVfj Ji(R)n', n
J,1,J', I'

=S„.„~&(R) .

h
~
n~ M ) are called adiabatic states.T e n

e ex anded in termsThe scattering wave function can e p
of these states, in a manner simi ar to q.r to E . (21). We write

'P(R, r)= g —Uf~(R) ~ngM) .
n, g, M

ne lects all the non —Born-Oppenheimer terms [Eq.g
(24)], which couple the nuclear with the e
then the CC equations (22) become

(41)

estin inte ~retation of the inelastic coupling is

treatments of intramultiplet transitions, principa y
'

In this approach, we first define alisions of P atoms. n i
'x which combines the electrostatic and

hspin-orbit potential matrix [Vf~ Ji(R) in Eq. ( wi
nuclear orbital angular momentum, name y,
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fi d +a&—E U& (R)
2p dR

fi dGg.-(R) d U~M(R) —I Eg.-(R)U/M(R) 0

(42)

where

G+„(R)=gA„* t(R) A„Ji(R),
dR

(43)

and

d2
F+„(R)=gA„* Jt(R), A„,J)(R)

J I dR
(44)

These two matrices can be determined by numerical dif-
ferentiation of the matrix of eigenvectors.

In this adiabatic formulation each
~

n gM ) state corre-
lates asymptotically with a particular

~
Jl/I) state, so

that inelastic intramultiplet transitions arise solely from
the off-diagonal terms in the F& and G+ matrices. In
Fig. 4, we illustrate the R dependence of the off-diagonal
G+ matrix elements which correspond to the coupling be-
tween different spin-orbit states. The F+ matrix elements
were found to be considerably smaller in magnitude, as is
often assumed in the theory of nonadiabatic processes.
The variation with g was found to be small in the case of
the 6+ matrix elements corresponding to (J=O)-(J'=2)
and (J=1)-(J'=2) coupling, but much larger in the case
of the matrix element corresponding to (J=O)-(J'=1)
coupling. This is because, as discussed above, the (J=0)-
(J'=1) mixing arises only through coupling of the elec-
tronic and nuclear angular momenta, and so will become

more important as g and, consequently, l increase.
We see that there are two fairly distinct regions of large

nonadiabaticity. Following the spirit of the discussion by
Aquilanti and Grossi, we can interpret these two regions
by means of an analysis based on various Hund's case cou-
pling limits. The first region of large nonadiabatic cou-
pling, at large R, occurs at the transition between the
asymptotic region, where the spin-orbit splitting dom-
inates the electrostatic interaction and a Hund's case (e)
limit is appropriate, and a region where the electrostatic
interaction is dominant and a case (a) limit is appropriate.
Indeed, the first maxima in the nonadiabatic coupling in
Fig. 4 occurs at R=13 bohr, which corresponds fairly
closely to the point at which the electrostatic coupling,
Wx —Wn (Table I), becomes equal in magnitude to the
average splitting between the three Ca( P) fine-structure
levels. At smaller R the nonadiabatic coupling again in-
creases, marking the transition between the case (a) region,
where the centrifugal potential is nondiagonal, to a region
at very small R, where the centrifugal potential dominates
the electrostatic interaction. Unfortunately, since
Malvern's calculations do not extend beyond R =5 bohr,
it was not possible to look quantitatively at the nonadia-
batic coupling in this small-R region.

We also observe from Fig. 4 that the region of nonadia-
batic coupling extends over a considerably larger range of
R values than in the case of F( P)+Xe collisions, treated
by Miller et al. Furthermore, since there is substantial
overlap between the regions of strong nonadiabatic cou-
pling between the individual spin-orbit states, it would
probably not be accurate, at least for Ca( P)+He col-
lisions, to use a simplified two-state model to determine
cross sections for the three independent J~J' transitions.

VI. COMPARISON WITH EXPERIMENT

O. l2-

0.08-

O.Oe-

0.0

~ -0.04-

-0.08-

-0.12

- 0.08

- 0.04

0.0

--0.04

- 0.08

- 0.04

0.0

In the preceding article, Yuh and Dagdigian have
described a two-laser experiment to measure intramultiplet
rate constants for intramultiplet transfer in Ca( P)+He
collisions. The velocity-averaged cross sections obtained
from the experiment can be related to the theoretically
determined quantities by integration over the appropriate
flux distribution. We have '

oq q ——f oJ J(v)uf(v)du f uf(u)dv, (45)

where f (u) is the experimental velocity distribution.
Equivalently, this may be written as an integral over the
relative translational energy, namely,

crJ 1 f crJ J (E)E' f(E——)dE f E' f(E)dE .

(46)
/I

i I I I I I
//

I r I I I I I

8 12 16 8 12 16

FIG. 4. Dependence on internuclear separation of the nonadi-
abatic coupling matrix elements [Eq. (43)) for those transitions
which correspond asymptotically to transitions between the indi-
cated fine-structure levels. In all cases the initial and final

) n Jr M) states [Eq. (39)] have odd parity. For the 0-1 and 1-2
matrix elements the value of g is 20; for the 0-1 matrix ele-
ments the three values of g used are listed. The ordinate on the
left refers to the 1-2 matrix elements; the ordinate on the right,
to the 0-1 and 0-2 matrix elements.

For the particular experimental conditions of Yuh and
Dagdigian, the distribution of relative translational ener-
gies is plotted in Fig. 7 of Ref. 24. As can be seen, from
comparison with Fig. 3 and Table II, this type of beam-
gas experiment samples a broad range of translational en-
ergies over which the actual Ca-He cross sections are
changing by many orders of magnitude.

By using a power law to interpolate between the com-
puted CC cross sections, we were able to carry out the in-
tegration of Eq. (46) numerically to obtain the values
shown in Table III. The overall agreement is poor, consid-
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TABLE III. Velocity-averaged intramultiplet integral cross
sections (in A ) for collisions of Ca( P) with He.

Theoryb

11.2
0.78
2.5

Experiment'

31.9+4.2
5.5+1.6
2.0+5.0

'Equations (45) and (46) of text.
"Obtained from numerical integration of Eq. (46) with experi-
mentally determined f (E) (Fig. 7 of Ref. 24) and power-law in-
terpolation of the CC cross sections (see Table II).
'Reference 24; the indicated errors correspond to one standard
deviation.

erably worse than the degree of agreement between the ex-
perimental intramultiplet rate constants reported for the
i%a( P)+He system and the CC cross sections calculated
by Reid, using the potential curves of Baylis. We note
that these curves were determined with a pseudopotential
method analogous to that used by Malvern to determine
the Ca-He potential curves. We observe that the experi-
ments confirm the prediction of a sizable value for the
1~0 cross section, despite the absence of electrostatic
coupling between these two levels. However, the experi-
mental values for the 2~ 1 and 2~0 cross sections are
three-to-four times larger than the calculated theoretical
values. Also there is a significant discrepancy between the
theoretical and experimental values for the ratio of the
1~0 and 2~ 0 cross sections.

Hopefully this disagreement would be resolved if the
Ca-He interaction were treated at a more exact ab initio
level, rather than with the two-electron pseudopotential
method used by Malvern. Extensive studies ' of the
Na( P)+He system have shown how intramultiplet cross
sections can be very sensitive to the assumed potential
curves. It is intriguing to speculate that the magnitude of
the cross sections and the ratio of the 1~0 and 2~ 0
values will be a sensitive function of the chosen potential
curves. Since the theoretical cross sections rise rapidly
over the range of translational energies sampled in the ex-
periment of Yuh and Dagdigian (see Fig. 3 of the present
paper and Fig. 7 of Ref. 24), additional information on the
dynamics could be furnished by further experiments
which would probe the energy dependence of all three in-
tramultiplet cross sections.

J=0~ 2 and J=2~ 1 coupling is such that the J=0~ 1

cross sections are comparable in magnitude to those for
the directly coupled 1~2 transition and significantly
larger than those for the 0~2 transition. This higher-
order J=0~ J'=1 coupling occurs because of the coriolis
coupling between the orbital and electronic angular mo-
m enta.

(3) Because this coriolis coupling is specifically neglect-
ed within the CS approximation, the CS cross sections
differ considerably from the exact CC values. For the
0~ 2 and 1~2 transitions, which are allowed within the
CS approximation, the cross sections appear to be accurate
within roughly a factor of 2.

(4) The agreement is not good between our calculated
Ca-He cross sections and the experimental rate constants
reported by Yuh and Dagdigian. The major disagree-
ment is the magnitude of the 2~ 1 and 2~ 0 cross sec-
tions and the ratio of the smaller 1—+0 and 2—+0 cross
sections.

It would be particularly interesting to extend the present
study to collisions of Ca(3P) with other noble gas partners.
In the case of Ar, we would expect a deep well in the II
potential curve, at least judging from experimentally
determined Na( P) +Ar and K( P ) +Ar potential
curves. Consequently, IV~ —W'n (Table I) would be
large, which might imply a large degree of intramultiplet
mixing. Also, one could investigate collisions of other P
atoms, which would allow some exploration of the sensi-
tivity of the intramultiplet cross sections to the size of the
spin-orbit splitting. An obvious candidate is Mg( P)+He,
Ne for which potential curves already exist.

It is clear that the study of intramultiplet transitions in
collisions of P atoms provides an additional richness not
found in the alkali-metal series, due to the triplet multipli-
city. The present investigation, and the comparison with
the experimental results reported in the preceding article,
indicate that both the absolute and relative magnitudes of
the intramultiplet rates will provide a sensitive probe of
the interatomic potentials and the details of the collision
dynamics. Further, ab initio work is clearly needed, to
provide a inore accurate description of the Ca(3P)-He in-
teraction potentials. Accurate quantum calculations, such
as the ones presented here, can provide not only valuable
comparisons with future experiments, but also standards
for calibration as well as incentives for development of ap-
propriate semiclassical' ' * ' and quantum' ' ' ' ap-
proximation techniques.
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