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Calculation of the polarization potential for e-N2 collisions
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A polarization potential (Vp, ~) for e-N2 collisions is calculated by the generalization of the static
part of the method of polarized orbitals to molecular targets. Partial differential equations (PDE)
are derived for polarized orbitals, which are functions of the distance (r) from the molecular center
and angle (0) from the molecular axis. The equations are solved with the use of the noniterative
PDE technique. From the polarized orbitals a polarization potential can be constructed whose r and
0 dependence is found to be significantly different from the well-known phenomenological one. The
two potentials are further compared by carrying out limited hybrid-theory scattering calculations.
Only those scattering results based on the calculated V~i are in satisfactory accord with experiment.

I. INTRODUCTION

The e-N2 scattering system has now become the canoni-
cal standard of low-energy scattering from homonuclear
diatomic targets in which resonance substructure figures
prominently. As such, much theoretical and calculational
effort has gone into the study of this system'; however,
even those studies which are ab initio in character and
which reveal substructure, all (with one exception, to be
discussed in Sec. IV) invoke a polarization potential in ad-
dition to (an approximation of) exchange as a necessary in-
gredient of their approach.

We have in mind primarily the hybrid theory and calcu-
lations, where for the first time an essentially ab initio
theory gave rise to the famous observed substructure of
the 2.4-eV resonance. In detail, however, the calculation
involved a phenomenological polarization potential

V(phen) ( g)r, = —
L

—e
—(rlro) 6

ao(R) +aq(R)Pq(cos9)
2r4

which is essentially the one introduced in the fixed-nuclei
calculation of Burke and Chandra, minimally generalized
to encompass the dependence of a~ on internuclear separa-
tion (R), so that vibrational motion, which in one way or
another ' is responsible for the substructure, could also be
included.

In our earlier papers a two-term linear expansion of the
a~(R) was used with constants adjusted to "experimental"
values of a~(RO), where R o

——2.068 (a.u. are used
throughout) is the equilibrium separation of N2', our fit
fortunately also agreed approximately with slopes of the
a~(R) inferred from Raman data by Truhlar.

The cutoff parameter ro in Eq. (1.1) was, as in Burke
and Chandra, adjusted so that the resonance occurred at
the observed energy. For the hybrid theory, the adjust-
rnent of a single parameter ro is a severe demand, because
it is a series of peaks which constitutes the substructure
that must come out of the calculation: That the hybrid
theory was able to do this, at least in a serniquantitative
way, was a testimonial to the validity of physical and

mathematical underpinnings of the theory (cf. Ref. 2). In
detail, however, the calculations suffered on two accounts:
First, the angular expansion needed in addition to the vi-
brational close-coupling part of the theory was extremely
slowly convergent, to the extent that final quantitative re-
sults could not be achieved. Second, but related to the
first, the phenomenological polarization potential (1.1)
could not be definitively tested, but it was clear that it was
unlikely to be quantitatively accurate either in its R or
small-r dependence.

In a sense, therefore, the solution of the first problem is
a precondition for an examination of the second. We shall
find that the key to the solution of both problems is the
formulation and accurate numerical integration of partial
differential equations (PDE). In that regard we shall also
show that whereas the application of the noniterative PDE
technique was first suggested to the molecular scattering
problem'; it equally well suits the adiabatic problem that
we shall deal with here, from which an essentially non-

phenomenological V~& is derived. In a sequel, " we shall

report on the use of this V~~ in a detailed scattering calcu-
lation; however, in this paper a more limited scattering
calculation has been carried out which is sufficient to indi-

cate that our calculated V~~ is significantly different from
and better than V' ~'"'.

In Sec. II we generalize the static (first) part of the
method of polarized orbitals' to deal with a (homonu-
clear) molecular target. In Sec. III we apply it to the N2
target. Results including limited scattering calculations
and discussion are given in Sec. IV.

II. EQUATIONS FOR POLARIZED ORBITALS

The basic idea of the (first part-static problem of the)
method of polarized orbitals' is the adiabatic approxima-
tion: The treatment of the (dipole part of the) interaction
between the incoming electron and the target as if the pro-
jectile electron were stationary. The resulting perturbed
(polarized-orbital) wave function becomes, thereby, a
parametric function of the position r~ of the incoming
electron. That function is then used as part of the dynam-
ical ansatz for the total wave function from which one
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where the Coulomb integral is defined as

derives scattering equations and ultimately phase shifts.
Originally the static perturbation was calculated using

the method of Sternheimer, ' although it was recognized
from the beginning' ' that that was only an approxima-
tion to perturbation theory. In the present extension to
molecular targets we will immediately start with a more
complete consideration of the static equations. It is as-
sumed that the unperturbed bound molecular orbitals y~

'

are determined in the Hartree-Fock approximation

proximated by the cut-off dipole term' '; i.e.,

~ad~ ~cd ~

where

N+1
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and 8 is a step function
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(2.6a)
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Jp(r;)= f i
pp'(rj)

i

rij.
(2.2)

and exchange integral as
T

ICpp' '(r;)= f pp "(rj)rj '&p' '(rj)drj qrp'(r;) .

(2.3)

N+1 1
2 ZA

V,d(r„.r;)= g
i —2 r li A —1 r1A

(2.4a)

The interaction is expanded in terms of Legendre polyno-
mials, and only the dipole term is retained, i.e., r]; is ap-

Here and throughout this paper, atomic units are used.
We take the origin of our coordinate system at the center
of mass of the molecule, and its z axis along the internu-
clear axis. ZA is a charge of nucleus A (2 =1,2); X„, is
the number of molecular orbitals occupied by bound
molecular electrons, and a, P, etc. , collectively denote a set
of quantum numbers specifying the orbital. (Inner prod-
ucts of spin coordinates are assumed. ) In addition,
r,z ——r; —rj, r;A ——r; —RA, where r; is a position vector of
the ith electron, and RA is a position vector of nucleus A.

Now, let us consider a distortion of unperturbed bound
molecular orbital y' '(r;) caused by an incoming but static
electron. The adiabatic interaction is

The step function e(r1, r;) partially remedies the break-
down of separable approximation: If the scattered elec-
tron is inside any specific molecular electron, the effect of
charge polarization is neglected. '

Analogous orbitals perturbed by the presence of V of
Eq. (2.4c) (g ) satisfy the equation

ZA——,
'

V; —g +Au(r, ;r;)
A =1 iA

+ g [2Jp(r;) —Ap] P (r;)=E P (r;), (2.7)
P=1

where Jp and Kp are, respectively, defined by Eqs. (2.2)
and (2.3) with polarized orbitals f ( r; ) replacing the
ya'{r;). In order to solve Eq. (2.7), we assume A, , Eq.
(2.6a), is small (which is surely so for r»&r;) compared
with other terms on the left-hand side (lhs) of (2.7), and
apply perturbation theory, ' i.e., we expand

N

r+O(A, ), (2.8a)
y=1

E =E")+XE'~"+O(X2) . (2.8b)

Inserting Eqs. {2.8) into (2.7) and equating powers of A, , we
obtain the equation for polarized orbitals y r [b„ is the
two-dimensional Laplacian; cf. Eq. (3.10)]

2 Z occ

+ g [2Jp(r;) ICp] —E' '
y —(r,. )

A =1 ~A p=1

u{r~, r;)qr —(r~;)+ f qr~ '*(rj)rj 'y~ '(r&)dr g {r,)

f pp'*(rj)r;J 'y' '(r~)dr& yp s(r;)+ f q&p s(rj)r,j 'y' '(r )dr yp'~'(r;)

2 f y' '*(rJ)rj 'p &(rj)drj+ f y* ~(r~)ru 'qr' '(r. )dr qr' I(r, )

N~c NP i
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P(&a) =15=1

N

+ X X
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(2.9)

In deriving (2.9) we have used E' "'=0, which is a
consequence of parity conservation and the dipole approx-
imation. Also in (2.8) and (2.9), %~,] is the number of po-
larized orbitals of different symmetry for a given a in-

duced by the perturbation. The last two sums on the
right-hand side {rhs) take account of coupling between po-
larized orbitals which have different symmetries, or ori-
ginate from different unperturbed molecular orbitals.
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We next consider approximations to (2.9); first, we drop
coupling on the rhs, noting that this was implicit even in
Sternheimer's and related work. ' ' ' The new aspect of
this application is that we do not drop the exchange terms
on the lhs or the P=a terms on the rhs of (2.9). [Rather
we shall apply the free-electron gas-exchange model' to
them; cf. (2.13).] This gives, after combining similar
terms on the rhs and lhs of (2.9)—specifically diagonal ex-
change terms,

tial equations: One appends successive terms (1—5o„)y'„y
to the rhs of (2.10), where n =1,2, . . . , N,„ the latter be-
ing the number of unperturbed orbitals of the given sym-
metry in the target (for example, N,„=3for crs symme-
try corresponding to the filled 1og 2cTg and 3o.

g orbitals
in the N2 target). From the homogeneous (y oy) and
Xsym inhomogeneous solutions, one constructs

sym

paly 0'a~Oy+ g an pa~ny i (2.19)
n=1

wherein the a„are determined by the orthogonality condi-= —U(r&,'r;)g' '(r;), (2.10) tions

where

Z occ

V'„'(r;)= —g + g (2 —5 &)Jti(r;) .
riA p= 1

In (2.10) we also use the notation

(2.11)

(o)( pa~yV ny ~ 0~ n r2r . . i Nsym

III. POLARIZATION POTENTIAL,
POLARIZABILITIES,

AND APPLICATION TO e-N& SCATTERING

(2.20)

Vex 0'a~y g+pVa~y(ri)
P=1

+ 3 I ya (rj)r/J IPa y(ij )d rJ

The method of polarized orbitals' projects a total wave
function (for a given molecular partial wave A)

'P~ =~[F' '(r&)s[sI'o(2. N+1)

(2.12)

In this application we shall approximate the exchange po-
tential by the free-electron-gas model'

(3.1)

in which the polarized part @~1 is constructed from the
unpolarized No (Hartree-Fock) target function by replac-
ing each orbital consecutively by its polarized parts'

2
[ ) ( ) 2kF 1 1 —q~ 1+q~

~ex ~ ~FEG = ln
2 4g~ 1 —g~

where

7/~ =K~/kF

and

(2.13)

(2.14)

(2.15)

(2.16)

(i)~AQP , y(i) .
r

(3.2)

In (3.1) M is the antisymmetrizer between electron 1 and
the orbital electrons (2, 3, . . . , %+1), the functions @o
and Nz, 1 being assumed antisymmetric in their orbital
(2, . . . , %+1) coordinates. We will not go into any detail
on this as the method is well known' and has been re-
viewed elsewhere'; suffice it to repeat that equations for
the scattering functions F' '(r1) are obtained from the
projection on the unperturbed target function' '

j@o9's(H —E)%'pe'd r =0 . (3.3)

p(r;)= g N
~

q&' '(r;)
~

(2.17)

VFEG can be derived from (2.12) by approximating the po-
larized orbitals qv'P" &(r;) as well as the unpolarized orbitals
y~ '(r;) as a plane waves in the exchange integrals in Eq.
(2.12); in addition e will have the approximate value

e= [(N —3)/N]~ = i4=0 7&6 (2.18)

However, since the free-electron-gas value is not always
optimum, we shall take e as an adjustable parameter, to be
determined so that dipole polarizabilities (see below) agree
with available reliable values. We shall find that adjusted
value is in fact not far different from (2.18).

There is one additional emendation we shall make to
(2.10)—orthognalization. The polarized orbitals should be
orthogonal to all bound orbitals of the same symmetry.
The method of incorporating that condition is by now well
known and applies to PDE's as well as ordinary differen-

In (3.1) and (3.3) S's represents the coupling of all angular
and spin variables involving the scattered particle to the
target molecule (again the notation here is very abbreviat-
ed). H is the total Hamiltonian and E the total energy of
the electron-molecule system. Specifically,

E =Eo+ —,
' k (3.4)

The four "potentials" above came from the direct and ex-
change parts, No and N~, ], of %"~, ', Eq. (3.1), respectively.

We shall only consider the direct polarization potential
V~1 in detail. Note first that all potentials as well as the

where Eo is the energy of the target state.
The dr '" in Eq. (3.3) signifies integration is over all

coordinates except the vector r~ ——(r~, O~). This leads to a
scattering equation which may be symbolically written

[——,
' a, + V„(r,)+ V,'t"'+ Vp.,(r, )+ VI:",' ——,

' k']
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(&)
X+pol(1;2, . . . , N + 1)dr i (3.6a)

scattering functions F' '(r&) are functions of the vector
coordinates of the scattered particle r&. Thus all the
relevant equations are partial differential equations, and
this is the main distinction between the molecular as op-
posed to the atomic application of the method of polarized
orbitals. In particular, the polarization potential in (3.S)
derived from (3.3) is

much more tightly bound than the others; thus they make
a negligible contribution to polarization and according to
our prescription' are neglected.

To find the polarized orbitals, the task is to integrate
Eq. (2.10). Here we use the specific symmetry of the
homonuclear diatomic target and the cut-off dipole ap-
proximation V,d [Eq. (2.4c)] on the rhs of (2.10). The net
result is that for each unperturbed y' ' there are two
linearly independent polarized orbitals, which can be con-
veniently classified as parallel (~ ~) and perpendicular (9
which refer to directions of approach to the fixed internu-
clear axis. For each of these, the appropriate dipole per-
turbation U

I I

or Uz, where
r

It may be reduced to the form

occ pol 2

V~, (r, )= g g X I p""(r, ) r„~, r

U(r;)=
UI

I

——r;cosg;,

Uq
——r;sing;e

(3.8a)

X ~( 1 &~ )p y( ~g )d ~g 7 (3 6b)

where N, and N~~ have been defined above and N is
the number of electrons in the spatial orbital y~ '.

At this point we shall specialize the N2 target in its
ground ('Xz+) state:

o ——~N, (los2o~g3as iver'„2o'„ lm'„) . (3.7)

The specific ground-state approximation we use is that of
Cade, Sales, and Wahl'; in Table I, we give energies for
the various orbitals as a function of internuclear separa-
tion (R). It is obvious that the (lcrz) and (lo.„)orbitals are

qr &(r)=r 'h r(r, g)( —1) ~e ~ /V 2', (3.9)

where the (—1) ~ is inserted for convenience. The result-
ing PDE for h ~(r, g) is

is to be used in Eq. (2.10). The actual dipole perturbation
of the ith electron due to an electron approaching perpen-
dicular to the internuclear (z) axis, which can be taken to
be along the x axis, is from (2.4c) r;sing;cosy';, ' but because
of the nature of 6; operator in (2.10), we can equally take
the perpendicular perturbation as in (3.8b). The qp; depen-
dence of the solution of (2.10) can be taken out by writing
(dropping the subscript i)

2
mr

+cotg
Qr2 r Qg Bg sin g

—2V~ff (r, g)+2E~ ' h~ r(r, g)=( —1 )

2cosg5m o
2 (0)( g)sing5

y

(3.10)

in which it is understood that the equations are augmented to construct orthogonalized solutions as described above.
From (3.10) it is clear that the parallel perturbation (mr ——0) does not change the m character relative to the unperturbed
orbital, whereas the perpendicular perturbation (mr ——1) changes it by one unit. On the other hand, the polarized orbital
has opposite parity from its associated unperturbed orbital in all cases. The potential in (3.10) is the sum of the two po-
tentials in (2.10):

V', (rr,rg) = V,', '(r, g)+eVFEo(r, g) . (3.11)

TABLE I. Orbital energies obtained by Cade, Sales, and Wahl (Ref. 18) {hartree).

R {ao)

1.85
1.95
2.05
2.068
2.15
2.20
2.292
2.45

—15.639
—15.659
—15.678
—15.682
—15.697
—15.706
—15.719
—15.745

20'g

—1.558
—1.519
—1.480
—1.474
—1.442
—1.423
—1.388
—1.338

3CTg

—0.645
—0.640
—0.636
—0.635
—0.631
—0.628
—0.621
—0.612

—15.631
—15.653
—15.674
—15.678
—15.694
—15.704
—15.717
—15.743

2cru

—0.739
—0.757
—0.775
—0.778
—0.792
—0.800
—0.813
—0.839

—0.671
—0.644
—0.619
—0.615
—0.597
—0.587
—0.568
—0.542
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All potentials are functions of r and g, including even VF'Eo, Eq. (2.13).
We conclude this section by writing explicitly expressions for the polarization potentials from (3.6) in terms of the

functions h &, Eq. (3.9), which are the ones actually solved for

V','(r, )=—. f dr r f g y„' h„+y2 '
h2 —2&pP' h, „cosgsingdg (3.12a)

l" ) 8 =2

V~I(ri)= —. f dr r f 3

8 =2

(3.12b)

From the above we can construct

where

(r )= & „(i" )+ V,', (r, )P (cos0, ), (3.13)

and

Vp I(ri)= 3[Vp i'(rt)+2V,"I(ri)l

V"'( )=—', [V,", ( ) —V,",'( )] .

{3.14a)

(3.14b)

IV. BOUNDARY CONDITIONS, NUMERICAL
SOLUTIONS, RESULTS, AND DISCUSSION

We discuss first the numerical solutions. The method
used in all equations, whether the polarized orbitals or
scattering, is the noniterative PDE technique. Because all
equations are elliptic, one needs boundary conditions on
all boundaries. The boundaries and boundary conditions
for h &(r,0) are indicated by the rectangle in Fig. 1.
The right-hand-most line r =p »1 is an approximation of
limit I ~oo, in practice, p is taken to be a constant large
enough so that physical results will be insensitive to its
precise value; in practice, this was tested and the final
p = 15a0 was found to be satisfactorily large enough.
Clearly, the polarized-orbital functions are quadratically
integrable and therefore they must vanish as p~ao. By
virtue of their definition, Eq. {3.9), all solutions must also
vanish along r =0.

The less obvious boundary conditions are along 0=0
and m. /2. These are determined by the angular content of

g= vri2
h„(r, 7r/2) (cf. Table [[)

h,„(P',gl = Q

f,(p, g}= const x P»(g)
(cf. Text and Ref. 10)

r= p»1

FIG. 1. Boundaries and boundary conditions for polarized or-
bitals and scattering functions.

Finally, the (dipole polarizabilities) are generated from the
asymptotic form of V~] in the well-known way

ai = lim [—2r i V', I(r& )],
f)~oo

where A, can be 0, 2,
~ ~, or i.

the functions in question. This in turn can be determined
by the behavior of the lowest spherical harmonic in terms
of which the function can naturally be expanded. A com-
pilation is given in Table II; they are to accompany the
remaining boundary conditions shown in Fig. 1. Note in
Table II that for some of the higher partial waves both the
function and its first derivative are zero; this means that
higher-order differences at the boundaries would have to
be used in those cases.

The other important boundary condition is associated
with the Coulomb (attractive) singularity at the nuclei. In
cases where the wave function does not vanish, the wave
function must have a cusp according to Kato's theorem. '

We see from Table II that polarized orbitals h~ r(r, g) do
not vanish along 0=0 (and specifically at the nuclei
r =R/2, 0~0) for y=crg and y=o.„symmetries. Here
we take the polarized orbitals to be

(r, 0)=Z ( 2 R,O)e

for R and r such that

(4.1)

(4.2)

Explicitly, this takes care of the cusp at one nucleus. At
the opposite nucleus —R/2 the function automatically
has the same behavior by virtue of the reflection symme-
try of h z(r, 0) about 0=m. /2 (which is the reason we
can confine the boundaries within 0(m. /2). Again, nu-
merical experimentation determines that a suitable value
of c =h„/2, where h, is the mush size in the r direction.

All results presented here are for the e-N2 collision sys-
tem. The value of e in (2.10) is adjusted so that electric di-
pole polarizabilities agree with reliable values. The use of
an adjustable parameter e here as well as in the scattering
portion of the calculation (below) renders the present in-
vestigation as not completely ab initio. %"e believe that
the quantitative alterations due to these phenomenological
aspects are small; however, until the exchange kernel can
be well incorporated into the noniterative PDE method, '
a completely ab initio calculation from this point of view
is not yet feasible. The results are given in Table III to-
gether with our previous analytic fit slightly modified to
experimental results and other calculated values. ' All
results are seen to be in reasonable accord with one anoth-
er.

The partial differential equations, essentially Eq. (2.10),
with appropriate boundary conditions, were solved using
the noniterative technique. ' Some preliminary results of
this work have been reported.

Two-dimensional perspective graphs of the polarized or-
bitals h r, defined in Eq. (3.9), are shown in Figs. 2—4.
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TABLE II. Boundary conditions for h y(r 0) along 8=0 and vr/2. X indicates that the particular
boundary condition obtains.

og
ou
7Tu

77g

Ag

lowest YI

Yoo

Yro

Y2&

Y22

Y

a
ao

h y
——0

X
X

X
X

h.„y—0

X
X
X
X

0=n./2

h y
——0 h y

——0

These are the orthogonalized solutions, where required, as
described above. Note that those functions which do not
vanish along 0=0 are seen to have cusps at r =R/2.
Note also that the functions are not trivial in their 0
dependence. It is particularly gratifying that the nonitera-
tive PDE technique which was originally put forward in
the molecular context for the scattering problem' has
proved to be so effective in solving for polarized orbitals
as well.

From the polarized orbitals, so obtained, we can obtain
the polarization potentials by quadrature, Eqs. (3.12), for
perpendicular and parallel approach of the incoming elec-
tron to the direction of the internuclear axis. Results as a
function of r at the equilibrium separation R =2.068 are
compared to other calculations in Table IV. There is
reasonable agreement among the various calculations as
expected at larger r, but the differences at smail r, particu-
larly in V~~(r), are notable; specifically, we see that our
potential becomes positive (repulsive). If the polarization
potential were rigorously the result of an adiabatic pertur-
bation, then it would necessarily be negative at all r, but as
we have long emphasized, ' ' by virtue of the step func-
tion and other elements of the method, our polarized orbi-
tal potential attempts to simulate nonadiabatic effects,
which are important for small r, and need not be attrac-
tive. The t9 dependence of the polarization potential, Eq.
(3.13), is particularly dramatic as seen in Fig. 5 in compar-

ison to the phenomenological potential, Eq. (1). Here
V~~~'(r) manifests itself as a repulsive potential for per-
pendicular approach to the N2 molecule. This is corn-
pared with V~~'"'(r), which is seen to be attractive for all
directions of approach 0. The contrast between the
shorter-range part of these respective polarization poten-
tials can be rather pictorially stated: Whereas the
phenomenological potential can be described as a rather
"sticky egg,

" the polarized-orbital potential is more like
the reverse of a true egg—longitudinally soft but traversal-
ly stiff. [It is emphasized that this polarization potential
assumes that the remaining and major portion of the
short-range potential is described (ideally) in the exchange
(Hartree-Fock) approximation. ] It will be seen that this
has an important effect on the scattering and that only
V~~j' is able to reproduce the normalization of the sub-
structure of the e-N2 resonance correctly.

We now come to the internuclear separation (R) depen-
dence of V~~(r). The calculated Vp, ~ are plotted for dif-
ferent R in Figs. 6 and 7. Although it is not so obvious,
the R dependence of these potentials is also quite complex
and different from the phenomenological potential as orig-
inally generalized. The main consequence of this differ-
ence occurs in the vibrational close-coupling portion of the
theory, because matrix elements of V~~~' between vibra-
tional states of N2 will be quite different from those of
V(Phen)

pol

TABLE III. Electric dipole polarizabilities (a o).

Z (a, ) e in Eq. (2.10)'
Present
results

Tem kin
(Ref. 20)

Morrison and
Hay (Ref. 22) Schneider Experiment

1.85
1.95
2.068
2.15
2.292
2.45

0.786
0.786
0.786
0.786
0.786
0.786

0.786
0.786
0.786
0.60
0.50
0.37

0.60
0.64
0.65
0.67
0.695
0.72

1.23
1.20
1.19
1.12
1.1 1

1.07

10.43
11.08
11.66
12.66
13.13
13.90

10.50
11.18
11.90
12.34
12.99
13.55

Ao (ao )

9.88
10.59
11.43
12.01
13.03
14.15

11.45S 11.90'
11.74

1.8S
1.95
2.068
2.15
2.292
2.45

0.786
0.786
0.786
0.786
0.786
0.786

0.786
0.786
0.786
0.60
0.50
0.37

0.60
0.64
0.65
0.67
0.695
0.72

1.23
1.20
1.19
1.12
1.11
1.07

2.20
2.70
3.09
3.33
3.95
4.93

2.24
2.60
3.07
3.42
4.06
4.81

a2 (ao)
2.22
2.74
3.36
3.79
4.54
5.37

3.464 3.08'

'The same e apply to ao and a2. The four columns refer to a =2o.g, 3o.g, 2o.„,and 1m.„ in y y equations.
B. Schneider, Chem. Phys. Lett. S1, 578 (1977).

'Bridge and Buckingham (Ref. 21).
Zeiss and Meath (Ref. 21).



62'7
28 ARIZATION POTENTIAL FOR e-N2. . .CALCULA TION OF THE POLARI

(a,)

POLARIZED ORBITAL30g Ou

(ae)

POLARIZED ORBITAL1TTu Ttg

lots of three (parallel) polarized orbitals,
3 d4 N i tk itfor e--N Here and in Figs. 3 anh

=2.068a .e uilibrium value R =

scattering ca cusca
'

g 1 ulation that we have
f V S hst the major aspects oh, f

Th h b'dtho
u mented by a muc mor

4e will be brie ere.
dit to e-N2 scattering re

1 f h II- ou lin calculations op
d from Eq. (3.5) wtt appro

'

10) f th ol
' dobtogous to those mad e in (3. or

——,'~„,+&'~ ~~'& ——,k. , p.„'.
" '(-,

(II )(v'
~

P
~
v)F„(r), (5.1)

POLARIZED ORBITAL17tu hg

lots of three (perpendicu]a pr) olarizedFIG. 4. Perspective plots o
orbitals.

16h static, (model) exchange, and po-where W is sum of the sta ic,
larization potentials

(5.2)P (R, r ) = V„+eVFEQ+ Vp ]

'hof (2.13) but wttis of the form oHere VFE(-. is
I is the ionization poten

'=k +2I+kF, where I is e
' ' '

otenK~~K
of the molecule;

q(P hen)
pal

r (ao)

(a)

r(a )

20 T(g POLARIZFD ORBITA

r (ao)

r (ao)

0,
I

20 -'T(„POLARIZED ORBITALg U

lots of three different polarized'zed orbitals.FIG. 3. Perspective plots o t ree

otential for R =Ro..rs ective plots of polarization poFIG. 5. Pe p
(a) calcu a e,l t d polarized orbita, p



628 ONDA AND A TEMKIN 28
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Present
results

~pop ( r)(&)
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and Hay'

Eades, Truhlar,
and Djxon"

Present
results

TABLE IV. Polarization otion potentials (hartree) for e-N R =Ion ot or e- 2 R =2.068a0).

po)

Morrison
and Hay'

Eades, Truhlar,
and Dixon

0.1

0.3
0.5
0.75
1.0
1.25
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

—1.52( —1)'
—4.47( —1)
—7.04( —1)
—8.96( —1)
—8.82( —1)
—7.85( —1)
—5.71( —1)
—2.67( —1)
—1.34{—1)
—7.48( —2)
—4.45( —2)
—2.76( —2)
—1.77( —2)
—1.17( —2)

—4.936( —1)

—1.347( —1)

—4.37( —2)

—1.18( —2)

—5.39( —1)
—6.14( —1)

—7.23( —1)
—6.72( —1)
—4.73( —1)
—2.32( —1)
—1.19(—1)
—6.75( —2)
—3.96( —2)

—1.55( —2)

+ 1.09( —1)
+2.83( —1)
+3.53( —1)
+2.89( —1)
+ 1.42( —1)
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—1.36( —2)
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—4.11(—2)
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—1.21( —2)
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—9.45( —2)

—4.13(—2)

—1.71(—2)

—7.57( —3)

—4.10( —1 )
—3.42( —1)

—2.07( —1)
—1.58( —1 )
—9.54( —2)
—6.02( —2)
—3.84{—2)
—2.46( —2)
—1.59( —2)

—7.10(—3)
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V2~ (r, R)

R = 1.85go
R = 1.95'

Coming now to the individual vibrational cross sections,
also in Table V, we compare our results with experimental
results of Mong whose normalization is inferred (foot-
note e) from the experimental normalization (which was
measured at 90') assuming a pure H& partial wave. The
normalization is estimated to be correct to +25% [S. F.
~ong (private communication)], and thus the uncertainty
is relatively larger than those of o.T. But they are accurate
enough to show again that those results based on V~~j' are
substantially more accurate than those coming from
V' ~'"'. To repeat, we believe the angular (0) dependence
of V~~ is the key element of these improvements and that
indicates that the polarized-orbital method is of value in
giving this dependence (as well as the small-r dependence,
which it gives in atomic scattering as well). The ab initio
results of Schneider et al. are also included, because they
are of comparable accuracy.

The scattering calculation is being augmented to include
up to 13 vibrational states. This is expected to yield con-
vergence to k (3 eV, which contains the bulk of the sub-
structure. At that time we will present a more complete
set of scattering results.
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