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A relativistic multichannel quantum-defect theory is formulated in the same way as in the
nonrelativistic theory of Seaton. The solutions to the radial Dirac-Coulomb equations are
reviewed in complex values of energy. The simple-model problem with finite-range poten-
tials is used to clarify the scattering matrix and the reactance K matrix. The close-coupling
approximation is discussed for real atomic systems.

I. INTRODUCTION

Quantum-defect theory (QDT) is concerned with
an electron moving in a positive atomic field. In re-
lativistic single-channel QDT of Johnson and
Cheng,! the effective quantum number v of a
discrete state is related to its energy € by

v=aZe/(m*—e?)!"?, (1.1

where Z is the ionic charge and a is the fine-
structure constant. In particular, we have v, for
pure Coulomb field of a nuclear charge Z. The
quantum defect u for this discrete state is defined as

#:VCOUI_V . (1.2)

In the asymptotic region with r— o, the wave func-
tion of the electron in continuum state is character-
ized by the phase shift § and in discrete state by the
quantum defect u. Since the wave function changes
smoothly across the ionization threshold, a relation
exists between the phase shift § and the quantum de-
fect p.

A relativistic multichannel QDT has been formu-
lated by Lee and Johnson,? which is an extension of
relativistic single-channel QDT of Johnson and
Cheng! and includes the relativistic random-phase
approximation for calculating dynamical parame-
ters. Our work is an alternative method of analysis
and gives a more complete account of the general
theory, following nonrelativistic multichannel QDT
of Seaton.>*

Natural units are used throughout. In the Appen-
dix, some formulas in atomic units are described.

II. COULOMB FUNCTIONS

In this section, after summarizing Coulomb func-
tions as mentioned by Johnson and Cheng,! we in-
troduce traveling wave functions ¢+ and ¢~ and
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then express analytic functions f and g in terms of
@t and ¢~. The single-particle Dirac wave func-
tion ¥(T) is defined as

P(r)Xm
1Q(r)X _yem

where P(r) and Q(r) are the large and small com-
ponents of radial function, respectively, and X,,, is a
spin-orbit eigenfunction. The definition of (T
here is different from that of Johnson and Cheng' in
that here i is connected with Q(r). The Dirac-
Coulomb radial equations are

(F)= , 2.1)

dr r r
49 K, [m_e_ﬂ P=0. (2.3)
dr r r
Defining

k=lk|, y=[k*—(az)]'?,
A=(m2—€H)V? z=2rr,
v=aZe/\, v'=aZm/\,
and using the solution
y=(g)=(m+e)" 2z exp(—z/2)(Q, £Q,) ,
(2.4
we can reduce Egs. (2.2) and (2.3) to
207 +Q2y+1-2)Q1 —(y +1-v)Q,=0, (2.5)
205 +Q2y+1—2)05 —(y —v)0,=0, (2.6)

where the prime means the derivative with respect
to z. Solutions to Eq. (2.5) or (2.6) are confluent hy-
pergeometric functions. For more details, the reader
may refer to Berestetskii, Lifshitz, and Pitaevskii.’
Coulomb functions are
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y1=(m+e€)'zVexp(—z/2)[a \Fi(a +1,b,2) +(—k +v'),F,(a,b,2)] , 2.7)
ya=(m+e)* 2 Vexp(—z/2)[(14a —b),F(2+a —b,2—b,z) (—k +v')|F1(14a —b,2—b,2)] , (2.8)
ys=(m+e)%z¥exp(—z/2)(—k +v')[(k +v')U(a +1,b,z) + U(a,b,z)] , (2.9)
yr=(m+e) 2z exp(z/2)[ - U(b —a —1,b, —2)(—k +v')U(b —a,b,—2)] , (2.10)
Yr=y1/¢1, (2.11)
yr=y)/c;, (2.12)

wherea =y —v, b =2y +1,

ci=[m +1"2 M —k+y+v' —v)
X2y +1), (2.13)
and
cr=[m +e) "N N—k—y+v' —v)
XT(=2y+1). (2.14)
It should be noted that the sign of the small com-
ponent is the opposite of that defined in Johnson
and Cheng.! The coefficient a, in Eq. (A1) of Ref.
1 is set to 2¥/I'(2y +1). The functions yp and y;

are analytic in € and y. Two points should be em-
phasized:

(a) If the energy € is taken as complex, so is A.
For the case when € is real and € >m, Coulomb
functions are obtained from Egs. (2.7)—(2.12) by the
replacements

(m—e)'?— —i(e—m)'?, A——ip,

p=(e2—mH'V?, z=2ipr, v—in,
n=aZe/p, v—in', n'=aZm/p .

(b) Ula,b,z) is a many-valued function. The
asymptotic form is
U(a,b,z)=z"°[14+0(1/|z|)],

|arg(z) | <3m/2 (2.15)

so that y5 and y; have asymptotic forms

et ~[(y—=v)/(k —=v")]~ 1?2 ¥e =%/ exp(Dima /2)

@~ ~[(y—=v)/(k —v")]"?2~ve?/? exp( — Dima /2)

[(m +€e)/GiM)]72?
—[(m —e)/(iM)]?

[(m +€)/(iN)]?
[(m —e)/(iN)]V?

T
ys=(m+e)’zVexp(—z/2)(£1)

X(—k+v)[1+0(1/|z )],

|arg(z)| <37 /2 (2.16)
yr=(m=+e)"’z2Vexp(z/2)
xePma=br11L0(1/z2 )],
|arg(z) | <37w/2. (2.17)
Here we follow the sign convention of Slater®
1 if arg(z)>0
~ | —1 otherwise
and, in particular, —z =e D"z This sign conven-

tion is applied and related only to the variable z in
the confluent hypergeometric function.

A. Functions ¢t and ¢~

We define
¢t =—T(b)exp(Dima)ys/N, , (2.18)
¢~ =al(b)exp[Dim(a —b)ly;/N; , (2.19)
where
N =[iAk —v' )y —v)]'’T'(b)
X exp(Dima /2) . (2.20)

For |arg(z)| <3w /2, these functions have asymp-
totic forms:

] ) (2.21)

] . (2.22)
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In particular, when € is real and € > m, we have

Ni=[p(k —in’' Ny —in)]'/*T'(b)

Xexp(—imy/2—mm/2), (2.23)
@t ~expli(pr +m In2pr —my /24-£)]
172
tm+aml 1, 229
i[(e—m)/p]
@~ ~exp[ —ilpr +m In2pr —ary /2+§)]
[(m +€)/p]'/?
—i[(e—m)/p]l/z 5 (2.25)
where
exp( —2i§)=(y—in)/(k —in’) . (2.26)

d=T(2—-b)T'(b —a)sinw (b —a)/[T(b)['(1—a)sinma] ,
dy,=—TI(2—-b)['(b —a) exp(—Diwb)/[T(b)[(1—a)] .
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B. Relations among Coulomb functions
@T and p~

The expressions for y; and y, in terms of ys and
yq are

y1=[T(b)eP™ /T(b —a)]ys

+[T(b)eP ™ =8 /T (a)]y, , 2.27)
ya=[—T(2—b)ePma=b /(1 —a)lys
+[T(2—b)eP™ =% /T (14a —b)]y, .
(2.28)
Using Eqgs. (2.18) and (2.19), we have
y1=Nl¢~/T(1+a)—e*/T(b —a)], (2.29)

y2=N:ldi¢™ /T(1+a)—dp* /T(b—a)],

(2.30)
where

(2.31)
(2.32)

The identity ['(z)I'(1—z)=m cscwz is used here and hereafter. In turn, we obtain

yr=N/c)le /T(1+y—v)—@T/T(1+y+v)],
y1=(N,/c )¢~ A sinmb (cotmb —cotma)/T(1+y —v)—@* A4 sinmb(cotmb — Di) /T(1+y +v)],

where

AW, y)=—(c1/c)T2—=b)T(b —a)/[T'(b)I(1—a)]

=—(aZe)”R (v,v)a(v,y)

and where
Rvp)=—Y A=Ky sv=v) = 36
(v—9) (—k—y+v' —v)
rid4+y+v)
VY)=— o —— . 2.36
alv,y vzy_HF(V—’)/) ( b)

a(v,y) is usually a complex function and can be
represented by

av,Y)=a,(v,¥)+ia;i(v,y) . (2.36¢)

C. Analytic functions f and g

If we regard y as an independent variable and de-
fine

fl&,7;r)=yrl€,v;7) (2.37)
then
fle,—y;r)=y(e,y;r) . (2.38)

(2.33)
(2.34)

(2.35)

[

The Wronskian of yg and y; is »
W (yr,yr)=(2€+2aZ /r)[sint 2y + 1)]/(7aZ) .
(2.39)

The functions yr and y; are no longer independent
when y=y.=positive integer or half integer.
Specifically, we have

vl v =(— 1" d (v, yr (e, 7037 -
(2.40)

As in the nonrelativistic case,®> we consider a
second irregular solution

gle,y;r)=[4(v,y) cosm(2y + l)yg(€,y;r)

—yile,y;r) ]/ sinmr(2y +1) (2.41)

which becomes at y =7,
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d d 0
gle,ve; =(2 -1 A ’ » Y5 127+2 Vs Vs ’ : 24
gle,ye;r)=(2m) (v,7) any(e v;r)+(—1) —ayyl(e v;r)+yr(€,v;r) ayA(v Y) yer, (2.42)

The term involving (8/9y)A (v,y) is not an analytic function of €. Following Eq. (2.46) in Greene, Fano, and
Strinati,’ we construct an analytic solution of € as

gle,y;r)=gle,y;r)—G (v,y)yr(€,y;r) , (2.43)
where

G (v,y)=[A4(v,y)cosm(2y + 1) —cosR2m(y — 7. )A (v,7,) cosm (27, + 1)]/sinmr (2y +1) . (2.44)
The value 7, is the y, which is closest to y. Using Eqgs. (2.33) and (2.34) we obtain

gle,7;r)=(N/c))¢ (—G +Acotma) /T(14+y —v)—@H(—G +Did)/T(1+y+v)] . (2.45)
When € is real, z =2Ar and arg(z)=0 for € <m, and z = —2ipr and arg(z)= —= /2 for € >m. By sign conven-
tion D = — 1, and thus

f=\N{/c)le~/TU4+y—v)—pt /T(1+y+v)], (2.46)

g=(N/c)e (9 +CB)/T(1+y—v)—@H (I +iB)/T(14+y+v)], (2.47)
where, for e <m

B=B_=(aZe)'R(v,v')alv,y), (2.48)

$ =% _=B_ cotwb +cos2m(y —7¥,)4 (v,7,) cosm (27, +1)/sinm 2y + 1) , (2.49)

C = —cotma , (2.50)
and for € > m

B=B_ =(aZe)*'R (in,in")a(n,y) , 2.51)

$ =% _ =B, (cotwb +cscmb e ~2™) 4-cos27m (y — 7, )A (in,7, ) cosm (27, + 1) /sin7 (2y +1) , (2.52)

C=—i, (2.53)
and where

Z(,y)= | T +y+in) | 2e™/Qmn*’+1) . (2.54)

III. DESCRIPTIONS OF ATOMIC SYSTEM AND CLOSE-COUPLING EQUATIONS

We consider an atomic system consisting of a nucleus of charge Z . together with N + 1 electrons. We are
interested in bound states and in states with one electron in the continuum. We define such states as

AV M=ot S CUjJ;M;mM) | I, M,) | jm)=(N+D2 3 (— DN =0 (=), (r) "M, (3.1)

where ¥ = | J,M, ) is a wave function for the N-electron system, and ¥ = | jm ) is a single-particle wave func-
tion. The number of coupled channels is the total number of allowed states .« (¥, )”™ appropriate for the to-
tal angular momentum J. Substituting ©= Y, (¥, "M in Hy  1©=E©O, where

N +1
Hyy1= 3 (&'Bi+Bm —aZn/r)+ X 1/ry (3.2)
i=1 i<j
we obtain the close-coupling equations as
dP; «k; Z
— +—P,— m+€i+g—]Qi+2(Vij+VVij)Qj=O, (3.3)
dr r r 7
dOo:  «k;
& g, [’"—ez-—f‘—é Pi— 3 (Vy+ WP =0, 34
dr r r ;
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where Z =Z .., V}; is the direct potential, and W;; is the exchange kernel. The total energy is
E=Ei+6i N (3.5)

E; being the energy for the channel i in the N-electron system.
The direct potential is defined by

N
Vij(rN+1)=Ang<[‘1’i,¢i(rzv+1)] 2 Uren [Wj’¢j(rN+l)]> ) (3.6)
k=1

where the symbol Ang means that only the radial integral of the electron with coordinate ry . ; is left out. We
may choose a radius 7o such that when r > r, the exchange can be neglected. Since ry 1 >r, fork=1,..., N
when r > rj, we expand

N 0 N
S Unyvii= 3 rng) ™1 S rePalcosOy 1) - (3.7)
k=1 A=0 k=1

The close-coupling equations may be written as

K; n ]
:id_Pi"f'—LPi_‘ '"'*-Gi'*-g£ Qi+ > I ajr*'0;=0, i=1,...,n (3.8)
r r r j=1x=1
K; n I
%Qi“_rLQi_ m—fi—gg P+ 3 20,';}"_}&_11’,-20, r>ro (3.9)
j=1A=1

where Z =Z_,. — N, n is the number of channels, and the coefficients

N
2 r,?PA(COSGka_,_])
k=1

a,;?:Ang<[\I/,~,1,b,-(rN+1)] [\yj!‘/’j(rN+l)]> ; (3.10)

where the maximum value of A denoted by / depends on the channels i and j.

The asymptotic solutions of the close-coupling equations have not been obtained numerically. In the rela-
tivistic R-matrix method®® or in-out method,!® Egs. (3.8) and (3.9) were reduced to their counterparts in nonre-
lativistic theory. We may write the close-coupling equations in a simple matrix form as

(Dy+W, +e, )F=0, (3.11)

where D and €, are diagonal matrices and W, and F are nondiagonal matrices. Each element of matrices
D, W,,and € is a 2X2 matrix defined as

i o 0
(D4 )ij o Sij—‘% ) (3.12)
Sijki /1 —&;jim +aZ /r)+ U
(Wdy= [—Sij(m —aZ/r)—Uy; — &K, /7 ’ (3.13)
0 —&;€
(64 )= 5,6 0 , (3.14)
where, for  <rq, Uj;(r) may include direct and exchange potentials and, for » > 7y,
U;(r)= }l‘, alr==1, (3.15)
A=1

and each element of Fis a 21 column (5 ).

The potentials U;;(r) are not of finite range. For finite 7, the solutions cannot be expressed as linear com-
binations of Coulomb functions. In Sec. IV we shall consider a simple-model problem with finite-range poten-
tials.



IV. SOLUTIONS
OF THE COUPLED EQUATIONS

A. Simple-model problem

The simple model is the same as in the nonrela-
tivistic theory of Seaton.* We define three regions
0<ry<r; <« such that (i) in the region 0<r <ry,
rU(r) and r~ % U;;(r) are analytic functions, where
g;;> | vi—v; | and i=j; (ii) in the region ro <r <ry,
all the elements Uj;(r) are piecewise continuous; (iii)
in the region r > r{, all the elements

We shall assume that the Uj;(r) are real and sym-
metric. For this simple-model problem, we obtain
coupled differential equations of the form (3.11).
With N, equations of the type (3.11), we have N,
linearly independent sets of solutions.

The solutions F(E;r) have the boundary condi-
J
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tions at the origin as F(E ;#)—0, for »—0. Specifi-
cally, we take

: —Yi )] —
ll_r’r})[r F,'j(E,r)]—— Sijaz/(Ki‘_Yi) 4.2)
Each suffix j=1,..., N, specifies a particular set

of solutions. For all finite r, the solutions F(E;r)
will be analytic functions of E, following the proof
given by Ham!! in the nonrelativistic theory. Be-
cause of condition (iii), we have

F(E;r)=f(e,ic;r)] +gle,k;r) , ¥>r (4.3)

where f(e€,k;r) and g(€,k;r) are diagonal matrices
with diagonal elements f(€;,k;;7) and g(e;,k;;r),
respectively, and I and J are nondiagonal matrices.
Since f, g, and F(E;r) are analytic functions of E
for all finite values of r, I(E) and J(E) will also be
analytic functions of E.

Substituting expressions (2.46) and (2.45) for f
and g into Eq. (4.3), we obtain

F(E;r)=¢_ﬁ5[l +(—G+A4 cotﬂa)J]—<p+m[I +(—G +DiAd)J] ,
r>r;. (4.4)
Multiplying both sides by [I +(—G +4 cotma)J] " lc;T'(1+y —v)/N,, we have
F(S;r)=F(E;r)[I +(—G +A cotma)J]" e, D14y —v)/Ny, r>r, (4.5)
where
F(S;r)=¢~ —@*S ,r>r; (4.6)
and where
S——--—‘L[1+(—G +Did)J][1 +(—G +4 cotrra)J]'lf—l—M . 4.7)
T4y +v) N,
This scattering matrix S is valid for |arg(z) | < 3w /2, where z =2Ar.
B. Scattering matrix for € real
When € is real, we obtain
Vi )[1 +(G +iB)J[I +(9+CB)J]—‘M. (4.8)

S=—g———
o(l+y+v

N,

The matrix U is real and symmetric. We may take F(E;r) to be real and I and J to be real. We define FT as
the transpose of F and take the following integral with the upper limit r, > ry:

0

Since the terms with W and € cancel out, we find that

I77=JTr,
and from this we have

T HWT=g-HYlyTy-=p-!

[ (FUD, +W, +€,)F—[(D, +W, +¢,)FI"F}dr =0 4.9)

(4.10)

4.11)

so that IJ ~! is symmetric. Thus we may write the scattering matrix in a more symmetric form
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S il
T T(l4+y+4v)

Defining
K=BYX1J-'4+%)"'B\/? (4.13)
we express S in terms of K as
S=u(1+iK)(1+CK)~ v, (4.14)
where, for € < m,
u=[i(y—v)1"?exp(—ima /2)M , (4.15)
. 2w [i(y —v)1"? exp(—ima /2)M

[1—exp(—2mia)] ’ 4.1
and, for € > m,
u =explio) , (4.17)
v=explio) , (4.18)
and where
M =[T(14+y+v)I(1—y+v)]" 12, (4.19)
o =argl'(14+y—in) . (4.20)

Here the identity I'(z*)=[I'(z)]* is used, where the
asterisk stands for the complex conjugate. It should
be noted that the indices of diagonal matrix ele-
ments in Egs. (4.15)—(4.20) are omitted.

In the one-channel case, since ¢ ~—exp(Ar) when
€ <m, we require the coefficient of ¢~ in Eq. (4.4)
to vanish, i.e.,

I+[Y _—cot(ma)B _1J=0. (4.21)
Letting B(e)= —J /I we obtain
Ble)=1/[¥ . —cot(ma)B_] . (4.22)

Defining the quantum defect u=a +n —k, where n
is the principal quantum number, we have
cotra =cotmru. Generalizing to the many-channel
problem we define

tanmu=B/>(IJ~'+ % _)~'B'/* . (4.23)

When all channels are closed, tanmu =K.

C. Functions s and ¢ for € real

Using Eq. (4.14) and multiplying both sides of Eq.
(4.6) by —v — (14 CK)/(2i), we obtain
|

y_=2—1[)\,(1/'_;()r(1+‘;/+»V)I‘(1_7, —{—V)]_I/Zys ,

B1/2[1+l-B1/2(IJ—1+y)—IBI/Z][I+CBI/2(IJ—1+g)—IBl/Z]—lB—l/Z

alf(ll4+y—v)
N, ’

(4.12)

F(K;r)=F(S;r)[—v~"(1+CK)/(2i)],
r>rp (4.24)

where
F(K;r)=s +cK (4.25)
and where
s=(ptu—@ v H/2i), (4.26)
c=(ptu+ip v~'C)/2. (4.27)

The functions F(K;r) for r > r, are also solutions of
coupled equations. Using Egs. (2.46) and (2.47) we
obtain

s =(aZ/2)V?B'2f , (4.28)
c=—(aZ/)V*B~ g —-9f). (4.29)
For € > m, using Egs. (4.17) and (4.18)
s=(pte®—p~e~®)/(2i), (4.30)
c=(pte®t+p e~ /2. (4.31)

Their asymptotic forms are

[(m +€)/p]'/?sind

S~ (e —m)/p]""*cosb | * (4.32)
[(m +€)/p]'"*cosO
€~ —[(e—m)/p]'/?sind |’ (4.33)
where

O=pr +nIn2pr —my /2+&
+argl’'(1+y—in) .

For € <m, using Egs. (4.15), (4.16), (2.18), and
(2.19),

s =e ™y~ _sin(ma)y t , (4.34)
c=exp[-i7r(a—%)]y‘+cos(1ra)y+ , (4.35)

where
(4.36)

y+=—(2#)“1{1‘(1+7/+V)I‘(l—‘}/+v)/[)\.(v’~K)]}l/zexp[-—i'tr(a —b)]y; . (4.37)
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The pair s and ¢ are equivalent to the pair f and g in
Egs. (25a) and (25b) of Johnson and Cheng! and in
Eq. (3) of Lee and Johnson.?

D. All channels open
When all channels are open (€; > m for all i)
S =e™(1+iK)(1—iK)~'e™ . (4.38)
A phase matrix 6 may be defined by
K =tand . (4.39)
In the open channel case, we have
tand =B2(IJ~'+ % _)"'B/2 . (4.40)

Substituting in the expressions for B, and ¥
from Egs. (2.51) and (2.52) and again defining
Ble)= —J /I, we obtain

Ble)=(Y_—B'/?cots BY/?)~ 1. (4.41)

In general, using Eqgs. (4.23) and (4.40) and the con-
dition that «,(v,y) goes to «,(in,y) continuously
across the threshold, ie., «,(v,y) goes to
a(n,7)(14cosmb e ~>™), we find that the connec-
tion between the phase shift and quantum defect is

cotd =(14cosmb e ~2™)1/2
X cotmu(1+cosmh e ~2™)1/2
+sinmh e ~2™ (4.42)

This matrix relation generalizes Eq. (4) of Johnson
and Cheng.!

E. All channels closed

When all channels are closed (€; <m for all i) we
put

Y(r)=F(S;nS~'V
=@ S”W—@tV for r>r (4.43)

where V is a column vector. For closed channels,
@~ increases exponentially in the asymptotic region.
For Y (r) to represent a bound state we must, there-
fore, have

s~v=o0. (4.44)

Using Eq. (4.14) with C = —cotwa, the above equa-
tion may be written

v~ cotrma (tanma —K)(14+iK)~'u~'V =0 .

. (4.45)
Putting

X=(1+iK)"'u~v (4.46)

Eq. (4.45) will be satisfied if

(tanma —K)X =0, (4.47)
which requires that

|tanma —K | =0 . (4.48)

For the one-channel case we have K =tanmu and
the solution of Eq. (4.48) isa =u—n +k.
The bound state has an asymptotic form

Y=—¢*V for r>r,. (4.49)

We may express Y in terms of the real function Y5
as

YZMY5N5 for rF>ry (4.50)

where Y5 is a diagonal matrix with diagonal ele-
ments of ys. Using expression (2.18) and

V=u(l14+iK)X , (4.51)
we obtain
Ns=[M—v'+k)cos’ma]~ 12X . (4.52)
Let us define a diagonal matrix
r=B7' tanma . (4.53)
Using Eq. (4.47) we obtain
[r—W'+% )"'1BY’x =0. (4.54)

The condition (4.48) is equivalent to

lr—I~'+% )~ =0. (4.55)

F. Some channels open and some closed

When some channels are open and some closed,
we write F as a partitioned matrix

FOO FOC

F=
FCO FCC

) (4.56)

where 0 and ¢ indicate “open” and ‘“closed.” The
energy parameters €; are put in a decreasing order
and

€,>m for i<N,

4.57
€,<m for i >N, ( )
where N, is the number of open channels.
We further define
Fom o (4.58)
o FCO '

and require that

F,—0 for r—>w . (4.59)
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At this stage, we introduce two matrices X and .% as
those defined by Seaton,'?

X=(—K)(i+K)™", (4.60)

S =i —KNT +K)~', (4.61)
where T =C~!. From Eq. (4.14) we have

S=—iusTv . (4.62)

The matrix X is defined in solutions F(X;7) to cou-
pled equations as

FX;r)=@_—@ X, r>r; (4.63)
where

@L=c+is , (4.64)

Q_=c—Iis . (4.65)

Eliminating K between Egs. (4.60) and (4.61), we
obtain

S UT +0)+(T —DX]=2iX . (4.66)
In turn, we have

F 0 =Xeo —Xee[Xee —exp(2mia)] ™Koo, (4.67)

00 =X oo —Xoc[Xee —exp(2mia)] "X, . (4.68)

From Eq. (4.61) we obtain
|

FL o= =Ko )i +K35)7", (4.69)
where
Kt;o =K00 —Koc(ch —tanma)™ cho . (470)

In atomic physics computations, we are interested
in solutions satisfying the condition (4.59) and hav-
ing the forms as

F,(K'sr)=s,4+c,K', r>r; (4.71)
Foo (') =@_ o —@4 07", ¥ >ry (4.72)

where K’ and %' are usually defined as the reac-
tance and scattering matrices and have dimensions
(Ny,N,). We express F,(K’) in terms of F(K) as

F,(K")=F(K) ' 11) J . (4.73)
This gives

Foo(K")=F,y(K)+F,o(K)D,, , (4.74)

Fop(K')=F,,(K)+F,,(K)D,, . (4.75)

From Eq. (4.25), for r >r,,
Feo(K')=cKeo+ (5. +CcKee ) Dy - (4.76)
Using Eqgs. (4.34) and (4.35) this gives

F (K" =y e "™[iK 4 + (1 4iK.)D., ]+y * {cos(ma)K,, —[sin(ma ) —cos(ma)K . 1D, } . (4.77)

The coefficient of y+ should vanish in order to
satisfy the condition (4.59), we obtain

D,, = —(K,. —tanma)~'K,, (4.78)
and

F.,=—y (K, cosra —sinma) 'K, . (4.79)
From Eq. (4.74),

Fo (K')=5,+¢, (Ko +KpeDeo) . (4.80)

Using Eq. (4.71), we obtain
K'=K,,—K,.(K, —tanma)" 'K, . (4.81)

K' is the same as K,, in Eq. (4.70).
Similarly, we express F,(.*’) in terms of F(X) as
1oo

F(F)=F00) | (4.82)

and choosing E_, to eliminate the exponentially in-
creasing functions, using Eqgs. (4.64) and (4.65), we
obtain

l -
Eco = [ch —exp(27ria)]‘ 1Xco ’ (483)

Foo =2iy ~e"™[ X, —exp(2mia)]~'X,, , (4.84)
and

' =Xoo —Xoc[Xee —exp(2mia)]~ 1Xco . (4.85)
" is the same as ., in Eq. (4.68).

G. Normalization

If the matrix F has elements y =(S), we define a
function matrix F with elements 5=(2,). Similar-
ly, we define @ ~ and @ * for ¢~ and @™, respec-
tively. Furthermore, we define two diagonal ma-
trices D_ and e€_ and a nondiagonal matrix W _
with elements as

(D_ ),'jz d > (486)
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—8,_,(m ——aZ/r)-—U,-~ —Sin,-/r

(4.87)

(W_)y= — 8y /7 e;lm +aZ/r)—Uy |’
8,']'6,- 0
(6_),‘j= 0 Sijei (4.88)
[
If F is an eigenfunction for total energy E and F’ for Y=FS~'V with S~'v=0, (4.98)
energy E’, then
and assume
D F=0, 4.89
(D_+W_+e€_) ( ) Y —(FS-vy | (4.99)
(D_+W_+€_)F =0, (4.90)
where
where, by Eq. (3.5), V'=u'(1+itanma’ )X’ (4.100)
€;—€,=E'—E (4.91)

is independent of channel index i; thus, we shall
suppress the subscript .
Defining F T as the Hermitian conjugate of F, we
have
"

S, (F(D_+W_ e F

—[(D_+W_+e_)FI'F'}dr=0. (4.92)

Since F and F’ are both zero at the origin and the
terms with W _ cancel out, we obtain

(e—e) [ F'rar =[F'F'],_, , (4.93)

where € —¢€’ is just a number. For a large value of
r,, we may take F =F(S) and F'=F'(S) and, there-
fore,
(e—e) [ F'Far

=lim(p~—@* (G~ —F +S) .

r— oo

(4.94)

We consider first the case when all channels are
open. Putting €’=¢€ and using Egs. (2.24) and (2.25)

in the limit r—>o, we have (@t )T(T) -
=@ )p+t=0, (p)g—==2i, (p")g+=2i,
thus

sts=1. 4.95)
For €'s£¢€, we obtain

[ F'Fdr=ans(e—e) . (4.96)

If some channels are open and some closed, Eq.
(4.96) remains valid for matrix elements associated
with open channels. Explicitly, we have

[ o°° FJF,dr =4w8(¢, —€)) , 4.97)

where F, is defined as in Eq. (4.58), and ¢, is a diag-
onal matrix with dimensions (N,,N,).

When all channels are closed, we take an eigen-
function

such that Y’ are solutions of Eq. (4.90) for energies
which are not eigenvalues and vectors ¥V’ and X’ are
not yet defined. We may take X'=X.

From Eq. (4.94), we have

(e'—¢€) fow Y'yar
= lim (¢3+V)T(¢7_S_l—a7+)'V' .

r— oo

(4.101)

Since @t vanishes at infinity, the norm of Y is
Norm(Y)
=["r'rar
=lim lim V(") (@S~ ") /(e'—e)
r—o € €
(4.102)

where (¢~ ) —@~, when €'—e€. Using Eqgs. (2.21)
and (2.22),

(¢*)'p ~=2explima) (4.103)
and hence
Norm(Y)= lim V"2 exp(ima)(S ~'V) /(¢'—€) .
(4.104)
Using Eq. (4.45) with X' =X, we have
(S~'W) =[v~'cotma(tanma —K)]'X .  (4.105)

Since K =tanmu, we obtain, to first order in €' —e,
(S—'W)=v~!cotma (e —€)

—E—)—(tamra —tanmpu)’

Xae

€'=e€

From a =y —v, we have

i(tan'rra —tanmp)

de

€' =€

=—maZm?E(v) /(A3 costmra) , (4.107)
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where
S)=(1+du/sdv) . (4.108)
The normalization integral becomes
Norm(Y)=V"2 exp(ima)v ~! cotma
- ”“23’"2 S0y @.100)
A cos“ma

Using Eqgs. (4.51) and (4.52) to express v1 and X in
terms of N5, we find that Y =MY;N; will be nor-
malized to

Norm(Y)=1
provided that

N;(M*/M)[Z(v'—lc)(v’)zg(v)/(aZ)]st1 .
(4.111)

(4.110)

For the one-channel case, this is equivalent to Eq.
(69) of Johnson and Cheng.!

V. DISCUSSION OF THE CLOSE-COUPLING
APPROXIMATION

There are two differences between the close-
coupling approximation and the simple model, i.e.,
(i) the exchange integral operators W;; in the inter-
nal region and (ii) the long-range potentials in the
external region. With fixed boundary conditions of
Eq. (4.2) the solutions to the close-coupling equa-
tions (3.3) and (3.4) may cause the exchange integral
to diverge, if the exponential increase of these solu-
tions is faster than the exponential decrease of the
functions y (€,k;r) used to construct the core state
V. In practical computation, we may cut off the ex-
ponential decreasing tail by setting the values within
10~° to zero, and impose the orthogonality condi-
tion (y (€,k;r) | Fi;) =0 for the component Fj; having
the same «.

In the presence of long-range potentials, the
equalities for » > r; in the simple-model problem are
replaced by asymptotic formulas valid in the limit
r— . To solve Egs. (3.3) and (3.4) in the asymp-
totic region is to obtain the K matrix.

For all channels open, the matrix K is obtained by
computing solutions with asymptotic form

F(K;r)~s+cK . (5.1)

For some channels closed, the matrix K is obtained
from solutions Fj;(K;r) with asymptotic forms, for
j=1toN,,

Si8,-j +ciKij N l<N0 (5.2)

Fy(K;r)~ 10 , i>N, (5.3)

where N, is the number of open channels.

In nonrelativistic theory, the asymptotic solutions
for a two-channel example are described in detail by
Seaton.* In relativistic cases, the procedures will
remain the same.

In the close-coupling eigenchannel analysis,? the
K matrix is diagonalized by a unitary transforma-
tion matrix U as

U'KU =tanmu , (5.4)

where tanmp is a diagonal matrix. A function ma-
trix F(u;r) is introduced as

F(u;r)=F(K;r)U cosmu . (5.5)
Using Eq. (4.25) we obtain
F(u;r)~sU cosmu—+cU sinrp . (5.6)

This relation serves as the starting point for the
eigenchannel analysis.

APPENDIX

When we write equations in atomic units, we usu-
ally shift the energy scale such that the origin € =0
is at the threshold and write ¢ explicitly. For the
Dirac-Coulomb equation, we have

(c@B+Bcr—Z/MP(T)=ep(T), (A1)

where B'=—1. We can write equations related to
radial functions in atomic units using the following
replacements:

a—1/c, m—c, €—c+e/c,

m+€—2c +€/c, m—e—>—e€/c,

and
y=[k2—(aZ)?]'?—y =[k*—(Z /c)*]'/?,
A=(m?—e)? s h=[—2e—(e/c)*]'?,
p=(e2—m)2p —[2e +(e/c)*]'72,
v=aZe/A—v=(1/c)Z(c +e€/c)/X,
vi=aZm/A—>v'=Z/\,
n=aZe/p—>n=(1/c)Z(c +e/c)/p,
n'=aZm/p—n'=Z/p .

For example, the radial Dirac-Coulomb equations
become

dr c cr
%Q__LQ+ € Z |p_o. (A3)
r r cr




28 RELATIVISTIC QUANTUM-DEFECT THEORY. GENERAL ... 603

I'w. R. Johnson and K. T. Cheng, J. Phys. B 12, 863
(1979).

2C. M. Lee and W. R. Johnson, Phys. Rev. A 22, 979
(1980).

3M. J. Seaton, Proc. Phys. Soc. London 88, 801 (1966).

4M. J. Seaton, J. Phys. B 11, 4067 (1978).

5V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii,
Relativistic Quantum Theory (Pergamon, Oxford, 1971),
Sec. 36.

6L. J. Slater, Confluent Hypergeometric Functions (Cam-

bridge University Press, Cambridge, 1960).

’C. Greene, U. Fano, and G. Strinati, Phys. Rev. A 19,
1485 (1979).

8J. J. Chang, J. Phys. B 8, 2327 (1975).

9P. H. Norrington and I. P. Grant, J. Phys. B 14, L261
(1981).

103, J. Chang, Phys. Rev. A 12, 791 (1975).

1. S. Ham, Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic, New York, 1955), Vol. 1.

12M. J. Seaton, J. Phys. B 2, 5 (1969).



