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Classical trajectories and semiclassical energy eigenvalues are calculated for an atomic electron in

a high Rydberg state in an external magnetic field. With the use of perturbation theory, a classical
trajectory is described as a Kepler ellipse with orbital parameters evolving slowly with time. As they
evolve, the ellipse rocks, tilts, and flips in space, but the length of its major axis remains approxi-
mately constant. Exact numerical calculations verify that perturbation theory is quite accurate for
the cases considered {principal quantum number =30, magnetic field &6 I). Action variables are
calculated from perturbation theory and from exact trajectories, and semiclassical eigenvalues are
obtained by quantization of action. Excellent agreement is found with observations.

I. INTRODUCTION

Since the beginning of this century, it has been known
that when an atom is placed in a magnetic field, the mag-
netic moments associated with orbital and spin angular
momenta are coupled to the field, splitting individual
atomic spectral lines into several components. Very de-
tailed quantitative descriptions of these effects were ob-
tained, ' and the phenomena are now so familiar that it
might seem that there is nothing more to be learned about
isolated one-electron atoms in magnetic fields. However,
these familiar effects appear only when the magnetic field
is very weak compared to the electrostatic field. Recently
it has become clear that as the magnetic field is increased,
an atom will display a very rich diversity of behavior. In
this paper, we explore some of the interesting phenomena
that appear if the magnetic field is not so weak.

Let us begin by sorting out the ranges of magnetic field
strength in which different types of behavior can occur.
The Hamiltonian for an electron in a magnetic field con-
tains (p + e M jc), where M is the vector potential
(B=V X M ); there are therefore two terms, one linear
and one quadratic in 8. Let us define the "linear" regime
as that range of field strengths and quantum states in
which the linear term is significant but the quadratic term
is negligible. Phenomena that occur here include the "nor-
mal" and "anomalous" Zeeman effects and the Paschen-
Back effect, all of which have been extensively studied.

We define the "quadratic regime" to be that range of
fields and states in which the quadratic term (eM/c) is
significant, but still relatively weak, i.e., its effects are ob-
servable, but they can be calculated or at least estimated
using perturbation theory. This regime is the main subject
of this paper.

As the magnetic field strength is increased further, our
calculations have shown that classical orbits of the elec™
tron do not retain their orderly, multiply periodic

behavior; they become irregular or chaotic. It is believed
that this implies that the quantum-mechanical energy
spectrum will also be irregular.

For very strong magnetic fields, there is another regime
in which orbits are regular, but totally different from fa-
miliar elliptical orbits. If the field is so strong that the
magnetic force on the electron is much larger than the
electrostatic force, then the electron will move on an ap-
proximately helical path. Hence the atom must have the
shape of a long tube, with the electron spiraling rapidly
around a field line and traveling slowly back and forth
along the field line. We hope to study these trajectories
and their associated quantum states in the future.

In this paper we present the results of our studies of the
"quadratic region, " where (eW/c) is significant but not
too large. The primary motivation of this paper is to in-
terpret the spectrum of energy levels that was observed in
Kleppner's laboratory at Massachusetts Institute of Tech-
nology (MIT).

After specifying the coordinates and Hamiltonian in
Sec. II, we will use perturbation theory to calculate classi-
cal orbits in Sec. III. The results will be compared with
exact, numerically computed orbits in Sec. IV. Then in
Sec. V we quantize the action variables associated with
these orbits to obtain a discrete energy spectrum. Excel-
lent agreement is found with observations and calculations
made at MIT.

II. DEFINITIONS, COORDINATES,
AND HAMILTONIAN

We take the nucleus to be infinitely massive, and at rest.
Let r represent the position of the electron relative to the
nucleus, with length r.

In a space-fixed frame with unit vectors i,j,k, let
x',y', z' be the components of r, and let p be the canonical
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momentum of the electron, with components p„,p„,p, .
For a uniform magnetic field in the +z' direction,

B=Bk, the vector potential is

M= —
2 r&(B

= ——,B(y'i —x' j )

and the Hamiltonian for the electron of mass p is

1H'= (p +eW /c) Ze—/r
2p

=p /2p+eBI. ~ /2pe+e B (x' +y' )/8pc

—Ze /r.

The main effect of a magnetic field is to cause the plane
of the orbit to precess at the Larmor frequency
col ——eB/2pc, and the Hamiltonian is simplified if we
transform to a frame of reference that is rotating the same
way. Let

x =x'coscol t+y' sincoL t,
y = —x'sin~I t+y coscoLt,

z=z' .
(3)

In classical mechanics, the appropriate canonical transfor-
mation has the generating function

8'I ——p„(x' cosroL t+y' sincoL t )

+p~( —x' sincuL t+y' coscoI t)+p,z' (4)
from which the transformed Hamiltonian is obtained by
the usual rules

p,-' =an, /Bx,', x, =am, /ap, ,

H=H'+BW /Bt .

A straightforward calculation gives

H=p /2p, k/r—+A, (x +y ),
k=Z'e2, A, =e B /8pc . (6)

In this precessing frame, the term linear in B has disap-
peared, and the Hamiltonian contains a cylindrically sym-
metric attractive effective potential-energy proportional to
B2

In Sec. III we use standard methods of celestial mechan-
ics to find the evolution of the orbit, assuming that the B
term is weak compared to the Coulomb term.

III. DESCRIPTION OF CLASSICAL MOTION
BY PERTURBATION THEORY

In perturbation theory, the trajectory of the electron
may be described as a Kepler ellipse with orbital parame-
ters that evolve slowly in time. For this purpose, Kepler
action and angle variables provide the simplest canonical
momenta and coordinates.

A. Action and angle variables for unperturbed
Kepler ellipses

Action and angle variables for the Kepler problem are
given in Table I and indicated in Fig. 1, in the rotating
x,y, z coordinate system.

The plane of the orbit intersects the xy plane in the line
of nodes; the ascending node is the point at which the elec-
tron passes through the xy plane from negative to positive

TABLE I. Variables describing Kepler ellipses.

Action-angle variables

Ii =L,
I2—=L
I3 ——{pk / —2Hp)

Other variables

i =cos '(L, /L )

=cos '(Ii/I~)
N=Q) —m. /2
x

a =—k/2Hp ——I3/pk
b=(aL /pk)'i

=I2I3/pk
e=(1—b /a )'

=(1—I2/I3 )

A =pke
&=2m.I3/pk
Hp =p /2m —k /r

z component of orbital angular momentum

Magnitude of orbital angular momentum; I2&
~

I,
~

Principal action, related to the Kepler energy,
and corresponding to the principal quantum

number; I3)I2
Longitude of ascending node

Argument of perihelion

Mean anomaly, related to the true anomaly P

Polar angle specifying orientation of angular

momentum vector

Corresponding azimuthal angle

True anomaly, or geometric angle between Laplace
vector and instantaneous position of particle
Major semiaxis

Minor semiaxis

Eccentricity

Magnitude of Laplace vector
Period of Kepler orbit

Kepler energy
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A,H)(Iz, gz, I),I3)=— H)dt .
0

(12)

A,Hi (A,I——3/4p k Iz)

This effective Hamiltonian is evaluated in Appendix A,
and the result is

for Pz as a function of Iz,

(2IzH( /D) —(If +Iz)(5I3 —3Iz)
cos2fz ——

5( Iz I ))(—I3 Iz—)
where

(15)

X [(If +Iz)(SI3 —3Iz)

+5( I3 Iz )( Iz—I, ) —cos2$ z] . (13)

D=Ig/2p k (16)

Alternatively, to obtain Iz as a function of Pz, one solves
the quadratic equation

Equations of motion for I's and P's are given in Appen-
dix B, but we can get most of the i~formation we need
from conservation laws. The effective Hamiltonian A,H&
is independent of P~ because the magnetic term A, (x +y )
is cylindrically symmetric; hence I& =I., is conserved.
This holds not only in first order, but also for the exact
motion. H, is also necessarily independent of P3, because
we have averaged over one closed cycle of the unperturbed
motion, and therefore I3 is, to first order, a constant of the
motion. Since I3 is related to Hp, and Hp is related to the
major axis and the period of the Kepler ellipse, it follows
that the ellipse evolves under the perturbation in such a
way that its major axis, its zeroth-order energy, and the
period of motion of the particle around the ellipse, do not
change with time.

A third constant of the motion relates the time develop-
ment of Iz to that of Pz. This third conserved quantity is
of course the effective Hamiltonian AH~ itself. In their
measurements of the spectrum of high Rydberg states of
an atom in a magnetic field, Kleppner and his collabora-
tors found evidence that there may be three conserved
quantities associated with the motion. In the present for-
mulation these conserved quantities are found to be I&,
H~, and I3. An alternative set of conserved quantities is

H, I.„and Hp, the first two of these are exactly conserved,
but Hp is conserved only to first order in perturbation
theory. We already mentioned that when the strength of
the magnetic field is increased, the trajectories become ir-
regular; this implies that a third integral of the motion
does not in general exist, so Hp cannot in general be con-
served.

C. Evolution of orbital parameters

As stated above, in the present framework we describe
the trajectory as an ellipse whose parameters evolve slowly
with time. Mathematically, the simplest representation is
in terms of action-angle variables, but this description re-
quires some translation in order to become physically
meaningful. We present the mathematical description
here.

We showed that Iq and I3 are conserved, but Iz and Pz
change with time. Their time derivatives are independent
of P~, so P~ is an ignorable coordinate, and we can discuss
the motion within the (Iz, gz) phase plane We have. there-
fore reduced the problem to two canonical equations, or
one degree of freedom. Furthermore, we know that the
motion in the (Iz,gz) plane is such that H, is conserved.
Hence if we draw a contour plot of H~ as a function of I2
and Pz for fixed I, and I3, then Iz and Pz develop together
in time such that the system follows a contour of constant
H).

Contours can be calculated by solving the equation

aIq+bIz+c =0,
where

a =5 cos2gz+3,

Iz = (2H~~ /D) —5I z (1+cos2gz)

—I, (5 cos2gz —3),
c =SIfI3(cos2gz —1) .

(17a)

(17b)

(17c)

{17d}

Such contour plots are shown in Fig. 2. In all of these
plots I3 ——3', while

~
I~ I

=0, 1, 5, 10, 15, and 25%.
From Eq. (13), we see that H~ is periodic in Pz with period
m, and it depends only on I&, hence these plots repeat
themselves in every interval [nn. ,(n+1)n], and plots for
+I& are identical. Also, the plots are symmetric about
m /2.

Hi" ——(I3/2p, k )(I, +I3) . (19)

H, has a minimum when BH, /Bgz ——0 and BH&/BIz ——0,

hz=4'z =~/2

Iz Iz ——( IiI3V 5)——'
(20a)

(20b)

H) '"——(I3/2p k )(2I&)(V SI3 —2I&) . (20c)

This is a point of stable equilibrium; in Fig. 2(b) it is at
Pz ='lr/2, Iz = 8.19.

Around the equilibrium point, contours of constant H ~

form closed loops. As time increases, a phase point would
move clockwise around a loop, moving most rapidly where
contours are close together, near the bottom of the loops.
We refer to motion around these loops as "libration. "

Other contours in Fig. 2(b) are open, extending from
one side of the figure to the other. A phase point moves
on these curves in a generally leftward sense, from m to 0.
We refer to this motion as "rotation. "

Between rotation and libration curves is a U-shaped
separatrix. It joins the line I2 ——I3 at two "T points, " so
the value of H, on the separatrix is H', "', and, from (15),
the separatrix satisfies the equation

Let us examine the graph with I& ——1 first (in the
remainder of Sec. III C, the factor of fi for I&, I2, and I3
will be omitted). In this case Iz must fall between 1 and
30, so there is a forbidden region between 0 and 1. When
Iz I, , H, is indepe——ndent of Pz and is given by

H, '"=(I /2p k )(5I —3I, )

which turns out to be the maximum value of H~. H~ is
also independent of Pz on the line Iz I3, where it h——as the
value

Hi( Iz 4z It I3)=Hi (14) cos2gz ——(If+ —', Iz)/(I, Iz) . — (21)
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I ) I )
——I3/3/5 . —— (24)

For larger I~, only rotational motion occurs. For I& close
to I3 I2 remains nearly constant on the H ] contours and
phase points move with p2 decreasing at a nearly constant
rate. For these larger values of I], circular orbits are no
longer unstable.

The T points occur at

$2 ——p2 ———,
' cos '[(If+ —,'I3)/(I~ I3)—],

where BH ~/BI2 ——0, and the lowest point of the separatrix
is at p2 ——n./2 and

I2 I2 —V5I—|.

Each of the T points is an unstable equilbrium, and since
they occur when I2 ——I3, this means that circular orbits are
unstable if I& is small. The motion of a phase point
around the separatrix is also clockwise, staCing at the
right-hand T point at t~ —oo and approaching the left-
hand T point as t~+ oo. Points close to the separatrix
but inside it move along the loops, while those outside it
follow the rotational motion.

2. 1 &Ig (I3
If I, increases, the allowed region (8) decreases in size,

and the equilibrium point, the loops, and the separatrix
move upward in accordance with Eqs. (20b), (21), and (23).
Also the range of values of H& between H&

'" and H~
'"

gets smaller. This is indicated in the plots with I& ——5 and
10. As I& is increased further, the equilibrium point, the
loops, and the separatrix all cease to exist. Equations
(20b) and (23) tell us that the equilibrium point and the
bottom of the separatrix simultaneously pass through the
upper boundary of the diagram when

The same thing happens near 3m/2.

4. Euolution of Pg

Let us now examine the time development of the previ-
ously ignored coordinate P~, the longitude of the ascending
node. Its evolution is governed by the equation of motion
(81). It is easy to show that when we average over a
Kepler cycle (indicated by angular brackets), then
(dP&/dt ) & 0, so P~ increases in every Kepler cycle.
Furthermore B(dp, /dt )/BI2 & 0 so the rate of increase of

is larger when I2 is smaller. When I, is small,
(dp, /dt ) is small unless I2 is also small.

We have found an interesting approximate degeneracy
between the periods of motion of p1 and 4)2. Let r~ be the
period for P~, so P, increases by 2' in the time r~. Then
for the rotational orbits, $2 decreases by 2m in about the
same period,

~'T] (27a)

For librational orbits, the time required for p2 and I2 to
move around a loop in Fig. 2(b) is

vib
&2 7+1 (27b)

IV. EXACT CLASSICAL MOTION

This approximate degeneracy holds when I] is sufficiently
small, but not in general. In fact, in the opposite limit
I~ ~I3, one finds from Eqs. (Bl) and (B2) a different de-
generacy,

(
dP| AI3 d$2 4$I3

p2k 2

so P2 decreases by 2' when P, increases by m /2,
1

&2 4 +I ~

The case I]——0 is trickier, because in these Uariables, the
motion is actually discontinuous. For I] ——0, the equilibri-
um point (20b) is at I2 ——0, and the separatrices are at

So
$2=$2 = —,

' cos '( —-', )=1.11 and 2.03 .

Only upper parts of loops appear in Fig. 2(a), and the
motion around a semiloop is clockwise, beginning to the
left of m/2 and ending to the right.

The rotational curves have been broken into two parts
by the separatrices, and a phase point that starts at large
I2 and p2 vr moves toward ——decreasing p2 and I2, while a
point starting at small p2 and I2 ——0 moves toward increas-
ing I2 and decreasing P2.

What happens at I2 ——0? Classical mechanics does not
allow piling up of phase points (density in phase space is
conserved). Hence a phase point approaching I2 ——0 and,
say, p2

——2.36 must disappear and reappear somewhere else
on a curve having ihe same value of H&. We can under-
stand this only by thinking of the case I~ ——0 as the limit
of I~ small but nonzero. Then we can see that this discon-
tinuous motion is the limit of the very quick passage of
the phase point through ~/2 that is apparent on the plot
for I~ ——1 [Fig. 2(b)]. This leads us to the rule that when
the phase point touches I2 ——0, it is reflected through ~/2,

(26)

II=(2p) '(I2~+p, +@~/p )

/( 2+ 2)1/2+/ 2 (30)

p~ =I., is a constant of the motion, P is an ignorable coor-
dinate, and the equations of motion are

p=P&/P, z =7, /P

kp/( p2+z2)3/2+~2 /~ 3

p, = —kz/(p +z )3/2,

(31)

Above, first-order perturbation theory was used to cal-
culate and describe trajectories of the Hamiltonian (6).
We have also computed essentially exact classical trajec-
tories, using numerical integration of Hamilton s equa-
tions. The computations presented in this section verify
that first-order perturbation theory is accurate for states
around n=30 and fields less than 6 T. In addition, these
exact trajectories provide an alternative basis for semiclas-
sical calculation of the energy spectrum, which we will
present later.

In cylindrical coordinates,

p=(x +y2)'/, /=tan '(y/x), z=z,
the Hamiltonian (16) is
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I

O.O2O —(oi ~ ~ ~ ~
n& ——n —m (36)

0.015—

O.OIO—

0.005—

P 0.000—

—o.oo5—

—0.010 — ~

—0.015—

—0.020— ~ ~ ~ ~

0.08
(b)

I (

—IOOO —500
I I

500 1000

again confirming that nz should be a positive integer.
For a librating trajectory, shown in outline in Fig. 6(b),

Cz is a path on which z is constant, and Cz is a path like
C&. By the same arguments, the quantum conditions are

ppdp=(np+ -,' )h, (37)
P

—p&dp+pzdz =n&h (38)c
where n& and nz are, respectively, non-negative and posi-
tive integers.

B. Action variables from perturbation theory

Quantization of classical perturbation theory requires
additional thought, but it gives more information about
the spectrum.

We showed in Sec. III B that Ii and I3 are, respectively,
exact and approximate constants of the motion. It follows
that they are quantized just as in the zeroth-order, unper-
turbed Kepler problem

Ii ——mA,

I3 ——nA

(39)

(40)

0.04—

PP 0.00 —~~

~yO ~0

~ ~ ~ yO
~ ~i ~ ~ ~ ~ ~

—0.04—

~ ~

~ 0
~ ~

with m, n integers
~

m
~

& n —1. The third conserved
quantity in the unperturbed problem is I2, which would be
quantized as (l+ —,)A', but this is not conserved for the full
Hamiltonian (6). In its place is the new action variable

A2 ——f I2dp2 (41)

which is computed holding I& and I3 fixed. For librating
trajectories, this action variable is the area inside one of
the loops in Fig. 2, while for rotating trajectories it is the
area under one of the corresponding curves, extended from
0 to 2m. An analytic formula can be found for A2 in
terms of complete elliptic integrals, but it is more practical
to evaluate the integral numerically.

—0.08
0 500 IOOO

C. General properties of the spectrum

FIG. 7. (a) Poincare surface of section for a rotating trajecto-
ry. Surface is p=po, and the graph shows p, as a function of z
on this surface. (b) Poincare surface of section for a librating
trajectory. Surface is z=zo, and the graph sho~s pP as a func-
tion of p.

A~ = (p~dp+p, dz) =n~h, (35)
JP c p

where nz is a positive integer (not zero).
Clearly nz is related to the principal quantum number

n. The latter is proportional to the sum of radial and an-
gular actions around an unperturbed Kepler ellipse

nA=I3 —— p„dr +pad 0+ppdP
1

2m'

1
p dp+p, dz+ppdg=npl+L, ,

so

Even before we compute these areas, we can see many
qualitative properties of the spectrum. The total nomber
of states for given Ii and I3 is A' ' times the area between
the lines I2 Ii and I2 I3,' i.e., it——is (I3——IQ)lfi or n —m,
of course. For every state, the correction EE to the un-
perturbed energy is positive, since A,H& )0. In perturba-
tion theory, 6E is linearly proportional to X, i.e., the ener-

gy shift is proportional to the square of the magnetic field.
The shift is greater than (20c) and less than (18),

~~min ~ E ~~max (42)

so we have an upper and a lower bound on the spectrum.
Since there are two types of trajectory, there are two

types of quantum states, which we again call librational
and rotational. Librational levels are doubly degenerate:
One group is associated with loops centered at m/2 and
the other with loops at 3m/2. For the former, the wave
function, like the trajectory, is mainly confined to a region
close to the —z axis; the latter group is oriented opposite-
ly. %"ave functions which are also eigenfunctions of the
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=2 T —1I3 P2 Iicos
2

2Ii
(r2 —I2)'"

(43)

A somewhat simpler formula is obtained by approximat-
ing the U by a rectangle; using (22) and (23) we immedi-
ately obtain

KL —( I3 VSIi )( I —2/2/m')/f—i . (44)

Rotational states are nondegenerate. They have higher
energies than librational states, and adjacent states
presumably have opposite parity. In the observed spec-
trum it should not be difficult to identify the transition
between rotating and librating states, A phase point takes
a very long time to travel along the separatrix, and rotat-
ing or librating paths near the separatrix have very long
periods, or very low frequencies. From the correspon-
dence between energy gaps and frequencies, we conclude
that the two energy levels of given n and m that lie closest
together correspond to trajectories that lie closest to the
separatrix. Furthermore, the energy of the separatrix is
given by (19), and this should also mark the boundary be-
tween librational and rotational levels.

D. Quantization prescription in perturbation theory

For quantitative calculation of the energy spectrum, a
quantization condition is needed. We found that an accu-
rate energy spectrum is obtained from the prescription

parity operator can be constructed as linear combinations
of two degenerate librational wave functions, and presum-
ably the degeneracy is split in higher order because of tun-
neling. (Numerical calculations presented later show that
this splitting is very small. )

The total number of librational levels is proportional to
the area inside the U-shaped separatrix. A quick calcula-
tion (Appendix C) tells us that this number is an even in-
teger close to

A2 ——f I2dgz (n——z+ —,
' )h, (4S)

i.e., the new action variable is quantized in half-integers
for all states. One can "prove" that this prescription is
correct by the following method. Consider first the rotat-
ing states. The new action variable can be written as

2n

A, = j I,dy, = f Iidpi+I2dp2+I3d$3 (46)

where the last integral is evaluated on a path on which P,
and P3 are constant and $2 goes from 0 to 2~. From the
canonical invariance of the form gk pkdqk,

A2 ——f ppdp+pzdz+ppdP (47)

Finally, the path C,' is topologically equivalent to C„so

p, dz+2mL, =A, +2vrL,

=(nz+ —,
' +m)h, (49)

i.e., for rotating states, A2 is quantized in half-integers
greater than m,

n2 ——n, +m . (50)

For librating states, a similar analysis leads to the path Cz
in Fig. 6(b), and most of the same argument follows.
Motion of $2 around a librational loop leaves P un-
changed, so for librating states

~2 ——(np+ —,
' )h, (51)

on a corresponding path in pzP space. That corresponding
path is obtained using equations given in Sec. IIIA, that
relate [I„,P„ I to ( p, r ). For Pi ——0, P3 ——ir/2, and P2 vary-
ing from 0 to 2~, one finds by numerical calculation that
the projection of that path in p, z coordinates is the closed
loop labeled C,' in Fig. 6(a). Moreover, from these calcu-
lations, or by careful thought and attention to Fig. 1, one
finds that if P2 increases by 2~ holding Pi and P3 fixed,
then P inust increase by 2'. Therefore,

A2 ——f p&dp+p, dz+2~L, . (48)

TABLE II. Quantization conditions.

I) ——L, =I%'

I3 ——nA

I,=( I+ —,
' )t

1 I2dp2=(n2+ T)A'1

2'
1

ppd p+pzdz =np~
C orC

2m
p, dz=(n, +—)A

Exact

For unperturbed problem, and in first-

order perturbation theory

Unperturbed problem only

First-order perturbation theory

For exact orbits

For exact rotating orbits

p dp=(n +—)A2~ ~ 2~ cp '
Quantum number

in perturbation theory
n

n2

For exact librating orbits

Quantum number
for exact classical trajectory

nz+I
n, +m for rotating states
nz for librating states
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722 =7l
P

These quantization conditions and the relationships be-
tween them are summarized in Table II.

E. Energy spectrum IOO

Calculated energy levels for 8=1 T, n=30, and m=1
are presented in Table III. The first set of columns shows
the result of quantized classical perturbation theory, Eq.
(45). The numerical precision' of this calculation is such
that the error in the last digit should not be more than +2.
The next column shows corresponding results of quantum
perturbation theory; these energies were obtained by ex-
panding the wave function in a hydrogenic basis, and di-
agonalizing the Hamiltoman matrix within the 29-fold de-
generate manifold of states having m= 1 and n =30. (The
matrix was first divided into two uncoupled parts, a
15&15 block of odd-parity states and a 14)&14 block of
even-parity states; then eigenvalues within each block were
calculated numerically. ) This calculation, as well as the
"full quantum" calculation, were kindly provided to us by
Hulet.

Examining these results, one finds the following.
(i) At low energies there are four doubly degenerate li-

brational levels, or eight such states. This is in agreement
with Eqs. (43) and (44), which for I~ ——1 and I3 ——30 give,
respectively, NL,

——7.87 and 8.17.
(ii) The largest energy shift EF for a librational level is

-0.19 cm ', consistent with (19), which gives 0.20 cm
as the boundary between librational and rotational levels.

(iii) The quantum calculation shows some evidence of a
tiny splitting between nearly degenerate librational states,
but the energy gap is in the sixth figure, and we are not
certain of the precision of this calculation.

(iv) The smallest energy shift is 0.0571 cm, and the
largest is 0.9751 cm '. These are consistent with the
bounds predicted by (42), which are, respectively, 0.0291
and 1.004 cm

(v) The smallest energy gap between adjacent levels is
the one between 20R and 21R, which are the two rotation-
al levels lying closest to the separatrix.

(vi) To within the precision of these calculations, quan-
turn perturbation theory and quantized classical perturba-
tion theory are in essentially exact agreement with each
other. The largest discrepancy between the two occurs for
state 21R, and this might be associated with quantum ef-
fects related to the classical separatrix. '

An "exact" full quantum calculation was also carried
out. In this case the expansion of the wave function in-
cluded all hydrogenic states having m=1 lying between
n=27 and 34. Results of this calculation are also shown
in Table III. These exact energies are essentially identical
to those obtained by quantum perturbation theory except
in the following respects.

(i) The apparent splitting between nearly degenerate li-
brational levels might be very slightly increased, but it is
still very small.

(ii) The energies of the highest levels are slightly de-
creased. This represents the usual sort of higher-order
correction to first-order perturbation theory. The first-
order energy correction is just A,H& averaged over an un-
perturbed orbit or quantum state. In second order, the
trajectory or wave function adjusts to the perturbation,

-E
(cm ')

IIO

120

l50
n= 29

) ) I I

4 5 6
B (T)

FIG. 8. Spectrum of energy levels for m=1, n=29, 30, and
31. Solid lines are results of perturbation theory. Points are ex-
act semiclassical eigenvalues for the highest-energy state in the
n =30 manifold.

) 1

OI 2

shifting away from regions in which A,H& is large.
We also calculated energy levels using exact numerically

computed trajectories and action-variable quantization, as
discussed in Sec. V A. For 8=1 T, these calculations are
quite time consuming, because Kepler ellipses precess very
slowly, and it takes many cycles to obtain the data of Fig.
7. We obtained energies for only a few representative
states. Table III shows agreement between this calculation
and the full quantum calculation.

Energy levels as a function of magnetic field strength
are shown in Fig. 8. These are in very good agreement
with calculations and experiments reported in Ref. 5.

VI. CONCLUSION

This work was supported by grants from the National
Science Foundation (J.B.D.), from the College of William
and Mary (S.K.K.), and from the U.S. Department of En-
ergy (Contract No. W-7405-eng-26 with Union Carbide
Corporation) (D.W.N.). We thank R. Hulet for the quan-
tum calculations listed in Table III.

APPENDIX A: EVALUATION OF THE EFFECTIVE
HAMILTONIAN

Equation (11) tells us that we have to average
H& ——A, (x +y ) over time on a Kepler ellipse. The cal-

Using a combination of perturbation theory and exact
trajectory calculations, we have studied classical orbits of
an electron in a high Rydberg state in an external magnet-
ic field. By quantizing the resulting action variables we
have calculated the spectrum of discrete energy levels.
Our results are fully consistent with quantum calculations
made for us by Hulet, which in turn are consistent with
experimental measurements m.ade at MIT. Our semiclas-
sical pictures provide a way of interpreting such experi-
ments.

ACKNOWLEDGMENTS
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1
Hg~ = xgxjdt,

1
(A 1)

where x; =x,y, z for i =1,2,3 and the integral is performed
on a Kepler ellipse. The nine components H,J form a ten-
sor, which transforms under rotations of coordinates as

culation can be done in a number of ways, most of which
require some pages of analysis. The cleanest derivation we
found is given below.

Define

gg+H

and using

cos P2 ———,(1—cos2$i),

sin P2 ———,(I+cos2$2),

we obtain

A,H, =A, [H„„—,(1+cos i )

(A7)

H"=A HA~

if components x" in rotated coordinates are related to
components x in the original system by

+(H„„-—,' H„, )(—1—cos i )cosz2pi] . (A8)

The integrals H„and H„-„- are now most easily calcu-
lated using the so-called eccentric anomaly l( as an auxili-
ary variable,

x"=A x .

Furthermore,

(A2b)
H„„=—f [(x") +(y") ]dt= —f r 2dt

T 7
(A9)

AHi ——A(H +Hyy ) . (A3) since z"=0 on the orbit. Using Eqs. (3-69) and (3-76) of
Goldstein's second edition,

Consider the following sequence of coordinate transfor-
mations: (i) rotate by Pi about the z axis, (ii) rotate by i
about the new x axis, and (iii) rotate by P2 about the re-
sulting z axis. Then in the rotated coordinate system, the
positive z" axis coincides with the angular momentum
vector, so the orbit lies in the x "y" plane, and the positive
x" axis passes through the perihelion. It immediately fol-
lows from symmetry that

0 0

dtr =a(1—cosg}, — = (1—cosf),
dP 2m.

we obtain
2

H = f (1—e cosl() dg .

Only terms with even powers of g contribute, and

H,„=a (1+—', e }. (A10)

H"= 0 Hy "y~~ 0
0 0 0

(A4} For H„-„-we note that

x = l' cos+

and we can calculate H using the reverse transformations.
Rotation matrices for steps (ii) and (iii) are, respectively,

1 0 0

and that the geometrical angle X between the perihelion
and the instantaneous position of the particle is related to
the eccentric anomaly li by Goldstein's Eq. (3-77),

A; = 0 cosi sini

0 —sin& cosi
(A5a)

so

cosX=(cosp —e)/(I —e cosli),

Gospel

sin/i 0

A;;; = —sin/i costi 0

0 0 1

(Asb)

H —A~gc4 ggH A~ggA~g

Multiplying out the matrices for the reverse transforma-
tions

H„-„-=— r cos Xdt2 2

7

Q 2'f (1—e cosP)(cosg —e) dP
2m'

=a (2e +-,' ) .

Combining (A8}, (A10},and (Al 1},we obtain

(Al 1)

a moment's calculation gives

AHi A, [ „H„( cogs2——+cos i sin P2)

+~~-~-(sin Pz+cos i cos Pz)] . (A6}

Rotation (i) and its inverse leave H, invariant. Defining

AH, =Aa ~[(1+—,e }—,( 1+cos i )

+—', e —,
' (1 cos i }cos—2$z] . (A12)

This can be reexpressed in terms of action-angle variables
using formulas in Table I, and the result is Eq. (12).

APPENDIX 8: EQUATIONS OF MOTION

(Bl)

For reference we list here the equations of motion for Pi, P2, and I2, derived from Hamilton s canonical equations us-
ing Eq. (12),

(
dP, dH, AI 2 2[(5I3—3Ii)I, —5cos2$2I, (I, I2)], —

2p2k 2y2
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d(t, aII, —u, 2 2 4
3 [(5I)Iq+3I2)—5cos2gq(I~I3 I2)]

dt BI2 2@2k I'

QH) +AI3
[5(I2 I, )(—I3 I2—)sin2$2] .

()p 2p2k 2I22

The angular hrackets (dx /dr ) mean that the time derivative is averaged over one Kepler cycle.

(83)

APPENDIX C: NUMBER OF LIBRATIONAL
STATES

To compute the area inside the two U-shaped separa-
trices, we find the area inside half of one of them, and
multiply by 4,

T

2~+, =4 I, y, ———f I,(f,)df,
m/2

where I2{$2) refers to the right-hand half of the U. The
integral in Eq. (Cl) is most easily evaluated using I2 as the
independent variable

dip 2I,
dI2 {I~ I, )(I—2 —5I (

)'

and the substitution

u =(I2 —5If )'/~

reduces (C2) to

(I' —51')' ' du2I2 3

P (u 2+4I2) (I2 I2 )1/2
=Ii cos

Therefore

(C3)

(C4)

pT dg2f „I2{4z)d42=f, I2 dI "I2 . (C2)
2 T —1NL ———I3 Q2 I) cos
7T 2

2Ii
(I2 I 2)1/2

From Eq. (21), we have on the separatrix (C5)
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