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Molecular-structure calculations have been performed to obtain the adiabatic potentials for
ground state and numerous excited states of alkali-metal—He systems. They use /-dependent pseu-
dopotentials defined from spectroscopy data or scattering data to describe the e ~-M * and e ~-He in-
teractions (where M is any alkali-metal atom). Standard variational calculations are made, and a
large basis set of Slater-type orbitals is used in order to ensure accuracy and stability of the results.
Our results are discussed along with comparisons with other theoretical and experimental data. The
overall agreement which has been obtained with all available experimental data indicates that signifi-
cant improvements in the calculation of the M-He adiabatic potentials have been achieved by using

an /-dependent pseudopotential technique.

I. INTRODUCTION

Much experimental and theoretical work! has been de-
voted in recent years to the study of various processes
occurring in thermal collisions between ground-state or ex-
cited alkali-metal atoms and ground-state rare-gas atoms,
such as alkali-metal intradoublet or interdoublet transi-
tions, quenching of alkali-metal excited levels, alkali-metal
pressure spectral line broadening, etc. Because the inter-
atomic interactions are the main physical quantities need-
ed for a good understanding of these collisional processes,
much effort has been devoted to calculating?~!? or experi-
mentally determining’3—!® the adiabatic potentials of the
alkali-metal—rare-gas systems. Standard ab initio calcula-
tions of the adiabatic potentials,>* which can, in principle,
be very accurate when enough electronic configurations
are included in the calculations, become rapidly difficult
and costly to perform as the number of electrons in the
atomic cores increases. Calculations using model poten-
tials or pseudopotentials offer a very interesting alterna-
tive to treat the problem.’~!>!° They take advantage of
the fact that the alkali-metal core and the rare-gas atom
have closed-shell structures to reduce the problem of the
alkali-metal—rare-gas interaction to a three-body problem
(alkali-metal core, valence electron, and rare-gas atom). In
both techniques, an effective potential is defined to
represent the potential experienced by the valence electron.
It simulates incomplete screening of the nuclear charge
due to the core electrons, and it can also include the polar-
ization interactions. In the pseudopotential technique, the
effective potential also simulates the antisymmetry effects
due to the Pauli principle by a repulsive potential; there-
fore it is / dependent and the lowest radial wave function
is nodeless for an / series. In the model potential tech-
nique, the valence-electron wave function must be orthog-
onal to all the orbitals of the core and must have the
correct number of nodes. These techniques, when correct-
ly applied, can give reliable results,’ %1210 in particular,
outside the region where the two atomic cores overlap.
The pseudopotential technique appears, however, to be the
most convenient for molecular-structure calculations be-
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cause the core orbitals do not have to be included in the
atomic basis-set expansion of the molecular wave function.

Extensive pseudopotential molecular-structure calcula-
tions for all the alkali-metal—rare-gas systems were
made®® using an l-independent Gombas-type statistical
pseudopotential to represent the interaction between the
alkali-metal valence electron and the rare-gas atom. These
results have been very useful to semiquantitatively inter-
pret, or predict various collisional processes, for example,
the alkali-metal n 2P fine-structure transitions which may
result predominantly from a nonadiabatic coupling at in-
termediate internuclear distances (~10—14 a.u.), a region
where these calculations were expected to be relatively ac-
curate. However, with a growing amount of accurate ex-
perimental data, it has became necessary to improve such
calculations, in particular, for the lightest rare-gas atoms
for which both the use of a statistical pseudopotential and
the non-/-dependence of the potential were questionable.
Some attempts to improve these calculations have been
made recently,'®!! but again used an I-independent pseu-
dopotential and therefore were proving completely unsuc-
cessful in the cases of He and Ne.

We have undertaken extensive and accurate /-dependent
pseudopotential calculations for alkali-metal—rare-gas sys-
tems, beginning with M-He systems. A few results have
already been reported for NaHe and CsHe systems,?! indi-
cating a large improvement over all previous calculations.
The method that we have adopted to calculate the adiabat-
ic potentials is different to that used previously.® In fact,
the use of an I-dependent statistical pseudopotential as
suggested by Gombas to represent the e ~—rare-gas-atom
interaction seems to be cumbersome and, moreover, can-
not reproduce correctly all the experimental phase shifts
of the e~ —rare-gas-atom scattering. Therefore we
thought it preferable to define the I-dependent pseudopo-
tentials which represent the e “-M * or e ~—rare-gas-atom
interactions from experimental data and to calculate the
adiabatic potentials from standard variational calculations
using Slater-type orbitals (STO). In this paper we discuss
the method of calculation and present detailed results on
the adiabatic potentials of ground state and numerous ex-
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cited states of all the M-He systems. Our results are dis-
cussed in relation to available experimental data and
theoretical results.

II. METHOD OF CALCULATION

A. Generalities

The use of pseudopotentials in molecular-structure cal-
culations is fairly well established.!” We briefly recall the
method and discuss the way in which we determine the in-
teractions included in the Hamiltonian.

In the Born and Oppenheimer approximation, the calcu-
lation of the adiabatic potentials E;(R) for an alkali-
metal—rare-gas system reduces to finding a solution for
the one-electron Schrddinger equation at any given inter-
nuclear distance R:

[—%V%-_.A—FVA(?A )+ Vp(Tp)+ Ver(Ts,T)

+V,p(R)—E;(R)]¢;(T,R)=0,
(1)

where Ty, X=A4,B is the position vector of the alkali-
metal valence electron e ~ with respect to the alkali-metal
core (A4) or the rare-gas atom (B), and R is the position
vector of B with respect to 4. Vy(Ty) is an effective po-
tential describing the interaction between e ~ and the core
X, which is modeled, depending on the core X, from spec-
troscopic or scattering experimental data; it contains a
long-range part including polarization terms, and an /-
dependent pseudopotential describing the short-range in-
teraction. Vcr(f'B,l—i) is the well-known cross term or
three-body interaction®!? which arises from the polariza-
tion of B by both e ~ and 4. Finally, V,5(R) is a potential
depending only on R, which estimates the interaction be-
tween 4+ and B. The spin-orbit interaction is not includ-
ed in the present calculations.

Equation (1) is solved using a standard variations pro-
cedure from an expansion of the molecular wave function
¥;(T4,R) over a STO basis set centered on the alkali-metal
core.

B. Effective potential Fx(Ty)

The interaction between e ~ and X is represented by
Zy 1  ogx
V(Tx)=Vy(Ty)—— — —————
X\1x xX\lx ry 2 (",% + d )2{ )2
1 o
2 (rg+dz)’
where Zy is the net charge of the core seen by e ~ at an in-
finite distance, agy is the static dipole polarizability of X,

and agy is an effective quadrupole polarizability of X that
we define as

(2)

apy =0y —6Bx +2a.xdx - 3)

The definition of agy takes the dynamical correction
— 6By to the static quadrupole polarizability a,y into ac-
count; it also includes a term which balances the contribu-
tion of the dipole polarization term at large-ry values re-
sulting from our choice of cutoff function.

The cutoff function, with a cutoff radius dy, is used to
avoid any divergence of the polarization terms at ry=0.
The present choice, like any other one that might be made,
is more or less arbitrary. In principle, however, it should
not significantly affect the values of the calculated adia-
batic potentials.’

V¥ (Ty) is an I-dependent short-range pseudopotential

) +1
Vi(Ty)=3 3 Vilry) | Y Fxe)) Y (P |,
I=0m=-—1

(4)

where |Y,,(Fx)) is a spherical-harmonic function cen-
tered on the core X (Fy =Ty /ry); Vyi(ry) is chosen to be a
Gaussian-type radial potential'®

V3i(ry)=Cxiexp(—Dxri) )

where Cy; and Dy, are parameters. The role of the present
pseudopotential is twofold. Firstly, it is to simulate by a
repulsion the effects of the Pauli principle when the
valence electron with / symmetry approaches X and there
are some [ electrons in the core. Secondly, it is to take
into account incomplete screening of the nuclear charge
due to the core electrons when e ~ approaches the core, so
that Vy;(ry) is attractive when there is no / electron in the
core. Other analytical forms for V;(ry) could be chosen.
The present form, with only two parameters, was found
flexible enough, when associated with the correct long-
range part of the effective potential, to represent the net
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FIG. 1. l-wave phase shifts for e ~-He elastic scattering vs
wave number k: (a) s-wave phase shift (modulo II), (b) p wave,
(c) d wave. Note the different vertical scales. , present re-
sults; X, theoretical results of Valiron et al. (Ref. 20) (see Table
I of the reference, potential ¥ 1); ®, experimental values of Willi-
ams (Ref. 25).
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interaction experienced by e ~ in the presence of an alkali-
metal core or the He atom. In particular, a form using
more than two parameters seems unnecessary and not suit-
able for molecular-structure calculations. In practice, the
summation over / in Eq. (4) is limited to only a few values
since e ~ will experience the same radial potential, in addi-
tion to the centrifugal one, for / greater or equal to some
value /. In the case of He, I, =1.

For an alkali-metal ion, the parameters of the effective
potential [see Egs. (2) and (5)] were determined so as to
reproduce the experimental ionization energies of the
alkali-metal atom nl levels. For the present calculations
we used the parameters Z, =1, ayy, agq, d4, Cq, and Dy
reported in Table 13 of Ref. 19. They reproduce the ex-
perimental ionization energies of the nl/ levels to better
than about 10~ a.u. [atomic units are used unless other-
wise specified] when the radial Schrodinger equation is
directly integrated; when it is solved using a variational
procedure, as was done to determine the nonlinear param-
eters of the STO in order to perform molecular-structure
calculations, the ionization energies are generally repro-
duced with an accuracy better than 2.5%10~* a.u., de-
pending on the alkali-metal core and the [ series involved.

For the He atom, Zz=0, we took agz=1.3834,%
agp=2.3265,> and Bp=0.706.>* The other parameters
involved in the expression for the effective potential were
determined by fitting recent experimental l-wave phase
shifts®® (1=0,1,2) for e -He elastic scattering, in the
0.58—20.0-eV energy range, together with a scattering
length value of 1.177 (Ref. 26) considered to be the best
available. It should be noted that, for the s wave, the ex-
perimental phase shifts were fitted modulo IT as we used a
pseudopotential. We  obtained dp=1.0, Cz;0
=203, DBI=0=O.463, C3121=<——1, and DBIZIZI'O'
Our calculated phase shifts are shown in Fig. 1 along with
the experimental data of Williams.?> The experimental er-
rors are about 1.4—2 % for the s wave, 2% for the p wave
and 8% for the d wave. Using other analytical forms for
the effective potential we were unable to reproduce more
closely the experimental p-wave phase shifts without signi-
ficantly changing the quality of the d-wave phase shifts at
the same time. Our calculated phase shifts are of about
the same quality (see Fig. 1) as those obtained by Valiron
et al.?® with an l-independent model potential (together
with orthogonality constraints) subsequently used in NaHe
and KHe molecular-structure calculations.”~® These au-
thors, however, fitted the experimental phase shifts of An-
drick and Bitsch?’” who claim error limits of about
5—20 % depending on the energy.

C. Cross term VCT(?B,TU

In order to have the correct behavior of the adiabatic
potential at large internuclear distances, a three-body in-
teraction or cross term has to be included in the calcula-
tions.

For large internuclear distance R, and R > r,, the mul-
tipole expansion of the interaction between the alkali-
metal atom and the rare-gas atom gives, up to the 1/R®
order,°
Agq g —6B4  agpri N 3B
i 3 - e [1+P(F )]+ —
2r4 2r4 R R

(6)

where P,(74) is a Legendre polynomial. Alternatively,
Eq. (6) can be obtained by considering the polarization of
B by both the point charges e ~ and 4,>!% and the cross
term is then seen to result from the addition of the two
electric field vectors produced on B by e~ and 4. Then,
to be consistent with the cutoff function defined in Eq. (2)
the expression of the cross term appears to be

. aypp
Ver(tg,R)=—
e (R2+d3)(r§+d3)
1 a;};(3§129+1)

+ (7

3 (R2+d§)3/2(r§+d§)3/2 4

where a5 =azp +2aypdE, and £5=F3R.

This expression is defined for any value of R and ry. It
is only correct for large values of R, that is, when the elec-
tronic charge densities of the two atoms do not overlap
and the asymptotic expression (6) can be obtained. For
small values of R, the cross term V&T(?B,ﬁ) depends ob-
viously on the choice of the cutoff function. The situation
is different from the case of an isolated atom where the
choice of the cutoff is not critical since the determination
of the parameters of the short-range interaction [see Eq.
(2)] balances any other choice of the cutoff function.
Therefore, in the case of the molecular problem, we have
defined the cross term as

Ver(t,R)=Ver(T5,R)f,

R ®)
;

A

where f.(R /r4) is a cutoff function defined as

_ 45_1
7]

0 for R<ry .

R 1—exp

T4

2
for R>ry, (9a)
fe

(9b)

This cutoff function, even though somewhat arbitrary
in its analytic form, has to be included in the calculations;
it avoids spurious effects which may arise at short internu-
clear distances. Physically, it is consistent with the fact
that the 4 /R® asymptotic form of an adiabatic potential
curve will be reached more or less rapidly depending on
the degree of excitation of its corresponding alkali-metal
atom level. We checked that a more abrupt switching of
the cross term does not affect the molecular energies.

D. Core-core interaction ¥V, z(R)

We have defined the potential V,z(R) which simulates
the alkali-metal-ion—rare-gas-atom interaction as

1 a1 agm
2 (R2+dj)? 2 (R*+d3)P’
(10)

Vip(R)=Vi3(R)—

where Vi3(R) is a repulsive short-range potential of the
form

Vip(R)=a exp(—bR) . (11)

In Eq. (10), the parameters a 5, @45, and d are those al-
ready determined for He. The parameters a and b for the
short-range part of the potential were obtained by fitting
the repulsive part of the X '2% ground-state potential of
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TABLE 1. Parameters a and b (in a.u.) for the calculation of the short-range part of the alkali-

metal-ion—He X '+ potentials.

Alkali-metal

ion Lit Na+t K+ Rb* Cs*
a 16.0149 52.6812 39.2390 38.2821 49.1559
b 2.4402 2.4884 2.1313 1.8977 1.8747

the alkali-metal-ion—He system determined experimental-
ly or from ab initio calculations. Other than for Na*He,
we have chosen to fit the data of Inouye et al.?® who
determined repulsive potentials for all the alkali-metal-
ion—He systems from experimental values of integral elas-
tic scattering cross sections of the ions in the 0.5—4-keV
energy range. In the case of NatHe, which was the sys-
tem that we first studied, we have chosen to fit the repul-
sive part of the ab initio calculated potential of Krauss
et al.,’ as did Hanssen et al.” in their model potential cal-
culations; however, the values obtained for the depth D, of
the X =+ potential well and for its position R, are in very
close agreement with those obtained when the experimen-
tal data of Kita et al.?8® are fitted.

The values that we have determined for a and b are re-
ported in Table I. The characteristic parameters D,, R,,
and R, defined as V(R,)=0 that we have obtained for the
alkali-metal-ion—He X !=* potentials are reported in
Table II along with other theoretical?*~3! or experimental
results.’>33 Comparison with experimental data are only
possible for the Li*He X !=* potential; we have an

overall agreement with the experimental curves as seen in
Fig. 2, while the well depths differ by about 20%. The
comparisons in Table II indicate that the maximum error
for the well depths should be less than 150 cm~! for
Li*tHe and probably decreases to less than about 5 cm ™!
for Cs*He. For Rb*He and possibly K+He, the values of
the well depths obtained from the scaled electron model of
Waldman and Gordon> seem to be overestimated.

In the present calculations, we have adopted a quite
general method to determine the X '3 potential curves of
the alkali-metal-ion—He systems, which could be extended
to alkali-metal—other-rare-gas-atom systems. This gives
the same degree of reliability for our calculations on all
M-He systems. However, the comparisons of Table II
seem to indicate that the experimental determinations3?3?
of the full X '3+ potential curve of Li*He could be more
accurate than the one we have used in the molecular-
structure calculations of LiHe. The adjustments could be
done afterwards case by case since the core-core interac-
tion appears as an additive parameter, for each value of R,
in the calculations of the adiabatic potentials.

TABLE II. Characteristic parameters (in a.u.) for the alkali-metal-ion—He X 'S+ potentials: depth (D,) and position (R,) of the

well potential; R, is defined as V(R,)=0.

Alkali-metal Theoretical Experimental
ion Present a b c d e f
Li* D, 2.094(—3)8 2.40(—3) 2.74(—3) 2.573(—3) 1.661(—3) 2.605(—3) 2.716(—3)
+8% +5%
R, 3.75 3.68 3.63 3.65 4.01 371 £2% 3.7
R, 3.10 3.05 3.02 3.06 3.50 3.08 +1% 3.04
Nat D, 1.081(—3) 1.10(—3) 1.286(—3) 9.078(—4)
R, 4.57 4.63 4.575 4.80
Ry 3.90 3.90 3.93 4.10
K* D, 4.786(—4) 8.122(—4) 4.079(—4)
R, 5.62 5.444 5.90
R, 4.80 4.745 2.20
Rb* D, 2.397(—4) 7.534(—4) 2.720(—4)
R, 6.71 5.73 6.60
R, 5.80 5.01 5.80
Cs* D, 1.991(—4) 1.801(—4)
R, 7.06 7.41
Ry 6.10 6.50

*ab initio SCF calculations of Krauss et al.(Ref. 3).

®ab initio calculations (including electron correlations) of Hariharan and Staemmler (Ref. 29).

“Scaled electron-gas model of Waldman and Gordon (Ref. 30).
dAsymptotic model of Efremenkova et al. (Ref. 31).
‘Molecular-beam experiments of Polak-Dingels et al. (Ref. 32).

fAlkali-metal-ion mobility measurements of Gatland et al. (Ref. 33).

£2.094(—3)=2.094x 1073,
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FIG. 2. Potential V(R) for the X '=+ state of LitHe. ——,
present results [see Eq. (10)]; ®, molecular-beam experimental
data of Polak-Dingels et al. (Ref. 32); O, alkali-metal-ion mobil-
ity measurements of Gatland et al. (Ref. 33).

E. Molecular-structure calculations

The molecular code developed by Junker has been
adapted to calculate the interaction energies E;(R). The
molecular wave function ¥;(T4,R) was expanded over a
large basis set of STO for the alkali-metal atom. The in-
ternuclear axis R, which is a symmetry axis for the sys-
tem, is chosen as the quantization axis. Recalling that the
spin-orbit interaction is not included in the present calcu-
lations, the projection M; of the total orbital momentum
L (in this case, the orbital momentum 1 of the valence
electron) along the R axis is a good quantum number of
the molecular wave function ¥;(74,R). Therefore the in-
teraction energies E;(R) for different values of M, are ob-
tained from different diagonalizations of the one-electron
Hamiltonian. To obtain the 2% states, the STO basis set
includes nine STO in order to describe the four lowest 1S
alkali-metal states, six STO for the three lowest nP states,
six STO for the three lowest nD states, four STO for the
two lowest nF states, and two STO for the lowest nG
states. For the 2II states, a total of 18 STO was used (in
fact, 2 18 because m;=*1), the parameters of the STO
being the same as those for the 23+ states. For the 2A
states, a total of 12 STO was used, etc. The nonlinear pa-
rameters of the STO were optimized at R = and then
kept constant for all R values. The large basis set of STO
that we have used ensures the stability of the adiabatic po-
tential curves.

III. RESULTS AND DISCUSSIONS

Calculations were performed on all the M-He systems
for internuclear distances between 2 and 50 a.u. For obvi-
ous reasons, only extracts of our calculations can be re-

T T T T T T T T T T T T T T
LiHe X 2r*

10* - =
103 | 4
'TE r ]
; b .
i \ .
102 |- =

10 1 1 L L 1 1 | 1 1 1 1 1 L !

R (a.u)

FIG. 3. Potential V(R) for the X 2=+ state of LiHe. s
present results; — — —, ab initio calculations of Krauss et al.
(Ref. 3); —-—.—. , model potential calculations of Roberts (un-
published, from Ref. 18); @ and - . - ., experimental data of
Havey (Ref. 18).

ported in this article. However, tabulated interaction ener-
gies will be available upon request from the author.

The accuracy of the adiabatic potential curves can only
be checked by references to experimental data. Therefore,
in the following sections, we want to show for each M-He
system that a satisfactory overall agreement has been
achieved between our calculations and available experi-
mental data.

A. LiHe system

Figure 3 shows comparisons of our results for the
X 2=* ground state of LiHe with the experimental data of
Havey.!® In this experiment, the potential curves for the
X 2=+ and A4 ?I1 states were obtained from the analysis of
the temperature dependence of the far-wing intensities of
the LiHe resonance lines; the radial scale factor which has
generally to be fixed in this type of experiment'’ was
determined absolutely by an independent measurement of
the equilibrium position of the 421 potential well.!®
Hence the present comparisons are meaningful. Our
X 23+ potential curve is seen to be in good agreement with
the experimental one, while a little more repulsive than the
experimental curve; it is, however, less repulsive than the
curve obtained from the ab initio calculations of Krauss
et al.> and much less repulsive than the one obtained by
Roberts (unpublished, from Ref. 18) from model potential
calculations.

Using the quasistatic model'>!> we have calculated, for
different experimental temperatures, the normalized red-
wing emission spectra corresponding to the 4 *II-X 23X+
transition from
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TABLE III. Matrix elements of the dipole moment (in electronbohrs) for the X 2=*-4 2I1 and

X 23+.B23* transitions in LiHe and NaHe.

LiHe NaHe
R X2z+.471 X?23+.Bp2z+ Xz+tA4M X=+.B23+

2 2.259 1.614 2.690 2.009
3 2.324 1.646 2.644 1.875
4 2.374 1.991 2.613 2.035
5 2.388 2.133 2.580 2.214
6 2.381 2.201 2.558 2.323
7 2.373 2.257 2.544 2.400
8 2.368 2.300 2.538 2.457
10 2.364 2.348 2.535 2.517
12 2.364 2.361 2.535 2.534
© 2.364 2.364 2.535 2.535

4 -1 The calculated emission spectra for the LiHe are shown

212 0 d . . . . 18 .

I\, T)=4wgR3D*R;) |— | |==AV(R) in Fig. 4 along with the experimental ones.’® The experi

A dR R=R, mental emission spectrum at T=670 K is that measured

by Scheps et al.,'*'¥ while the ones at other temperatures

Xexp | — V(R , (12) are an extension by Havey'® of these data obtained from

kT an experimental temperature dependence of the red

where g is the statistical weight, R, is the internuclear dis-
tance associated with emission at the wavelength A, A, is
the wavelength at R = «, AV(R) is the energy difference
between the upper and the lower adiabatic potential
curves, V(R) is the adiabatic potential of the upper state
relative to its asymptotic value, and D(R) is the matrix
element of the dipole moment for the transition. Our cal-
culated values of D(R) for the X2Z*-4 %Il and X23+-
B2s+ transitions in LiHe and NaHe are given in Table
III.

R (a.u)

75 56 48 L3 39

X 31
10723 T T T T T T

1024

10~

IAT) (em®)

10-26

10‘27 1 1 1 1 1 1 L 1 L 1 1 L
670 710 790 830 870 910

A (nm)

FIG. 4. Temperature dependence of the normalized red-wing
emission spectrum of the Li2P state in the presence of He. @,
experimental data of Havey (Ref. 18) (the spectrum at T=670
K is that of Scheps et al. [Ref. 13(d)]); , present results
normalized at A=700 nm on the T=670 K spectrum. Spectra
are also reported vs the internuclear distance R at which the
light emission occurs.

wing.!” Our calculated spectrum at T=670 K is in excel-
lent agreement with the experimental one over the entire
wavelength range. The calculated spectra for the other
temperatures are also in excellent agreement with the ex-
perimental ones up to A=830 nm, but differ drastically
afterwards. The reason given by Havey to explain the
sudden increase of the T spectra for A > 830 nm is that
the matrix dipole moment should increase strongly. This
is in contradiction with the present results (see Table III)
and those of Krauss et al.> A possible explanation is that
an experimental problem may have arisen in the detection
of the emission light for A > 830 nm. It is worthwhile not-
ing that the discrepancies between our calculated spectra
and the experimental ones of Havey occur at R <3.9 a.u.
This explains the differences between the characteristics of
our A 2T potential (D, =1025 cm~! at R, =3.44 a.u.) and
those of the experimental one (D,=850+100 cm~! at
R,=3.45+0.08 a.u.). The ab initio values of Krauss
et al.’ are D, =500 cm~! at R =3.5 a.u., while unpublish-
ed model potential calculations of Roberts (see Ref. 18)
give D, =850 cm~! at R, =3.5 a.u. Our blue-wing emis-
sion spectrum for the B23+.X 23+ transition, not report-
ed in Fig. 4, is also in excellent agreement with the data of
Scheps et al.,'¥? indicating that our B2S* potential
curve is probably well predicted.

This agreement between our spectra and those measured
by Hedges et al. or those experimentally determined by
Havey up to A=830 nm, is not altered when using the
X 'S+ potential of LitHe obtained from the molecular-
beam experiment of Polak-Dingels e al.3? in the
molecular-structure calculations of LiHe.

In summary, our adiabatic potentials for LiHe seem to
be in better overall agreement with experimental data than
are other calculations.

B. NaHe

The present calculations can explain the long-
wavelength discrepancy between the red-wing spectrum of
the 3 2P resonance line of Na broadened by He measured
by York et al.'® at T=403 K and that calculated by
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FIG. 5. Normalized emission spectra of the Na 3P state in the
presence of He at T=403 K. Dashed line, experimental data of
York et al. [Ref. 13(c)]; , present results; —.—.—. , results
of Hanssen et al. (Ref. 7). Calculated spectra have been normal-
ized to the experimental one at A=600 nm. As in Fig. 4, the
spectra are also reported vs the internuclear distance R at which
the light emission occurs.

Hanssen et al.” from their model potential. These authors
concluded in their article that the discrepancy could not be
explained by uncertainties in the calculated interaction po-
tentials.

We have calculated the blue- and red-wing spectra with
our potentials from Eq. (12). They are shown in Fig. 5
along with those calculated by Hanssen et al. and those
measured by York et al. Our calculated spectra are in
very good agreement with the experimental data over the
entire wavelength range. Since the ground-state potential

-0.10

ENERGY (a.u.)

-0.15

R{au)
FIG. 6. Energies of the lowest states of the NaHe system.

——, present results; X, model potential calculations of
Hanssen et al. (Ref. 7); @, ab initio calculations of Krauss et al.
(Ref. 3). Arrows indicate the position of the asymptotic ener-
gies.

curve of Hanssen et al. is in good agreement with ours (see
Fig. 6), the differences observed in the red-wing spectra
are due to different I 3P potential curves. Our *II 3P po-
tential curve is the most attractive. Indeed, at R =4.0
a.u., the difference in the potential wells is AV =220 cm ™!
corresponding to an increase in the intensity of our spec-
trum relative to that of Hanssen by exp(AV /kT)=2.2 at
T=403 K. This in agreement with what it is observed in
Fig. 5, noting that for R=4.0 a.u. the corresponding
wavelength obtained by Hanssen et al. is about 697 nm in
comparison with our value of 704 nm. These conclusions
are confirmed by recent measurements of Havey et al.'’
who found a well depth D,=480+50 cm~! at
R,=4.4%0.2 a.u, in much better agreement with our re-
sults, D, =511 cm™! at R, =4.35 a.u., than with the re-
sults of Hanssen et al., D, =299 cm~! at R,=4.58 a.u.
As expected, our results are also consistent with the
temperature-dependence measurements of Havey et al.'’
for the red-wing spectrum.

Finally, Fig. 5 also shows that our calculated blue-wing
spectrum agrees more closely with the measured spectrum
than that calculated by Hanssen et al.; this is consistent
with the fact that the 22+ 3P potential curve of Hanssen
et al. is more attractive than ours (see Fig. 6).

C. KHe

For KHe, no measurements have been made of the far-
wing intensities of the resonance lines of K broadened by
He. However, there is a very accurate measurement of the
energy dependence of the cross section for the
4%P, ,,— 4P, transition in K induced in collisions with
He in the 0.06—0.35-eV energy range obtained from a
cross-beam experiment.3* The measured cross sections
were normalized to the recent absolute value of the cross
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FIG. 7. Energy dependence of the cross section for the
4%P,,,— 42P;,, transition in K induced in collisions with He.
O, cross-beam experimental data of Mestdagh et al. (Ref. 34)
normalized on the cell-experimental data of Boggy and Franz
(Ref. 35); X, cross-beam experimental data of Anderson et al.
(Ref. 36); , present results; — — —, theoretical results of
Masnou-Seeuws (Ref. 9).
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FIG. 8. “[14P and 23+ 4P potential curves of KHe. R
present results; — — —, model potential calculations of
Masnou-Seeuws (Ref. 9).

section determined by Boggy and Franz’® from a cell-type
experiment at 7=380 K, so that direct comparisons with
theoretical calculations are now possible. In Fig. 7, cross-
beam experimental data are shown along with our calcula-
tions and those of Masnou-Seeuws’ obtained using adia-
batic potentials determined from recent model potential
calculations. Note that the theoretical cross sections are
obtained from exact quantum-mechanical calculations.’’
Our results are seen to be within the experimental uncer-
tainties, while the energy dependence of the cross sections
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FIG. 9. Energy dependence of the cross section for the
5P, ,— 5%P;,, transition in Rb induced by collisions with He.
@, cross-beam experimental data of Mestdagh et al. (Ref. 34)
normalized on the cell-experimental data of Gallagher (Ref. 38);
, present results; — — —, results of Olson (Ref. 39) using
the adiabatic potentials of Baylis (Ref. 2).

obtained by the calculations of Masnou-Seeuws is too
weak. It is well known (see, for example, Nikitin') that
the fine-structure cross sections are mainly determined by
the difference AV(R) between the potential curves of the
A ™I and B23* states. In particular, the maximum of the
cross section is mainly sensitive to a radial coupling local-
ized at an internuclear distance R, such that AV(R,)=Ae¢
(A€ is the energy splitting of the sz levels); a rotational
coupling localized at short internuclear distances, where
the 4 11, ,, and A4 2[5, potential curves are nearly paral-
lel and repulsive, may also contribute significantly to the
values of the cross sections. In the present case, Ry=12.5
a.u., where the 4 2II potential curve is nearly zero. There-
fore the experimental data check mainly the repulsivity of
the 23+ 4P potential curve. The more repulsive the
23+ 4P potential curve, the larger is the maximum of the
cross section. The results in Fig. 7 are consistent with the
differences observed in Fig. 8 between the calculated po-
tential curves. Our 2% 4P potential curve is seen to be
more repulsive and our I 4P potential curve more attrac-
tive than those obtained by Masnou-Seeuws. It is
worthwhile noting that the same differences occur between
our results and those of Masnou-Seeuws for KHe, and be-
tween our results and those of Hanssen et al.” for NaHe;
this is consistent with the fact that both the molecular-
structure calculations used the same /-independent model
potential together with orthogonality constraints.

D. RbHe

In the case of RbHe, no attempt was made by Drum-
mond and Gallagher'*® to determine the adiabatic poten-
tial associated with the 5°P,,, and 52P;,, states of a Rb
atom from the far-wing intensity measurements of the res-
onance lines in the presence of a He atom. While our cal-
culated spectra, after having included the spin-orbit in-
teraction as a perturbation®’ to obtain the adiabatic poten-
tials associated with the 5°P;,, and 52P;,, states of Rb,
are consistent with those measured by the above authors,
more experimental and theoretical work seems to be desir-
able for meaningful comparisons.

As for KHe, we can test our calculated potentials by
comparisons with the cross-beam energy-dependence mea-
surements® of the cross section for the 52P,,,— 5P,
transition in Rb induced in collisions with He in the
0.06—0.20-eV energy range. For the same fine-structure
transition, Gallagher®® studied in a cell experiment the
temperature dependence of the cross section averaged over
a Maxwell-Boltzmann distribution of velocities, and de-
rived afterwards the energy dependence of the nonaver-
aged cross section. His data are in excellent agreement
with those of the cross-beam experiment’* in the
0.13—0.40-eV energy range so that the latter were normal-
ized at E=0.15 eV to Gallagher’s result. In Fig. 9 our re-
sults are shown along with the cross-beam experimental
data and the theoretical results obtained by Olson* using
the adiabatic potentials of Baylis.> Our results are in good
agreement with experimental results in the 0.1—0.4-eV ‘en-
ergy range. The energy dependence of the cross section is
well predicted while the differences observed in the abso-
lute values, less than 20%, may be due to the choice of
normalization energy. For E <0.1 eV our cross sections
are smaller than the experimental ones, but because the
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FIG. 10. Dipole-induced oscillator strength vs the internu-
clear distance R for the 2=+ 6S-22+ 5D transition in CsHe.
, present results; —.—.—- , l-independent pseudopotential
calculations of Pascale (Ref. 40); — — —, l-independent pseudo-
potential calculations of Czuchaj (Ref. 41); @, absolute experi-
mental data of Ferray et al. (Ref. 14).

cross sections are relatively small (less than 10~!7 cm?) the
experimental uncertainties may be larger than estimated.
In contrast, the energy dependence of the cross section
obtained by Olson is seen to be much too strong. There-
fore the overall agreement obtained between our calcula-
tions and the cross-beam data for the 5%P, 22— 52P3/2
transition cross section indicates that the repulsive
strength of the 2=+ 5P potential curve is correctly calcu-
lated, and it is expected that the same degree of accuracy
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FIG. 11. Energies of some excited states of CsHe. Present re-

sults: , 2Z+ states; — — —, 2II states. Arrows indicate the
position of the asymptotic energies.

has been obtained for the other potential curves.

E. CsHe

We have already shown?! the very good agreement that
we have obtained with the experimental data of Ferray
et al.'* for the 2% 5D potential curve of CsHe. This
agreement is confirmed by the calculation of the oscillator
strength for the 22+ 6S-227 5D transition. The results are
shown in Fig. 10. Our results are in excellent agreement
with the experimental data, while previous calculations of
the oscillator strength*>*! are seen about two orders of
magnitude lower. The rapid change in the oscillator
strength for R <7 a.u. corresponds to the pronounced
avoided crossing observed in Fig. 11 between the =+ 5D
and 22+ 7S potential curves. In this region the 23+ 5D
and 237 7S states exchange their characteristics. Calcula-
tions of the spectra associated with the 2=+ 6S-2Z+ 5D
and 23+6S-2Z*7S are currently in progress. It is
worthwhile noting that the avoided crossing between the
23+ 7P and 2% 6D potential curves observed in Fig. 11 is
probably responsible for the large cross section measured
by Cuvellier et al.*? for the 7P— 6D transition, which
could not be explained by the structureless adiabatic po-
tential curves obtained from /-independent pseudopotential
calculations.®

Finally, our results for the 4 I, and the 4 2II,,,
states (after having included the spin-orbit interaction as a
perturbation) are consistent with the pioneering measure-
ments of Hedges et al.'*® who estimated a well depth
D,=170 cm~! at R, =7.65 a.u. for the 4 *I;,, state and
found a mainly repulsive 4 2II, ,, potential curve. For the
A 211, , state, we have found D, =114 cm~! at R, =6.70
a.u., while the 4 21, ,, potential curve presents a “suspend-
ed well” (D, =60 cm™! at R, =6.70 a.u.) and a potential
barrier of about 80 cm~! at R =9.5 a.u.; that is within the
experimental uncertainties. However, the shape of our
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FIG. 12. Energies of some excited states of NaHe, as in Fig.

11. X’s are the model potential calculations of Hanssen et al.
(Ref. 7).
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FIG. 13. Energies of some excited states of KHe, as in Fig.
11.

B3, potential curve, which presents a structure, is dif-
ferent from the monotonic repulsive curve assumed by
Hedges et al. to analyze their data.

F. General considerations

The overall agreement that we obtained for all the M-
He systems between our results and experimental data in-
dicates that significant improvements have been achieved
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FIG. 14. Energies of some excited states of RbHe, as in Fig.
11.
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FIG. 15. Potentials V(R) for the X 22+ states of the M-He
systems.

in the calculations of the adiabatic potential curves by
using an /-dependent pseudopotential technique.

In Figs. 12—14 we have shown as examples some
potential-energy curves for excited states of NaHe, KHe,
and RbHe systems. In general, in contrast with the struc-
tureless potential curves obtained previously from I-
independent pseudopotential caculations,®~!° the present
potential curves exhibit several avoided crossings, indicat-
ing that some electronic transitions or quenching processes
are probably efficient in thermal or suprathermal col-
lisions of excited alkali-metal atoms with He atoms.

V(103em-)

Na
0.4 - |

-0.8 - h

R (a.u)
FIG. 16. Potentials V' (R) for the A %I states of the M-He
systems.
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FIG. 17. Potentials V(R) for the B 2=+ states of the M-He
systems.

Comparisons with the model potential calculations of
Hanssen et al.” for NaHe are shown in Fig. 12; it is seen
that while the two calculations agree roughly, our 2=+ 4P
potential curve is much more repulsive than that found by
these authors and does not exhibit the pronounced avoided
crossing with the 2=+ 3D potential curve they obtained. It
should be noted that our 2=+ 4P potential curve reaches
its asymptote for R > 25 a.u.

In Figs. 15—17 the adiabatic potential curves for the
X22%, A%, and B2Z™ states are presented for all the
M-He systems. This allows us to discuss the characteris-
tics of these curves when one goes from Li to Cs. It is ob-
served that the repulsive strength of the same potential
curve increases from Li to Cs. This is due to a more
tightened wave function in the case of the lightest alkali-

metal atoms which therefore can approach more closely
the He atom. For the B2Z™ states, however, coupling
with upper states (mainly with the immediate upper state)
increases from Li to Cs because of decreasing asymptotic
energy separations between the n 2P levels and their neigh-
boring upper levels. This results in a structure more or
less pronounced in the B 2=+ potential curve and a change
in the order of their repulsive strengths at small internu-
clear distances. Very shallow potential wells (from
D,=2.5 cm~! at R,=11.4 a.u. in the case of LiHe to
D,=1.3 cm~! at R,=15.0 a.u. in the case of CsHe) are
found for the X 22+ ground states, in agreement with pre-
vious calculations.>®** The potential wells for the B3+
states are found shallower ( <1 cm™!) than those for the
X 23% states and located at larger internuclear distances
(~18—23 au.). The well depths for the 4 2II states in-
crease when one goes from Cs to Li (see Fig. 16). They
are found considerably deeper than those of our previous
calculation® which used an l-independent pseudopotential
to represent the interaction between the valence electron
and the He atom. Contrary to the B 23+ state, the 4 2IT
state cannot have any s-wave character. Therefore, be-
cause there are only two s orbitals in the He core and an
I-dependent pseudopotential has been used to describe the
e ~-He interaction, the He atom can approach the alkali-
metal atom more closely for the 4 %Il state than it can
when using an /-independent pseudopotential. Finally, for
the same M-He system, the fact that the B 2=+ potential
curve is the most repulsive, and the 4 2IT potential curve
the most attractive, is well understood in terms of elec-
tronic distribution.?>

Table IV summarizes the well depths obtained for the
A1 states with comparisons with previous determina-
tions. As previously discussed, our results are in good
agreement with recent experimental data for LiHe'® and
NaHe.!"> Our well depths are much larger than those ob-
tained from ab initio calculations® or from model potential
calculations with orthogonality constraints”’; they are in
much closer agreement with recent unpublished model po-

TABLE 1V. Depth (D, in cm~!) and position (R, in a.u.) of the A Il potential wells of the M-He

systems.
Alkali-metal Li Na K Rb Cs
Present D, 1025 511 245 134 112
R, 3.44 4.35 5.30 6.25 6.60
a D, 500 210
R, 3.5 4.53
b D, 299 190
R, 4.58 5.30
c D, 850 427
R, 3.5 4.27
d D, 850+100 480+50
R, 3.45+0.08 4.4140.2

%ab initio SCF calculations of Krauss et al. (Ref. 3).

®Model potential calculations of Hanssen et al. (Ref. 7) for NaHe and of Masnou-Seeuws for KHe.
‘Model potential calculations of Roberts (unpublished) for LiHe (taken from Ref. 18) and of Peach (un-

published) for NaHe (taken from Ref. 44).

dExperimental results of Havey (Ref. 18) for LiHe and Havey et al. (Ref. 15) for NaHe.
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tential calculations (from Refs. 18 and 44). Despite the
suggestions in Refs. 8, 9, and 20 that only model poten-
tials with explicit orthogonality constraints be used for He
and Ne, it is worthwhile to stress that pseudopotentials
work very well if they are / dependent, as is demonstrated
by the present results.

IV. CONCLUSIONS

Using an /-dependent pseudopotential technique we
have made extensive molecular-structure calculations for
all the M-He systems from the ground state up to highly
excited states. In view of the satisfactory overall agree-
ment with all available experimental data, we believe our
calculations are quite accurate, in spite of somewhat arbi-
trary but unavoidable choice in the cutoff functions used*’
or in the alkali-metal-ion—He interaction. In general, our
calculations agree much more closely with the experimen-
tal data than all previously published calculations, indicat-
ing that a large improvement in the calculation of the adi-
abatic potential curves for all the alkali-metal—He systems

has been achieved by using the /-dependent pseudopoten-
tial technique. Therefore we hope these calculations will
stimulate more experimental work on these systems. Ex-
tension of these calculations to alkali-metal—other-rare-
gas-atom systems are now in progress.
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