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Energy loss and energy straggling of protons and pions in the momentum range 0.7 to 115 GeV/c
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The energy-loss distribution for pions and protons, with momenta between 0.7 and 115 GeV/c,
has been measured in an ion-implanted silicon detector of 300 um thickness. The data are well

described by an empirical energy-loss distribution.

I. INTRODUCTION

The detection of charged particles by measuring their
energy loss in thin silicon detectors has led to widespread
study of the corresponding energy-loss spectrum.!=> This
spectrum is given, to a first approximation, by the Lan-
dau* and Vavilov® theories, which are based on Ruther-
ford scattering on free electrons.

In order to achieve high spatial resolution and to detect
change in charged multiplicity due to decay of short-lived
particles,’ very thin (<300 um) silicon detectors and
low-noise electronics are used. Under these conditions,
significant deviations from the Landau-Vavilov theory are
expected because of the importance of the interactions
where the atomic electron binding energy cannot be
neglected.>—!® This deviation has been observed, but not
explained!! for relativistic pions with momenta greater
than 6 GeV/c.

The purpose of this experiment is to measure the
energy-loss spectra of pions and protons over a large
momentum range in a very thin silicon detector (300 pm),
using low-noise (0 ~4 keV) electronics.

II. ENERGY STRAGGLING

The statistical nature of the ionization process during
the passage of a fast charged particle through matter re-
sults in large fluctuations of the energy loss in absorbers
which are thin compared with the particle range. The cal-
culation of these fluctuations was first performed by Lan-
dau.* Subsequently Vavilov® refined the Landau solution
to the problem by introducing the maximum allowable en-
ergy transfer in the Rutherford macroscopic cross section
w'(€e):

_ (E/€)(1—P%e/€,,), O<e<éy,
N 0, e>e¢,

'(€) (1)

where €, (Ref. 12) is the maximum amount of energy that
can be transferred to an atomic electron in a single col-
lision with the incident particle of mass m and velocity Bc,
and where € is the actual energy transferred in the col-
lision (Landau neglected the term B2 /e, ).

The quantity £ is given, in keV, by

E=Q2mz%*/m,c*B)NZxp/A
=153.4(z2/B*NZ /A)xp , )

where N is the Avogadro number, m, and e are the elec-
tron mass and charge, respectively, z is the charge of the
incident particle, Z, 4, and p are the atomic number,
atomic weight, and density (g/cm?) of the material, and
where x is the distance in cm traversed through the ma-
terial.

However, the effects of atomic binding of the electrons
have been disregarded in both the Landau and Vavilov
theories. The theories can be improved by using a modi-
fied cross section to take into account the electron binding
energy.!* The modified energy-loss distributions can be
expressed as the convolution of a Gaussian function with a
Landau or Vavilov distribution, respectively.® %% Thus

FAx)=(1/0vEm) [ 77 f (A x)

Xexp[ —(A—A")?/20%]dA’

(3)
where f1 y(A’,x) is either the Landau or the Vavilov dis-
tribution and A is the actual energy loss. .

The term 8,=0” in Eq. (3) has been computed by
Shulek et al., who derived the following equation:

8,=12¢ 2 1(Z; /Z)In(2m,c?B*/1;) 4)

where Z; is the number of electrons in the ith shell of the
stopping material, /; is the ionization potential of the ith
shell, and the summation is performed over the shells for
which I; <2m,c?B2. These ionization potentials have been
computed by Sternheimer'*~!” and enter into the density
effect correction to the mean energy loss. Only the tails of
the actually measured spectra are expected to differ sys-
tematically from those given by Eq. (3), because 8§ rays
produced in high-energy transfer interactions may escape
from the detector.

III. EXPERIMENTAL METHOD

In the present investigation, energy loss has been mea-
sured for pions and protons in the momentum range be-
tween 0.7 and 115 GeV/c (see Table I). The momentum
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TABLE I. Momentum spread of the beam either at the Centre d’Etudes Nucléaires de Saclay or at

CERN.
Momentum
(GeV/c) Particle AP /P (%) Laboratory
0.736 p < +0.1 Saturne II-Saclay
1.000 P < +0.1 Saturne II-Saclay
1.916 P < *0.1 Saturne II-Saclay
30.0 7 (> 95%) <+1.0 CERN-SPS
45.0 7 (>95%) <*1.0 CERN-SPS
115.0 p (>95%) <+1.0 CERN-SPS

spread AP /P was never more than 0.1% for the measure-
ments performed at Saturne in Saclay, and never more
than 1% at the CERN Super Proton Synchrotron (SPS).
A well-defined momentum is important, particularly at
low values, since any momentum spread broadens the
energy-loss distribution and thereby masks the effect due
to long-distance collisions.

Two Enertec ion-implanted passivated-silicon junction
detectors with an active area of 1.0 cm? and a thickness of
300+5 um were used.'® Total depletion of the detectors
was achieved at reverse biases of about 100 V. The initial
leakage currents were 16 and 20 nA.

The signal pulses from these detectors were sent to
standard ORTEC-125 charge preamplifiers. The pream-
plified signals were then sent to a modified version of an
ORTEC-472 spectroscopy amplifier, in the case of the
more upstream of the two detectors, and to an EG&G-474
timing filter amplifier, in the case of the downstream
detector. The ORTEC amplifier produced an output
pulse with a 600-nsec base and a 200-nsec rise time, while
the timing filter amplifier produced a pulse with a 100-
nsec base and a 50-nsec rise time. The instantaneous
counting rate never exceeded 3000 events per second in or-
der to avoid pile up.

The spacing between the two detectors was 4 cm, with
their active areas well aligned. A scintillator with an area
of 0.5X0.5 cm? and a thickness of 0.5 cm was positioned
1 cm from the downstream detector. The beam was de-
fined by the coincidence of the downstream detector and
this small scintillator, the latter generating a jitter of only
a few nsec. This beam-particle trigger was shaped to pro-
vide a 40-nsec gate for a LeCroy 2249A analog-to-digital
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FIG. 1. Energy-loss spectrum for B~ coming from a Ru
source. Kinetic energies are selected to be greater than 1 MeV.
Continuous line represents the fitted Landau distribution con-
volved by a Gaussian function.

converter (ADC), where the pulse coming from the
upstream detector was recorded.

The upstream detector, together with its special purpose
electronics, had a Gaussian noise distribution with an in-
dependently measured standard deviation o, Whose
typical value was 4.0+0.4 keV. The exact value was
determined separately before each data taking.

The initial calibration of the energy scale for the entire
system was performed using a 30-GeV 7~ beam. The
most probable energy loss for pions has no significant
momentum dependence for By>50.!! We assumed a
value of 84.0+2.8 keV for the most-probable energy loss
(App defined in Sec. IV) in 300 um of silicon.!® Thereaf-
ter a Ru B~ source has been used for calibration purposes
once it had been determined that the value of A, for rela-
tivistic electrons is 86.8+2.8 keV on the same scale that
yields the canonical value of 84.0+2.8 keV for relativistic
pions.

The source was placed in front of the upstream detector
and a trigger formed for electrons crossing both of the
detectors and the scintillator. This way only relativistic
electrons, namely, those with a kinetic energy between
about 1 and 3 MeV were selected. Figure 1 shows the re-
sulting energy-loss spectrum and the corresponding fitted
curve. This calibration was performed after each mea-
surement at a new beam momentum in order to monitor
very closely the stability of the electronics.

IV. DATA ANALYSIS AND DISCUSSION

In the limit as k=£/€,,— 0, the Vavilov distribution
approaches that of Landau theory. It has been shown!
that for k~0.06 (corresponding to 65.3-MeV positive
pions crossing a 0.216-cm-thick lithium-drifted silicon
detector), the Vavilov and Landau spectra are practically
indistinguishable.

The lowest momentum used in our investigation corre-
sponds to k~0.02. Consequently, the observed spectra
are expected to be well represented by Eq. (3), in which a
Gaussian function convolves a Landau distribution. The
standard deviation o, of the Gaussian part can be defined
to also take into account the detector and electronic noise
with

)1/2

2
Otot= ( 82 + O hoise ’

where 0,5 is the standard deviation of the Gaussian
noise distribution (see Sec. III).
The Landau probability density function is given by

fr(B,x)=(1/8)¢(N) ,
¢(k)=(1/277i)f::: exp(u +1Inu +Au)du ,
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FIG. 2. (a) and (b) show the energy-loss spectra at 0.736 and 115 GeV/c of incoming proton momenta, respectively. Continuous
curves are the complete fits to the experimental data. Values of £ are 14.9+0.8 and 5.5+0. 3, respectively (the corresponding values of
the best fit are 15.01+0.8 and 5.6+0.3). Values of a=\/8‘2 are 11.3+1.4 and 5.5+1.1, respectively (the corresponding values of the
best fit are 10.2+1.3 and 5.7+1.1). In (b) the tail is also shown with the vertical scale multiplied by ten.

where

A=(A—(A))/E—1—B*+C—In(£/€,,)

=[A—(Anp—5E20)1/5 ,

(A) is the mean energy loss, the Euler constant
C =0.577215, Ag=~ —0.225 is the value for which ¢ is a
maximum, A, is the most-probable energy loss of the
Landau distribution, i.e., fr(Ap,x)=(1/8)¢(Ag), and
where c is an arbitrary real positive constant.

The experimental energy-loss distributions for each
momentum and type of particle were fitted to the Landau
probability density convolved with a Gaussian as
described above, with free parameters 8, £, and Ay,,. The
fitting procedure is described in the Appendix to this pa-
per. The good fits obtained for all the data samples give
us confidence in the overall appropriateness of Eq. (3) and

in the values of the fitted parameters. However, some de-
viation from the model is observed, as expected, in the tail
due mainly to the neglect of escaping & rays. In order to
avoid a possible bias in the fitted parameters, we have
varied the upper limit to which each experimental distri-
bution was fitted. The best fits had X? probabilities of the
order of 50% or better and were obtained by fitting up to
Anax=Amp+aW, where W is the full width at half max-
imum, and the values of a are between 2.5 and 3.5. How-
ever, the fitted values of §,, £, and A,,, determined at the
best X? did not differ, within the error of their determina-
tion, from those of the complete fit.

In Fig. 2 the energy-loss distributions for the lowest and
highest proton momenta are shown. The continuous
curves are the least-squares fits, with all of the tail fitted.
The curves obtained by using the parameters at the best X?
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FIG. 3. Determined values of the parameter £. Continuous
and broken curves are computed from Eq. (2) for proton and
pion, respectively. General agreement between the fitted value
and the predicted one indicates that both the energy calibration
had been correctly performed and that the shape of the energy-
straggling spectrum is well represented by the improved energy-
loss distribution.

are, by eye, indistinguishable from those given in Fig. 2.
In Fig. 3 the fitted values of the parameter £ are shown.
The continuous and broken lines are the calculated curves
for incoming protons and pions, respectively, in 300 um of
silicon. The agreement between experiment and Eq. (2)
seen in Fig. 3 indicates that our calibration of the energy
scale for the data is correct to within 6%.

Table II gives a list of the fitted values of &, 0=1/3,,
and the most-probable energy loss of the Landau distribu-
tion Ap,,. The observed values of A, are in general agree-
ment, within the experimental errors, with Landau theory
provided (A) are computed using the Bethe-Bloch formu-
la and taking into account the correction for the density
effect. The shell correction term of the Bethe-Bloch for-
mula is negligible over the momentum range of the
present investigation.?~22 The most-probable energy loss
E,,, of the overall straggling distribution defined by Eq.
(3), is about 3% higher than A, due to the folding of the
Gaussian distribution (Table II). There is no significant
difference between E., for 7~ at a momentum of 45
GeV/c (By=330) and protons at 115 GeV/c (By=123).
Esbensen et al.!! have already shown that there is no rela-
tivistic rise of the most-probable energy loss for
50 < By <120. The value of E,, determined at the lowest
momentum is in agreement with the value quoted by Ait-
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FIG. 4. Determined values of a:\/é—i;. Continuous and bro-
ken lines are the Shulek et al. (Ref. 9) predictions for protons
and pions, respectively. Pion (®) and proton (X) data are in
general agreement with the Shulek et al. predictions.
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ken et al.,! once it is extrapolated to a detector thickness
of 0.216 cm.

In Fig. 4 we show a plot of the values obtained for the
parameter 0=1/5, together with the corresponding
theoretical predictions made by Shulek et al. for protons
and pions, respectively (see Sec. II). The quoted errors
take into account the uncertainty in determining the noise
contribution to o0, (see the Appendix). Both the pion and
proton data seem to be in general agreement with the
model of Shulek et al. As B— 1, o becomes a constant to
within the error of its determination.

The results of the present investigation confirm the
collision-loss theories of Landau and Vavilov. The effect
of atomic binding of electrons has been clearly observed
and seems to be well described by Eq. (3), and the standard
deviation of the Gaussian contribution is compatible with
the computations of Shulek et al.
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TABLE II. Values of &, 0=\/§2, Anp, and Ep, vs the incoming momentum.

Momentum & o=(8,)'"? Amp E.,

(GeV/c) (keV) (keV) (keV) (keV)
0.736 15.0+0.8 10.2+1.3 194.8+5.8 196.2+5.8
1.000 10.4+0.8 7.4+0.6 127.5+3.8 130.8+3.8
1.916 7.6+£0.4 59+1.0 94.0+3.0 97.2+3.0
30.0 5.5+0.3 5.7+0.5 84.0+2.8 85.6+2.8
45.0 5.8+0.4 5.0+£0.9 86.0+2.8 88.8+2.8
115.0 5.6+0.3 5.7+1.0 83.2+2.8 85.5+2.8
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APPENDIX: FITTING PROCEDURE

The large amount (between 20000 and 30000 pulse
heights per data sample) and high resolution of data pro-
vide a very sensitive test of the energy-loss model, but also
require considerable care in the fitting procedure in order
not to introduce numerical and statistical bias.

The parameter fitting and goodness-of-fit testing were
done with the usual least-squares techniques. The func-
tion minimized was

XU a)= 3 {[ti(a)—n;1?/d?} , (A1)

1

where a are the free parameters of the fit, namely, &, §,,
and Ap;,, and a normalization factor; the sum is over all
histogram bins, #;(a) and n; are, respectively, the expected
and observed numbers of counts in the ith bin, and d; is
the standard deviation of the numerator. The histogram
bins were constructed as follows: starting from the raw
data histogram (ADC channels of a width of about 0.5
keV), bins with less than a minimum number of events
were joined with neighboring bins until each new bin con-
tained at least that minimum number [the resulting un-
equal bin widths in the tail are clearly visible in Fig. 2(b)].
The minimum bin content could be varied to make sure
that it was large enough not to influence the fit, and the
value finally used was 20.

The expected number of events in the ith bin #;(a) is
just the integral of Eq. (3), properly normalized, over the
bin. It is customary to approximate this by the value of
the function at the center of the bin, multiplied by the bin
width. We have used both methods and find no signifi-
cant difference (due to the extremely narrow bins in the
peak region). ‘

As the universal Landau function is evaluated very
often during the fitting, a special subroutine was prepared
which calculated this function using four-point interpola-
tion in a table of 200 very accurate values calculated by
Fourier series and checked against both published
values®»?* and those calculated by contour integration.
The convolution with the Gaussian was done numerically

using usually 20 points to evaluate the convolution in-
tegral for each data bin, but his number could be varied to
make sure that it was large enough not to influence the fit.

The variance d? is usually taken as the observed number
of events n;, since this is indeed the variance of a Poisson
distribution of mean n;. However, under the null hy-
pothesis, the expected value is t;(a), not n;. We find sig-
nificant (although small) differences between fits done us-
ing the two techniques. An intermediate method is to use
the average number of events observed over three bins,
which gives essentially the same fits as using the expected
number of events. This intermediate method has the ad-
vantage that the denominator in each term is constant (in-
dependent of the fit parameters) so there is no tendency to
try to reduce the X2 by making the variances larger.

Finally, the entire fitting procedure has been tested by
generating Monte Carlo data with known parameter
values and fitting it through the same procedures. In or-
der to do this we have developed a very accurate Landau-
distributed random number generator [this generator, as
well as our Landau density function, are available from
the CERN Program Library as GENLAN (G903) and FUN-
LAN (G112)]. The Monte Carlo procedure helped us to
choose the best fitting procedure and verified that our
method did not introduce any significant bias in the fitted
parameter values. The parameter errors given in Table II
result from combining the statistical error calculated from
our fits with a systematic error, largely calibration uncer-
tainty (which is the dominant one) and the error in
measuring O gice-

Good fits were obtained for all data samples, apart from
a slight depression of the tail for reasons described above.
The data taken at the SPS energies (see Table I) required
adding about 1% contamination from two particles simul-
taneously traversing the silicon, which is consistent with
the expected interaction probability in the upstream
beam-defining scintillators. The effect is included in the
curve shown in Fig. 2(b), but the resulting contribution
(between 150 and 250 keV) is too small to be noticed by
the eye. Two-particle contamination was neither expected
nor observed for the other data.
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Italy.
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