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Vacuum polarization corrections and spin-orbit splitting in antiprotonic atoms
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Precise calculations of the energy levels and fine structure of antiprotonic atoms, in which
the normal and anomalous magnetic moments of the antiproton are treated on an equal
basis and vacuum polarization and relativistic recoil corrections are included, are presented.
The results are applied to measurements of the antiproton mass and anomalous magnetic
moment with the use of antiprotonic atoms.

Future precise measurements of the energies of x-
ray transitions in antiprotonic atoms will require
similarly precise calculations of all electromagnetic
effects in order to be able to analyze the data for
measurements of the antiproton's mass and magnet-
ic moment or in order to be able to extract accurate
hadronic shifts and widths. For this reason, it is
useful to reexamine the question of the most ap-
propriate two-body equation to use for the descrip-
tion of the energy levels of antiprotonic atoms and
to make sure that the most important radiative
corrections (in this case vacuum polarization) are in-
cluded to sufficient accuracy. For antiprotonic
atoms, it is necessary to include electron vacuum po-
larization to all orders, since this gives rise to effec-
tive potentials having a range of the order of an
electron Compton wavelength. Muonic or hadronic
vacuum polarization is of much shorter range and
will be unimportant except at distances for which
the strong interaction dominates. This is also true
for the electromagnetic self-energy. It is desirable,
from the point of view of consistency, to treat the
normal and anomalous magnetic moments of the an-
tiproton on an equal footing, since these are compar-
able in magnitude.

Keeping these requirements in mind, it turns out
that different lowest-order equations are appropri-
ate, depending on the ratio of the antiproton mass to
the mass of the nucleus. Both equations are
straightforward generalizations of well-known
methods. If the nuclear mass is significantly larger
than the antiproton mass (A & 12) it is best to treat
the antiproton relativistically and the nucleus non-
relativistically, as is done for the case of muonic
atoms. ' In this case, one obtains a Dirac equation
with reduced mass for the antiproton. Additional
corrections are treated as perturbations and need to
be considered only to linear order in the mass ratio

m-/m~. As we shall see below, it is easy to include
a Pauli term in the unperturbed problem. If the nu-
clear mass is not much larger than m-, the two par-
ticles should be treated symmetrically. All spin ef-
fects can be treated as perturbations to sufficient ac-
curacy, since they are of relative order (ctZ) &&1,
compared with the Schrodinger energies. Keeping
terms of order (v/c), one obtains the Schrodinger
equation, with recoil- and spin-dependent correc-
tions which are treated as perturbations. The
derivation of such an equation, to the required level
of accuracy, is a textbook exercise. A derivation
for the case in which the nucleus also has spin —,,
and for the case of arbitrary masses and magnetic
moments, has been given in Refs. 3 and 4. The
analogous equation for the case of nuclear spin zero
will be given below. Further relativistic corrections
are negligibly small, compared with the expected ex-
perimental accuracy, and it is not clear that it is
worth the effort to make a systematic calculation of
all of them. Regardless of which equation one uses,
one should include vacuum polarization, or at least
the lowest-order Uhling-Serber contribution, in the
unperturbed Hamiltonian. This, of course, pre-
cludes an analytic solution of the wave equation, but
since numerical methods for solving the radial equa-
tion are so well developed, this presents no special
problem. In fact, it may be more efficient from the
standpoint of computer time to solve the radial
equation directly, rather than to evaluate complicat-
ed analytical expressions involving special functions,
which are obtained when treating vacuum polariza-
tion in perturbation theory. Furthermore, it is
straightforward to include higher-order vacuum po-
larization and to take into account finite nuclear
size. The latter has an effect on the vacuum polari-
zation potential and also removes the problems of
dealing with an r potential. All relevant correc-
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tions are easily included, regardless of their spin
dependence.

For the case of heavy nuclei, the appropriate
equation to use is the Dirac equation with reduced
mass, including a Pauli term

Epg =(m~ —Bp)Q =Hpf

ift. d Va . p+pm~+ V(r)+ y r
2m dr

Here mz is the nonrelativistic reduced mass, a and
p are the usual Dirac matrices, ft =—1.793 is the an-
tiproton anomalous moment. A derivation similar
to that given for muonic atoms (without the Pauli
term) in Ref. 1 (we employ the same notation as
used there) gives the recoil corrections in the form

H =Hp+p(m —m~ )+(P + I V a . pj)/2m~
IC 1 dU—[a.p b»~)j/2m~- PX.L,

2mmfv r dr

(2)

where m =mz, m& is the nuclear mass, and
w(r)=(Za/2)fprr(rrr)(r —ru(d rrr T.erms of
order m /mz have been neglected, in keeping with
the assumption that the nucleus is nonrelativistic.
The recoil corrections to Hp are all explicitly of or-
der m/m&. We have chosen to use the nonrelativis-
tic reduced mass in the unperturbed Eq. (1) for com-
putational convenience. The difference between this
and the proper generalization of the reduced mass as
given by Todorov is then treated as a perturbation.
This gives rise to the contribution Bp/2m& dis-
cussed below. After some manipulation, with the
use of hypervirial theorems analogous to those given
by Friar and Negele, the recoil corrections may be
written in the form (expectation values)

Bo
b,E=-

2m~

(h (r)+2BpP(r) ) ~ ~2+ (PV'V)—
2mN 4~~N ( V')

((B —2tp'/ )y V'V+(uf'/r B)&2Vy—. r)

Bo/2m+ ——(Za) (r~)(r )/6m~ —(Za) a. (r )/Sm m&

r
with h (r)=2w'V' —V, w'(r)=r f u V(u)du sod
P(r)= —V(r) —r (r V=aZ f p(u)u du. The sec-
ond line of Eq. (3) is valid for states having such
large angular momentum that the strong interaction
is negligible. Only the term —Bp/2m&, which is of
essentially kinematic origin is numerically signifi-
cant. All other terms contribute less than 0.25 eV
for the n =10, l =9 state of antiprotonic lead, for
example. The unperturbed Dirac equation can be
solved in a manner similar to that used for muonic
atoms. One obtains the radial equations (see Ref. 1

for notation)

dF fc ft d V
(Ep —V —m~)G = — + F+ F,—

dr r 2m dr

(Ep —V+mg )F= + —G+dG ft fc dV G.
dr r 2m dr

Here a =+(j+—, ) is the eigenvalue of
K = —p(1+ X L). One sees that the standard radi-

al equations are modified by the simple substitution

a. a x dV—~—+
2m dr

The new terms will give rise to additional spin-orbit
splitting, as well as a shift in the centroid of the lev-
el. These radial equations were solved using a modi-
fied version of the program MUoN. The nuclear
charge density was taken to be given by a Fermi dis-
tribution. This should be accurate enough since the
only effect on orbits having large orbital angular
momentum is due to the modification of the Uhling
and Kallen-Sabry potentials, which is sensitive to
(rJv ) (for Pb, the rms radius is 5.50 fm). Some typi-
cal results are given in the tables. They can be sum-
marized as follows. The order aZa vacuum polari-
zation potential must be included in the unperturbed
problem. The use of perturbation theory gives rise
to an error of 13—20 eV in the binding energy of the
state with n =10, 1=9. The influence of vacuum
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polarization on the wave functions and potential
iKy V' V/2m gives rise to a change of about l%%uo in
the fine-structure splitting. A similar (but not iden-
tical) result has been obtained by Pilkuhn and
Schlaile. ' However, they were unable to calculate
the full transition energies, since these are dominat-
ed by spin-independent contributions. The spin-
orbit splitting could have been obtained from pertur-
bation theory, provided vacuum polarization is
treated correctly. The calculated transition energies,
using m =—mz and K —= —K~ are in satisfactory

p P i'i i2
agreement with experiment. "' Similar calcula-
tions for other antiprotonic atoms (' B, Ca, ' Ba,
'74Yb, and U) have been performed. Space does
not permit a complete presentation of the results,
which are available upon request.

For the case of light nuclei, for which the mass
ratio is not small, it is better to treat both particles
symmetrically. The reduction to the form of the
Schrodinger equation plus corrections is standard.
The treatment was generalized to include nonpoint-
like charge distributions for the case in which the
nucleus has spin —, in Ref. 3. If the nucleus is spin-
less, the analogous equation, up to and including
terms of order (U/c) for both particles is

E
0 lw0I

o
V

H =p2/2mR+ V p4/8m 3 p4/8mN3—

1 dV — 1 1 2K+— a. L
r dr 4m+ 4m& 4mmz

V V(1+2K)
Sm
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(0

+ 1 dVp'V+ Vp'+ V'V+ — L'
2mm& r dr

(5)
This equation is also valid for the K -p and
K - He systems (reversing the roles of m and m&).
The terms in p /m and the last term of (5) corre-
spond to the well-known relativistic recoil correction
8 /2m~. A nonrelativistic reduction of Eq. (2) for
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Kallen-Sabry
CX Zcx a(Za )"'

TABLE III. Vacuum polarization, recoil, and screening corrections to the binding energy of antiprotonic lead {in eV).

Level Uhling Uhling Recoil
l j aZa (perturb. theory) 8 /2m~ Screening

10

10

10

10

11

11

12

12

13

13

9

9

8

8

10

10

11

11

12

12

19
2
17

2
17

2
15

2
21

2
19

2
23

2
21

2
25

2
23

2

6309
6349

6593

6647

4550
4572

3338

3350
2484

2491

6296

6328

6580

6622

4540

4558

3331

3341

2479

2484

44

44

47

47

32

31

23

24

17

18

—150
—150
—150
—152
—120
—120
—94
—94
—77
—77

47

47

55

54

63

63

82

82

105

105

the antiproton gives Eq. (5) without the quadratic
terms in I /m~. One can obtain sufficiently accu-
rate binding energies for all experimental needs by
solving the Schrodinger equation, including vacuum
polarization, and treating all other terms as pertur-
bations. Some results for the pp system, treating
vacuum polarization as a perturbation, have been
presented in Refs. 3 and 13. A program to calculate
the energy levels of light antiprotonic atoms is being

written. The corrections due to treating vacuum po-
larization exactly are expected to be of the order of a
few meV, comparable to the fine structure in the 3d
state and somewhat smaller than the expected had-
ronic effects for the 2p states. ' '
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