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Relativistic quantum-defect theory. General formulation
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(Recrived 14 October 1981;revised manuscript received 17 September 1982)

A relativistic multichannel quantum-defect theory is formulated in the same way as in the
nonrelativistic theory of Seaton. The solutions to the radial Dirac-Coulomb equations are
reviewed in complex values of energy. The simple-model problem with finite-range paten-
tials is used to clarify the scattering matrix and the reactance E matrix. The close-coupling
approximation is discussed for real atomic systems.

I. INTRODUCTION

where Z is the ionic charge and a is the fine-
structure constant. In particular, we have vc,„~ for
pure Coulomb field of a nuclear charge Z. The
quantum defect p for this discrete state is defined as

9=&Coul & ~ (1.2)

Quantum-defect theory (QDT) is concerned with
an electron moving in a positive atomic field. In re-
lativistic single-channel QDT of Johnson and
Cheng, ' the effective quantum number v of a
discrete state is related to its energy e by

(2.1)

where I'(r) and Q(r) are the large and small com-
ponents of radial function, respectively, and X„ is a
spin-orbit eigenfunction. The definition of f( r )

here is different from that of Johnson and Cheng' in
that here i is connected with Q (r). The Dirac-
Coulomb radial equations are

I' sc+ I' —m+—e+ Q =0,Az
dr r

(2.2)

then express analytic functions f and g in terms of
y+ and y . The single-particle Dirac wave func-
tion g(r ) is defined as

In the asymptotic region with r moo, the w—ave func-
tion of the electron in continuum state is character-
ized by the phase shift 5 and in discrete state by the
quantum defect p. Since the wave function changes
smoothly across the ionization threshold, a relation
exists between the phase shift 5 and the quantum de-
fect p.

A relativistic multichannel QDT has been formu-
lated by Lee and Johnson, which is an extension of
relativistic single-channel QDT of Johnson and
Cheng' and includes the relativistic random-phase
approximation for calculating dynamical parame-
ters. Our work is an alternative method of analysis
and gives a more complete account of the general
theory, following nonrelativistic multichannel QDT
of Seaton."

Natural units are used throughout. In the Appen-
dix, some formulas in atomic units are described.

dg ——Q — m —@-
dr r

(2.3)

Defining

~, y=[k' —( Z)'~'",
X=(m' —e')'", z =2zr,
v =aZe/k, v'=aZm/A, ,

we can reduce Eqs. (2.2) and (2.3) to

(2.4)

zg&'+(2y+1 —z)g& —(y+1 —v)g& ——0, (2.S)

and using the solution

y =(~)=(m+e)' zrexP( —z/2){Q, +Qz),

zgz'+ (2y+ 1 —z) Q2 —(y —v) Q2 ——0, (2.6)

II. COULOMB FUNCTIONS

In this section, after summarizing Coulomb func-
tions as mentioned by Johnson and Cheng, ' we in-
troduce traveling wave functions y and g and

where the prime means the derivative with respect
to z. Solutions to Eq. (2.5) or (2.6) are confluent hy-
pergeometric functions. For more details, the reader
may refer to Berestetskii, Lifshitz, and Pitaevskii.
Coulomb functions are
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yi ——(m+e)' zrexp( —z/2)[a iFi(a + l, b,z)+( —a. +v'),F, (a, b,z)],
yz ——(m+e)' z rexP( —z/2)[(1+a —b)iFi(2+a b—,2 b—,z)+( —ir+v'), F, (1+a —b, 2 —b,z)],
yq

——(m+e)' zr exp( —z/2)( —ir+v')[(v+v') U(a + l, b,z)+ U(a, b,z)],
y7 ——(m+e)' zrexp(z/2)[ —U(b —a —l, b, —z)+( —a+v')U(b a,—b, —z)],
yz =y]/ct ~

yI =yz«2

593

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

where a =y —v, b =2y+1,

and

c2 ——[(m +e)]'i (k) r( —a. —y+v' —v)

xr( —2y+1) .

c, =[(m +e)]'~ (A. )r( —ii+y+v' —v)

x r(2y+1), (2.13)

(2.14)

yg ——(m +e )
'~ z "exp( —z/2)(+ 1)

X ( —i~+ v') [1+0(1/
i
z

~
)],

i
arg(z) i

&3m /2 (2. 16)

y7=(m+e)' z exp(z/2)

xe ' " "[1+O(1/iz
i )],

i
arg(z)

i
& 377/2 . (2. 17)

It should be noted that the sign of the small com-
ponent is the opposite of that defined in Johnson
and Cheng. ' The coefficient ao in Eq. (Al) of Ref.
1 is set to 2r/r(2y+1). The functions yii and yi
are analytic in e and y. Two points should be em-
phasized:

(a) If the energy e is taken as complex, so is A, .
For the case when e is real and e )m, Coulomb
functions are obtained from Eqs. (2.7)—(2.12) by the
replacements

Here we follow the sign convention of Slater

1 if arg(z) )0D=' —1 otherwise

and, in particular, —z =e ' z. This sign conven-
tion is applied and related only to the variable z in
the confluent hypergeometric function.

A. Functions y+ and tp

(m —e)'" —i(e —m)'i', X ip, —
p=(e' —m')'", z= 2ipr, v iri-,

g =aZe/p, v~iri', g'=aZm/p .

(b) U(a, b,z) is a many-valued function. The
asymptotic form is

U(a, b,z)=z '[1+O(1/iz
i )],

We define

tp+ = —I (b) exp(Dim. a)y5/N i,
=a I (b) exp[Din (a b)]y7/Ni, —

where

Ni ——[iA(a —v')(y —v)]'i I (b)

Xexp(Dima /2) .

(2.18)

(2.19)

(2.20)

~

arg(z)
~

&3~/2 (2.15)

so that y5 and y7 have asymptotic forms
For iarg(z) i

&3n. /2, these functions have asymp-
totic fornis:

[(m +e)/(iA)]'i,
y+ —[(y —v)/(ir —v')] ' z "e ' exp(Di~a l2) (2.21)

[(m +e)/(i A)]'i,
—[(y —v)/(ir —v')]'i z "e'~ exp( Diva l2) — . i'[(m —e)/(ii, )]

(2.22)
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In particular, when e is real and e ~ m, we have B. Relations among Coulomb functions
Cj0 aIld g

N, =[p(~ —ig')(y i—ri)]' 1 (b)

Xexp( i—~y /2 ~—q /2 ),

y+ —exp[i(pr+g ln2pr —~y/2+/)]

[(m +e)/p]'
i [(e—m)/p]' '

-exp[ i(p—r +g ln2pr ~y/—2+/)]

(2.23)

(2.24)

y, = [I'(b)e ' '/I (b —a)]y,

+[1(b)e ' ' '/I (a)]y

yz=[ —1(2—b)e ' ' '/I (1—a)]ys

+[I (2 —b)e ' ' "'/I (1+a b)]y—7 .

(2.27)

(2.28)

The expressions for y ~ and yz in terms of y5 and
y7 are

where

[(m+e)/p]' '
i [(e—m—)/p] '~ (2.25)

Using Eqs. (2.18) and (2.19), we have

y& N& [y——/I (1+a) rp+/1—(b —a)], (2.29)

yz=N&[d&g /I (1+a) dzrp+—/1 (b —a)],

exp( 2ig)—=(y iq )/—(a' ig')—. (2.26) where
(2.30)

d& ——1 (2 b)l (b——a) sinn (b —a)/[1 (b)I (1—a) sinatra],

dz ———I (2 —b)l (b —a) exp( —Dimb)/[I (b)I (1—a)] .

The identity 1 (z)l (1—z) =~ cscmz is used here and hereafter. In turn, we obtain

y~
——(N)/c, )[p /I"(1+y —v) —q+/I (1+y+v)],

yI ——(N~/c&)[y 2 sinmb(cotnb —cot+a)/I (1+y—v) —q&+3 sinmb(cot~b Di)/I (1+y—+v)],
where

2 (v, y) = —(c&/cz)l (2—b)I (b —a)/[I (b)I (1 —a)]
= —(~Ze)'rZ(v, v') (v, y)

and where

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

R (v, v') = v ( —K+y+v' —v)
(v —y) ( —~—y+v' —v)

'

r(i+ y+v)
v &+'1(v —y)

(2.36a)

(2.36b)

The Wronskian of y~ and yI is

~(y~ yI)=(2e+2aZ/r)[sinm(2y+1)]/(maZ) .

(2.39)

~(v, y) is usually a complex function and can be
represented by

~(v, y)=~, (v, y)+i~;(v, y) . (2.36c)

C. Analytic functions f and g

If we regard y as an independent variable and de-
fine

The functions yz and yr are no longer independent
when y=y, =positive integer or half integer.
Specifically, we have

2y, +1
yI(e, y„r)=(—1) ' &(v, y, )y~(e, y, ;r) .

(2.40)

As in the nonrelativistic case, we consider a
second irregular solution

f(e y;r)=y~(e y r)

then

f(e, y;r)=y, (e,y;r) —.

(2.37)

(2.38)

g(e, y;r) =[3(v, y) cos~(2y+1)y„(e,y;r)

yI(e, y;r)]/sinn(2y—+ 1)

which becomes at y =y,

(2.41)
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g(e, y, ;r)=(2m) . ' A (v, y) y~(e, y;r)+( —1) r+
ay

pl ( e y r ) +JR (E,y; r) A (v, y )
y

'
. y=y.

(2.42)

The term involving (8/By)A (v, y) is not an analytic function of e. Following Eq. (2.46) in Greene, Fano, and
Strinati, " we construct an analytic solution of e as

(e,y;r) =g(e, y;r) G—(v, y)3'z (e,y; r),
where

G(v, y) =[A (v, y) cosa (2y+1)—cos 2n. (y —y, )A (v, y, ) cosa. (2y, +1)]/sinn (2y+1) .

The value y, is the y, which is closest to y. Using Eqs. (2.33) and (2.34) we obtain

g(e, y;r)=(N~/c~)[y ( —G+A cotta)/I (1+y—v) —y+( —G+DiA)/I (1+y+v)] .

(2.44)

(2.45)

When e is real, z =2Ar and arg(z) =0 for e & m, and z = —2ipr and arg(z) = —m. /2 for e & m. By sign conven-
tion D = —1, and thus

f=(N, /c, )[y /I"(1+y —v) —y+/1 (1+y+v)],
g =(N)/c))[y (S+CB)/I (1+y—v) —y+(S+iB)/I (1+y+v)],

where, for e & m

B =B( (aZ——e ) rR (v, v')u(v, y ),
=B cot~b +cos 2~(y —y, )A (v, y, ) cosm. (2y, +1)/sinn. (2y+1),

C = —cote.a,
and for e & m

B =B)——(aZe) rR (i', ig')u(g, y),
=B (cote b +csex b e )+cos 2m (y y, )A (iq, y—, ) cosa(2y, + 1)/ sinn (2y+ 1),

and where

(ri, y) =
~

I (1+y+ig)
~

e "l(2ngr+') ..

(2.46)

(2.47)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

III. DESCRIPTIONS OF ATOMIC SYSTEM AND CLOSE-COUPLING EQUATIONS

We consider an atomic system consisting of a nucleus of charge Z„„, together with N+ 1 electrons. We are
interested in bound states and in states with one electron in the continuum. We define such states as

(3.1)W[@,g]1™=~ g C(J,JJ;M, mM)
~
J,M, )

~
Jm ) =(N+1)'~2 g ( —1)~+' '[+(r '), g(r;)]J M,

where 4 =
~
J,M ) is a wave function for the N-electron system, and f=

~
jm ) is a single-particle wave func-

tion. The number of coupled channels is the total number of allowed states M(%,P) appropriate for the to-
tal angular momentum J. Substituting B=g M(4, P) ' in Hz+~B=EB, where

IV+1
H~+ )

——g ( a p;+Pm aZ„„,Ir; )+—g 1lrj,
i=1 l (J

we obtain the close-coupling equations as

(3.2)

P; + P —m+e. +
dr r

dQ;
dr

Q; + g ( V~J + 8;q )QJ ——0,
J

(3.3)

(3.4)



where Z =Z„„„V~is the direct potential, and 8;z is the exchange kernel. The total energy is

E =E;+e;,
E; being the energy for the channel i in the N-electron system.

The direct potential is defined by

V; (r~+))=An I([@;,lP;(r~+()] g (/re priI [@i'Pl(r~~))]I,

(3.5)

where the symbol Ang means that only the radial integral of the electron with coordinate r~~( is left out. We
may choose a radius r[] such that when r ) r[], the exchange can be neglected. Since r~~ [)rI, for k = 1, . . . , N
when r & r[], we expand

The close-coupling equations may be written as

(3.8)

(3.9)

where Z =Z„„,—N, n is the number of channels, and the coefficients

(3.10)

where the maximum value of k denoted by 1 depends on the channels i and j.
The asymptotic solutions of the close-coupling equations have not been obtained numerically. In the rela-

tivistic R-matrix method ' or in-out method, ' Eqs. (3.8) and (3.9) were reduced to their counterparts in nonre-
lativistic theory. We may write the close-coupling equations in a simple matrix form as

(D~ ~ 8'~ ~@~)F=0, (3.11)

where D+ and e+ are diagonal matrices and W+ and F are nondiagonal matrices. Each element of matrices
D+, 8'+, and e+ is a 2&&2 matrix defined as

"dr
5;~a.; /r

(W )g. ——+ '~ —5;i(m —aZ/r) —U;~

—5"(m +a.Z/r)+ U. -

(3.12)

(3.13)

0 (3.14)

where, for r ~ ro, U~ (r) may include direct and exchange potentials and, for r ~ ro,

(3.15)

and each element of F is a 2&& 1 column ([2).
The potentials U~(r) are not of finite range. For finite r, the solutions cannot be expressed as linear com-

binations of Coulomb functions. In Sec. IV we shall consider a simple-model problem with finite-range poten-
tials.
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IV. SQI UTIONS
OF THE COUPLED EQUATIONS

tions at the origin as F(E;r)~0, for r~0. Specifi-
cally, we take

A. Simple-model problem
3 g ~

iJ
lim[r 'F~(E;r)]= ~ Z/( )r~O EJ l I

(4.2)

U~(r)=0 . (4.1)

We shall assume that the Uz(r) are real and sym-
metric. For this simple-model problem, we obtain
coupled differential equations of the form (3.11).
With N, equations of the type (3.11), we have N,
linearly independent sets of solutions.

The solutions F(E;r) have the boundary condi-
I

The simple model is the same as in the nonrela-
tivistic theory of Seaton. We define three regions
0&ro &r1 & oo such that (i) in the region 0&r &ro,
rU;;(r) and r "UJ(r) are analytic functions, where

q,z &
~ y; —yj ~

and i&j; (ii) in the region ra&r &r„
all the elements UJ(r) are piecewise continuous; (iii)
in the region r & r1, all the elements

Each suffix j =1, . . . , N, specifies a particular set
of solutions. For all finite r, the solutions F(E;r)
will be analytic functions of E, following the proof
given by Ham" in the nonrelativistic theory. Be-
cause of condition (iii), we have

F(E;r)=f(e,~;r)I+g(e, x , r)J", r & r1 (4.3)

where f(e,a. ;r) and g(e, Ir;r) are diagonal matrices
with diagonal elements f(e;,~;;r) and g (e;,a;;r),
respectively, and I and J are nondiagonal matrices.
Since f, g, and F(E;r) are analytic functions of E
for all finite values of r, I(E) and J(E) will also be
analytic functions of E.

Substituting expressions (2.46) and (2.45) for f
and g into Eq. (4.3), we obtain

F(E;r)=y [I+(—G+A cotta)J] —qr+ [I+(—G+DiA)J],
c11 (1+y—v) c,r(1+y+v)

r~r& .

Multiplying both sides by [I+ ( —G+A cot~a)J] 'c, l"(1+y—v)/N, , we have

F(S;r)=F(E;r)[I+(—G+A cotta)J] 'c11 (1+y—v)/N1, r & r1

where

F(S;r)=p —p+S, r & r1

and where

N1 , c,r(1+y —v)[I+(—G+DiA)J][I +( —G +A cot~a)J]
c,r(1+y+ v) N1

This scattering matrix S is valid for
~

arg(z)
~

& 3m/2, where z =2k,r.

B. Scattering matrix for e real

When e is real, we obtain

N1 , c,r(1+ —v)
[I+(8 +iB)J][I+(S+CB)J]c1I (1+y+v) N1

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

The matrix U is real and symmetric. We may take F(E;r) to be real and I and J to be real. We define F as
the transpose of F and take the following integral with the upper limit r2 & r1..

F D++ ++@+ F— D++ + e+ F r=
Since the terms with W+ and e+ cancel out, we find that

I J=J I
and from this we have

(IJ—1)T (J—1)TJTIJ 1 IJ—1—
so that IJ is symmetric. Thus we may write the scattering matrix in a more symmetric forn|

(4.9)

(4.10)

(4.11)
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1 81/2[ 1 +i81/2(IJ —1+Z )
—181/2][ 1+C8 I/2(IJ —I+ Z )

—181/2] —18—I/2 c)I (1+y—v)
c&I (1+y+v) N)

(4.12)

Defining

K =8'"(IJ '+-W )
'8'-"

we express S in terms of K as

S =u (1+iK)(1+CK) 'v,
where, for e & m,

u =[i(y —v)]'/ exp( isa/—2)M,
2~[i (y —v)]'/ exp( isa/—2)M

V =
[1—exp( 2m.ia—)]

(4.13)

(4.14)

(4.15)

(4.16)

F(K;r) =F(S;r)[—v '(1+CK)!(2i)],
r &r&

where

F(K;r) =s +cK

and where

s =(y+u y—v ')/(2i),

c =(p+u +iy v 'C)/2 .

(4.24)

(4.25)

(4.26)

(4.27)

and, for e &m,

u =exp(ice ),
v =exp(irv ),

(4.17)

(4.18) s =(lxz/2)l/28 &/2f (4.28)

The functions F(K;r) for r ~ r& are also solutions of
coupled equations. Using Eqs. (2.46) and (2.47) we
obtain

and where

M =[r(1+y+v)r(1 —y+v)] '"
co =argI (1+y ig ) .—

(4.19)

(4.20)

c = —(aZ/2)' 8 ' (g —&f) .

For e & m, using Eqs. (4.17) and (4.18)

s =(y+e' —q) e ' )/(2i),

(4.29)

(4.30)
Here the identity I"(z*)= [I"(z)]~ is used, where the
asterisk stands for the complex conjugate. It should
be noted that the indices of diagonal matrix ele-
ments in Eqs. (4.15)—(4.20) are omitted.

In the one-channel case, since qr —+exp(A, r) when
e &m, we require the coefficient of p in Eq. (4.4)
to vanish, i.e.,

c =(y+e'"+y e '")/2 .

Their asymptotic forms are

[(m +e)/p]'/ sin8

[(e—m)/p]'/2 cose

(4.31)

(4.32)

I +[9&
—cot(~a )8& ]J=0 .

Letting P(e) = J/I we obta—in

P(e)=1/[9 &
—cot(ma)8 ] .

(4.21)

(4.22)

[(m +e )/p] '/ cosO
—[(e—m)/p]'/ sin8 (4.33)

tanm. p=8& (IJ '+9 &)

~hen all channels are closed, tanm p, =K.

C. Functions s and c for e real

(4.23)

Using Eq. (4.14) and multiplying both sides of Eq.
(4.6) by —v '(1+CK)/(2i), we obtain

Defining the quantum defect @=a+n —k, where n

is the principal quantum number, we have
cote.a =cote p. Generalizing to the many-channel
problem we define

where

s =e '
y —sin(m. a)y+,

c =exp[ i m(a ——,)]y—+cos(ma)y+,

where

(4.34)

(4.35)

8 =pr +q ln2pr —my /2+ g

+argI (1+y—ig) .

For e & m, using Eqs. (4.15), (4.16), (2.18), and
(2.19),

y =2 [k(v' —a )I (1+y+v)I (1—y+v)] '/2ys

y+= —(2~) 'Il (I+y+v)l (1—y+v)/[A(v' —v)]I'/ exp[ i~(a b—)]y7 . —
(4.36)

(4.37)
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D. All channels open

When all channels are open (e; & m for all i )

S =e' (1+iK)(1 i—K) 'e'

A phase matrix 5 may be defined by

(4.38)

The pair s and c are equivalent to the pair f and g in
Eqs. (25a) and (25b) of Johnson and Cheng' and in
Eq. (3) of Lee and Johnson.

Eq. (4.45) will be satisfied if

( tanya —K)X =0,
which requires that

~

tann. a —K
~

=0 .

(4.47)

(4 48)

Y= —y+V for r &r, . (4.49)

For the one-channel case we have K = tan+ p and
the solution of Eq. (4.48) is a =p n+—k.

The bound state has an asymptotic form

K =tan5 .

In the open channel case, we have

(4.39) We may express Y in terms of the real function Y5
as

tan5=B (IJ '+9 ) 'B' (4.40) Y =MYsNs for r & r
&

(4.50)

Substituting in the expressions for B& and
from Eqs. (2.51) and (2.52) and again defining
P(e) = J/I, w—e obtain V=u (1+iK)X, (4.51)

where Ys is a diagonal matrix with diagonal ele-
ments of ys. Using expression (2.18) and

P(e)=(& B) co—t5B) ) (4.41) we obtain

X cot~p(1+cosvrb e ")'~2

+sinn. b e (4.42)

This matrix relation generalizes Eq. (4) of Johnson
and Cheng. '

E. All channels closed

In general, using Eqs. (4.23) and (4.40) and the con-
dition that ~„(v,y) goes to ~„(iq,y) continuously
across the threshold, i.e., cz„(v, y ) goes to
~(ri, y)(1+cosmb e ""), we find that the connec-
tion between the phase shift and quantum defect is

cot5=(1 +c os'. be ")'

X5 ——[A.( —v'+a) cos era] '~ X .

Let us define a diagonal matrix

~ =B& tan~a .—1

Using Eq. (4.47) we obtain

[r (IJ '+9—() ']B'( X=0.
The condition (4.48) is equivalent to

(IJ '+S—, )-'-~ =0.

F. Some channels open and some closed

(4.52)

(4.53)

(4.54)

(4.55)

S 'V —y+V for r &r~ (4.43)

where V is a column vector. For closed channels,
increases exponentially in the asymptotic region.

For Y(r) to represent a bound state we must, there-
fore, have

S 'V=0. (4.44)

Using Eq. (4.14) with C = —cot~a, the above equa-
tion may be written

When all channels are closed (e; & m for all i) we
put

Y(r) =F(S;r)S ' V

When some channels are open and some closed,
we write F as a partitioned matrix

F F
F F (4.56)

e;)m for i(X,
e;(m for i &N,

where X, is the number of open channels.
We further define

(4.57)

where o and c indicate "open" and "closed." The
energy parameters e; are put in a decreasing order
and

U
' cotta (tan+a —K)(1+iK) 'u ' V =0 .

Putting

X=(1+iK) 'u 'V

(4.45)

(4.46)

F00
F, =

CO

and require that

F„~O for r~oo .

(4.58)

(4.59)
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At this stage, we introduce two matrices X and W as
those defined by Seaton, '

W„=(i K—",, )(i +K,', )

where

(4.69)

X =(i K—)(i +K)
W = (i K)(—T +K)

where T =C '. From Eq. (4.14) we have

S = —iuWTU .

(4.60)

(4.61)

(4.62)

=K„K—„(K„—tan+ a ) ~K„. (4.70)

In atomic physics computations, we are interested
in solutions satisfying the condition (4.59) and hav-
ing the forms as

The matrix X is defined in solutions F(X;r) to cou-
pled equations as

F„(K';r)=s, +c,K', r ) r~

F„(W';r)=y, —p+, W', r ) r(

(4.71)

(4.72)
F(X;r)=y —y+X, r ) r~

y+ ——C +lS,

(4.63)

(4.64)

where K' and W' are usually defined as the reac-
tance and scattering matrices and have dimensions
(N„N, ). We express F,(K') in terms of F(K) as

=C —lS (4.65)

W[(T+i)+(T —i)X]=2iX .

In turn, we have

W„=X„—X„[X„—exp(2mia)] 'X„,

(4.66)

(4.67)

~„=X„—X„[X„—exp(2vria ) ]

From Eq. (4.61) we obtain

(4.68)

Eliminating K between Eqs. (4.60) and (4.61), we
obtain

r

1„
F, (K') =F(K)

CO

This gives

F..(K') =F..(K)+F.,(K)D„,
F„(K')=F„(K)+F„(K)D„.

From Eq. (4.25), for r ) r, ,

F„(K')=c,K„+(s,+c,K„)D„.
Using Eqs. (4.34) and (4.35) this gives

(4.73)

(4.74)

(4.75)

(4.76)

F„(K')=y e ' '[iK„+(1+iK„)D„]+y+I cos(era)K, —[sin(era ) cos(rra)K„—]D, I . (4.77)

D„=—(K„—tantra ) 'K,0 (4.78)

The coefficient of y+ should vanish in order to
satisfy the condition (4.59), we obtain

E„=—[X„—exp(2~ia ) ]
F„=2iy e' '[X„—exp(27ria)]

(4.83)

(4.84)

F„=—y (K„costa —sinatra ) 'K„.
From Eq. (4.74),

F„(K')=s, +c,(K,0+K„D„).

Using Eq. (4.71), we obtain

(4.79)

(4.80)

~' =X„—X„[X„—exp(2nia )]
W' is the same as W„ in Eq. (4.68).

G. Normalization

(4.85)

K' =K„K„(K„—ta—nm a ) 'K„. (4.81)

OO

F,(~') =F(X)
CO

(4.82)

K' is the same as K,', in Eq. (4.70).
Similarly, we express F, (W') in terms of F(X) as

If the matrix F has elements y =(g), we define a
function matrix F with elements y=( z). Similar-
ly, we define g and p + for p and y+, respec-
tively. Furthermore, we define two diagonal ma-
trices D and e and a nondiagonal matrix
with elements as

0
and choosing E„ to eliminate the exponentially in-
creasing functions, using Eqs. (4.64) and (4.65), we
obtain

(D );,.=
~ ~

r
0
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(W )J ——

(e );, =

—5"(m —uZ/r ) —U"

5—lr"/r
V 1

5je; 0

0 5(~ e;

—5)J.IC) /r

e;~(m +aZ/r) —U;J (4.87)

(4.88)

If F is an eigenfunction for total energy E and F' for
energy E', then

Y=FS 'V with S 'V=Q,

and assume

(4.98)

(D +W +e )F=Q,
(D + W +e' )F'=0,

where, by Eq. (3.5),

(4.89)

(4.90)
Y'=(FS ' V)',

where

V=u'(1+i tan~a')X'

(4.99)

(4.100)

—[(D + IV +e )F] F'I dr =0 . (4.92)

Since F and F' are both zero at the origin and the
terms with 8' cancel out, we obtain

P2

(E —r') f F F'dr =(E F '], (4.93)

where e—e' is just a number. For a large value of
rz, we may take F=F(S) and F'=F'(S) and, there-
fore,

(e —e') lt FtF'dr
= lim (g —y+S) (y —(p+S)' . (4.94)

We consider first the case when all channels are
open. Putting e'=e and using Eqs. (2.24) and (2.25)
in the limit r —+ oo, we have (y+ ) g—( )t + =Q, ( )t = —2i, (y+) y+ =2i,
thus

(4.95)

e,' —e; =E' E— (4.91)

is independent of channel index i; thus, we shall
suppress the subscript i

Defining F as the Hermitian conjugate of F, we
have

P2

F + +e'

such that Y' are solutions of Eq. (4.9Q) for energies
which are not eigenvalues and vectors V' and X' are
n«yet defined. We may take X'=X.

From Eq. (4.94), we have

(e' —r) f 1' 1"dr

= lim ((p+V) (g S ' —g+)'V'. (4. 101)

Since qr+ vanishes at infinity, the norm of Y is

Norm( Y)

F~F r
0

= lim lim V (y+)t(g S 'V)'/(e' —e),1'~ ao E' ~E
(4.102)

((p+ )~(p =2 exp(i~a),

and hence

(4.103)

Norm( Y) = lim Vt2 exp(im. a)(S ' V)'/(e' —e) .

Using Eq. (4.45) with X'=X, we have

(S ' V)'=[U ' cote.a (tanya —K)]'X .

(4.104)

(4.105)

where (p )'~p, when e' —+e. Using Eqs. (2.21)
and (2.22),

For e''&e, we obtain

r=m E —| (4.96)
Since K = tanm. p, we obtain, to first order in e' —e,

(S 'V)'=U 'cotta (e' —e)
If some channels are open and some closed, Eq.
(4.96) remains valid for matrix elements associated
with open channels. Explicitly, we have

F,F' r =4m (4.97)

where F, is defined as in Eq. (4.58), and e, is a diag-
onal matrix with dimensions (N„N, ).

When all channels are closed, we take an eigen-
function

( tanm. a —tan~)M )
' X . (4.106)

From a =y —v, we have

(4. 107)m.aZm g(v)/(A, cos m.a), —
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where

g(v) =(1+dp/dv) .

The normalization integral becomes

Norm( Y) = V"2 exp(i~a)v ' cotta

g(v)
cos &Q

(4.108)

(4.109)

where N, is the number of open channels.
In nonrelativistic theory, the asymptotic solutions

for a two-channel example are described in detail by
Seaton. In relativistic cases, the procedures will
remain the same.

In the close-coupling eigenchannel analysis, the
K matrix is diagonalized by a unitary transforma-
tion matrix U as

Using Eqs. (4.51) and (4.52) to express V~ and X in
terms of N5, we find that Y =MY&N5 will be nor-
malized to

(5.4)

where tanmp is a diagonal matrix. A function ma-
trix F(p;r) is introduced as

Norm( Y) = 1

provided that

(4.110) F(p;r) =F(K;r)Ucosmp. .

Using Eq. (4.25) we obtain

(5.5)

N5(M*/M)[2(v' —1~)(v') g(v)/(az)]N5 = 1 . F(p; r) -sU cosset+ CU sin~@ . (5.6)

(4.111)

For the one-channel case, this is equivalent to Eq.
(69) of Johnson and Cheng. '

This relation serves as the starting point for the
eigenchannel analysis.

APPENDIX

V. DISCUSSION OF THE CLOSE-COUPLING
APPROXIMATION

There are two differences between the close-
coupling approximation and the simple model, i.e. ,
(i) the exchange integral operators R,z in the inter-
nal region and (ii) the long-range potentials in the
external region. With fixed boundary conditions of
Eq. (4.2) the solutions to the close-coupling equa-
tions (3.3) and (3.4) may cause the exchange integral
to diverge, if the exponential increase of these solu-
tions is faster than the exponential decrease of the
functions y(e, ~;r) used to construct the core state

In practical computation, we may cut off the ex-
ponential decreasing tail by setting the values within
10 to zero, and impose the orthogonality condi-
tion (y(e, v;r)

~

FJ)=0 for the component FJ having
the same a.

In the presence of long-range potentials, the
equalities for r & r1 in the simple-model problem are
replaced by asymptotic formulas valid in the limit
r~oo. To solve Eqs. (3.3) and (3.4) in the asymp-
totic region is to obtain the K matrix.

For all channels open, the matrix K is obtained by
computing solutions with asymptotic form

F(K;r)-s+CK .

When we write equations in atomic units, we usu-
ally shift the energy scale such that the origin @=0
is at the threshold and write c explicitly. For the
Dirac-Coulomb equation, we have

(ca p+P'c —Z/r)P(r) =eP(r), (A1)

[k2 (aZ)2]1/2 ~ [k2 (Z/ )2]1/2

k = (m —e )
'/ ~A, = [—2e —(e/c) ]'/

p =(e —m )'/ ~p =[2@+(e/c) ]'/

v =aze/A ~v = (1/c)Z (c +e/c)/A, ,

v' =aZm /A, ~v' =Z/A, ,

g =aze/p~g =(1/c)Z(c +e/c)/p,
2)'=azm/p~2i'=Z/p .

For example, the radial Dirac-Coulomb equations
become

where P ' =P —1. We can write equations related to
radial functions in atomic units using the following
replacements:

a ~1/c, m ~c, 6~c +E/c

m +E ~2c +6 /c, m —6~—E/c'

For some channels closed, the matrix K is obtained
from solutions FJ(K;r) with asymptotic forms, for
j=1 toN„

dJ' 1r e Z+ P — 2c+ —+ Q =—0,
dr r c cr

(A2)

$(51J +cgK1J, 1 (N0
FJ(K;r)- '0

o

(5.2)

(5.3) ——Q+ —+ Z P=0.
cr

(A3)
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