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The density-functional theory relates the ground-state properties of an X-electron system to a
universal functional of the charge density. In this paper we discuss a functional which avoids the
problems of the Hohenberg-Kohn theory. We show that this functional can be calculated exactly, at
least in principle. We present an upper bound for this functional, which is applied to the case X= 1

and to the jellium problem. This upper bound is exact for X= 1.

I. INTRODUCTION

The density-functional theory (DFT), which was first
formulated by Hohenberg and Kohn in 1964,' claims that
the ground-state properties of a many-electron system are
related to a unique functional of the electronic charge den-
sity. Within this theory the ground state for a given sys-
tem is obtained by a variational calculation, which mini-
mizes the total energy of the system by varying the charge
density. This approach to the many-body problem has
stimulated research in many branches of theoretical phys-
ics, such as atomic, molecular, and solid-state physics.

Very recently, however, Levy and Lieb have shown in-
dependently that the original formulation of the DFT by
Hohenberg and Kohn (HK) contains some very serious
problems. In particular, it is shown that the HK function-
al (i) does not exist for all charge densities, and (ii) does
not have the desired property of convexity which is gen-
erally assumed in practical applications. Levy and Lieb
propose some new functionals which have the desired
properties. Unfortunately, however, the new functionals
cannot be calculated directly. In this work we first
present an approximation to one of the new functionals.
In this approximation we obtain an upper bound for the
total energy of the X-electron system. The theory is then
applied to the case %=1 and to the interacting electron
gas. We further outline a general method which in princi-
ple allows an exact calculation of the density functional.

II. DENSITY FUNCTIONALS

A. Formulation of the problem

We search for the ground state of an interacting %-
electron system in an external potential. We have to solve
the Schrodinger equation

a Ie&=E Iq &,

where H =Ho+ V, with

2

) I

—)I
I+J

V= gu(r;) .

%' is a normalized and antisymmetric N-particle wave

function %(z,, . . . , z~), where z=(r,o) with space coor-
dinates r and spin coordinate o.. E is the lowest eigen-
value of the Hamiltonian H.

In the following we use "natural" units (e=1, m= —,,
A=1), i.e.,

The electronic charge density is defined by

p(r)=Ny f I
e(z, z2, . . . , Z~)

I

dr~. dr~; (l)

p(r) is a real, semidefinite positive function which is nor-
malized to X. For later purposes it is important to define
a convenient, physical set of functions p(r) on which we
can apply the variational principle. Following Lieb, we
define the set

0', f pdr=&]

where the Hilbert space H is defined with the inner prod-
uct

(f g)= f f'(r)g(r)dr+ f [7f(r)]*Vg(r)dr .

This somewhat unusual definition guarantees that the
kinetic energy exists. We emphasize that A~ has some im-
portant properties.

(i) A~ is a convex set, i.e., if p&,p2 EA&, and

p =Ap& + (1—X)p2, with 0 & A, ( 1, then p EAz.
(ii) If p&A~, then there exists at least one 4 which

yields p according to Eq. (l), i.e., %~p. We will see later
that there exists even an infinite number of 4's which
satisfy this condition.

(iii) There exists a p~A~, which does not come from a
ground state 4 of a Hamiltonian H =Ho+ V, where v

may be an arbitrary external potential. This is the prob-
lem of u representability [see, also, Ref. 2].

The DFT is based on the following theorem of HK: If +&
( P2) is a ground state for the external potential v& (vz),
and v&&v2 + const, then p&&p2. This shows that p(r) is a
parameter which can be used to characterize the system.
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B. Hohenberg™Kohn functional EHK(p)

Hohenberg and Kohn define the functional

FHK(p) = (4
~

(X+ U)
~
4},

where p comes from the ground state 4 of the Hamiltoni-
an H=Ho + V. More explicitly, for a given p(r), take the
unique potential u which is related to p by the
Hohenberg-Kohn theorem, search for the ground state 0'
of the Hamiltonian H, and calculate (4

~

(It + U)
~

'p }.
From this construction it is evident that the set of the

admitted densities p is restricted to

a~ = Ip~ p comes from a ground state),

i.e., p comes from a 0 which is a ground state for an arbi-
trary v. The above construction of FHK suffers from the
following defects.

(i) The set a~ is unknown, and a&C:A& and a~&A~.
In other words, if we choose a p from the well-defined set
Az [Eq. (2)], it is impossible to decide a priori whether it
is included in the set a~. This excludes a well-defined
variational calculation which is based on FHx(p). More-
over, a~ is not a convex set.

(ii) Lieb shows that the functional FHx is not convex.
Here, convexity of a functional F(p) means that if
p=Ap~ + (1—A, )p2, with 0 & A, & 1, then

F(p) &AF(pi)+(1 —A, )F(p2) .

The nonconvexity of the functional is not very convenient
for practical calculations.

(iii) As will be explicitly shown in what follows, for a
given p EA~, there exists an infinite number of functions
4 which yield p by Eq.(1).

C. Functional F(p)

E(u) =inf .F(p)+ f pu
~ pEp . ,

where g represents the "good set" and where F is one of
the functionals FHK or F discussed above, and good set
means a~ for FHK and A~ for F. Because of the bad
properties of FHK, it will be replaced in what follows by F.

We shall search upper bounds for F. Let us first discuss
the meaning of a ground-state —energy calculation based
on the approximated density functionals. If we denote the
approximate functional by F', and the exact one by F, we
have

F'(p) & F(p),

E(u) =inf F(p)+ f pu
~
p&A~ . ,

which is the exact energy, and

E'(u)=inf ~ F'(p)+ f pv
~
pEA~ . ,

which is the approximated energy, and

E'(u) )E(u) .

Proof. We have the following:

E'(v)=inf F'(p)+ f pu .

=F'(p )+ f p u)F(p )

+ f p v&inf F(p)+ f pu =E(v) .

Levy and Lieb propose a new functional F(p) which is
defined on the well-defined set A~.

For all pEA&,

F(p) =infI (4
~
Ho

~

4 } [ +~pI .

This definition is rather subtle and merits translation into
common language: For a given p, search all normalized
antisymmetric X-particle wave functions 4, such that
W~p. Then, calculate for all those +'s the numbers
(4

~
Ho

~

+). The smallest of these numbers gives F(p).
The difficulty with this definition is to find aII func-

tions + which correspond to a given p. It is rather obvi-
ous that

F(p)=F«(p) if p«~.
Thus F is an extension of FHK over the well-defined set
A~. However, F(p) is still a nonconvex functional.

Lieb has shown that one can define a functional over
A& which is convex. However, it appears that this func-
tional cannot be calculated in practice. In this paper, we
shall, therefore, restrict our discussion to F(p).

D. Calculation of the ground-state energy

For a given external potential v, the ground-state energy
is obtained from

III. UPPER BOUND FOR I'(p)

As already mentioned, the exact calculation of F
presents a serious difficulty, which is to find all 4 such
that W~p. It is not obvious how to find all these +'s,
and in practice we are, thus, restricted to a limited sub-
space. This implies that we will obtain an upper bound,
F '(p), of F(p)

A. Construction of determinants 4
such that %~p for spinless fermions

We construct a basis of one-electron functions p {r)
which depend on the density p(r). The X-particle wave
function 4 is then given by a determinant of the y 's. We
have the following theorem.

Theorem I. For all p(r) HA~, and if R( r )

=(R~(r), R2(r), R3(r)),
X

dx 'p(x ',y, z)
R &(r) =R](x,y, z) =2m

dx'p(x', y, z)

f' dy f" dx'p(x', y', z)
R2(r) =R2(y, z) =2m

dx'dy'p(x', y', z)
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R, (r) =R, (z)

j' dz' j" jdy'dx'p(x', y, z),

F '(p) =infI T(p)+ U(p) I,
T(p)= j (Vvp) dr+ —jp(r) g IV[k R(r)]} dr,

then the functions p" (r)=[p(r)/N]'~ e'"' form an
orthonormal basis, i.e.,

X l~" &&m"
I
=1,

with k =(k&,k2,k3), where the k; are signed integer num-
bers. The proof of this theorem is given in Appendix A
together with the following one.

Theorem 2. For all p( r) eW~, and if

4'(r, , . . . , r~)= det[y" (r))], k;~k,X!
for all i~j, then

X j I
0'(r~, . . . , rz)

I
dr2 . dr&=p(r) .

The above theorems generalize the construction of 4 given
by Harriman and Lieb. We note the following.

(i) k is generally not a "good" quantum number because
it is not associated to an operator which commutes with
H. Thus k does not, in general, contain any physical sig-
nificance.

(ii) For a finite volume V and p(r) =X/V=const, the
functions y ( r ) become plane waves V '~ e'

(iii) Some permutations are possible in the definition of
R, Eq. {3). (a) We may permute the components R, , 82,
and R3. This does not lead to any new set of functions be-
cause it is equivalent to a different choice of the k;. (b)
We may permute the order of integrations: For example,
in the definition of E.

&
we integrate over y instead of x, for

R2 over y and z, and for A3 over y, z and x. Thus we can
define R in six different ways.

(iv) The set I k } in the definition of 4 is any subset of
the set Z, where Z is the set of (positive and negative) in-
tegers. Even if we restrict ourself to the subset

[k}C. I
—(K —1), . . . , —1,0, 1, . . . , X —1}

which will be reasonable in most cases, the number of pos-
sible choices A; "explodes" with %. If we include the per-
mutations discussed under (iii), it is given by

X, =6 (2% —1)

One obtains X,(+=1)=6, ~,(~=2)=2106, X,(+=3)
=3813000. This example shows that even under the
above restriction the map 4'~p is not at all one-to-one.

(v) It is evident that the same construction of 4 can be
performed using other orthogonal coordinate systems. In
this way it is possible to take advantage of the symmetry
of the problem, e.g., we can use spherical coordinates for
an atom.

B. Upper bound for I' for spinless fermions

We now calculate ( 4
I Ho

I
4) with the + 's constructed

above. We obtain

U(p)= —, jdr jdr 'p p [1—p„([k},r, r ')],
2

((k) ~~I) ~ ik-I R(r}—R(r'}]

I k I

The infimum is performed over all possible sets I k }.

C. Choice of the phase of 4

We still may choose a phase of the function %. In fact,
if V~p, and if

4'=exp i +0(r~)

T(p)= j (V'V p) dr

jp(r) g [V(k R)]
I k I

2

g V(k.R) dr . (5)

This relation is proven in Appendix B.

13. Case %=1

As shown in Appendix C, we have for N= 1

+ '(p) =F(p) .

The proof is based on the fact that for one particle we can
construct all 4 such that %'~p. The approximation I' ' is
thus exact in the one-particle case. In other words, the
problem of self-interaction (see, e.g., Ref. 7) does not exist
in our approach.

E. Upper bound for I' for fermions with spin s =
2

The extension of the above construction of 0' to the spin
case is immediate. We define

ks
( /~)1/2 i( k ~ R }

where s is either up or down.

then + ~p, and 4 is still an antisymmetric N-particle
wave function. For a given %', the possible free choice of
phase thus yields an infinite number of new wave func-
tions. The only term in F(p) which is affected by the
phase is the kinetic energy. We thus have to investigate
whether we can lower the kinetic energy by a judicious
choice of 9(r). This is, in fact, the case. The lowest kinet-
ic energy is found for

10(r)= ——g {k.R) .
IkI
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The set y
' is still an orthonormal basis:

As before, 4 is given by the determinant

det[y"'(rj )] .
N!

The set [ k ] can be decomposed

[k] = [k]„,+ [k],.„„, [kI„„[kI,.„„CZ .

Similarly, X =X„„+%d,„„.E'(p) is constructed as be-
fore

E '(p) =-inf [ T(p)+ U(p) ],
T(p)= f (Vvp) dr

i.e., k is restricted to a Fermi sphere. We must remember
that, in general, k has no physical meaning. The justifica-
tion of the above choice becomes, however, evident in the
case of the jellium problem.

We now want to calculate E' in the thermodynamic
limit:

N —+ oo, V =L —+ oo, X/V =const .

In this case we can substitute, as usual,

I
k 1&IF

dk
(2~)

As we want to compare our results based on F ' with the
well-known results for the jellium problem, it is con-
venient to redefine k and R

2'77 ~ ~ 2'7Tk~k, kF~kF, R~R .
L ' L 2'

f p(r) g [V(k.R)]X

V(k.R)
Ikj

We obtain immediately from Eq. (6)

E'(p) = T(p)+ U(p),

T(p) = f ( V v p)'d r

f drp(r) f dk[V'(k R}]
(2~)'X

(9)

U( ) f d f d, P( )P( )

ir —r'i

+[I—E ([k]„p,[k)d,„„,r r')]

1
&x = ik ~ a

I k I„

+ ~ 2
el k cx

I " Idown

a =R(r ) —R(r ') .

Cx. Thermodynamic limit

Even if we restrict ourselves to the set [ k ] as proposed
in Eq. (4), the number of possible subsets I ki, . . . , kiv]
explodes with X. In certain cases a reasonable choice will
be given by

[kJ=[k(~k~ &IF],

F. Comparison with Hartree-Pock theory

As in the Hartree-Fock (HF) theory, our wave functions
4 which are used to define the upper bound F ' of F are
single determinants. However, it must be noted that in
our case all the single-particle functions have the same
modulus (p/X)'~, i.e., we are in a subspace of the HF
function space. Therefore, E'(p) (EHF(p), ~here EHF is
the HF energy obtained by a fully variational calculation.
Usually HF calculations start from the self-consistent HF
equations which yield a stationary solution of
& %H„~ H

~ %HF ) . It should be noted, however, that an in-
fimum (i.e., the lowest value) is not necessarily a station-
ary point (i.e., the first derivative is equal to 0). Therefore,
a priori the respective energies cannot be compared. ir —r'i

E (kFa), for spinless fermions

—,'E (kFa), for fermions with spin

(10)

a=
~

R(r) —R(r ')
~

I' (x)= cosx—3

X

slnx

U(p)= —, f dr f dr ' [1 e„(kz, r, r—')],

dk eI k.[ R( r ) —R( r ')]
(2m) X

The above expressions depend only on kF. The infimum
in the expression for E' has disappeared because we are
considering only one function which corresponds to the
choice of [k] in Eq. (7). The integrals over k can be cal-
culated analytically.

The functional E must be extensive. As the charge neu-
trality of the system is only guaranteed in the presence of
the external potential, the term U(p)/K, which contains
only the electronic contributions, diverges. This diver-
gence must be eliminated in the standard way by including
a neutralizing homogeneous background charge density in

p( r ). As shown in Appendix D we finally obtain

F'(p) =T(p}+U(p),
2

T(p)= f (Vvp) dr+ — f drp(r)[(VR, ) +(VR2}
5

+( V&3)'],



H. Application to the case of a periodic jellium

We shall now discuss the case of a periodic jellium in a
box of volume V =I. with a periodic charge density. In
this case the term f pv is constant and drops out of the

ground-state —energy calculation. Therefore, the
minimum of E (U) is given directly by the absolute
minimum of F(p). The periodic charge density is chosen
to be

p{r)=—[1—acos(2lx)][1 —acos{21y)][1—acos(2lz)], 0&a(1, 1 =mar/I. , m integer .
1V

We have already seen that for a=0 (i.e., p=%/V), + is given by a determinant of plane waves. For a=O, we must
therefore obtain the well-known result for the plane-waves jellium. For a=1, we have a cubic lattice with the lattice con-
stant I./m

p(r) =(8X/V)sin (lx)sin (ly)sin (Iz) .

We introduce the dimensionless parameter /=21/kF ——I/p, . The system can then be characterized by the three parame-
ters kF, g, and a.

As shown in Appendix E, we obtain for the ground-state energy in the thermodynamic limit

2
1

Sm
f(v 2g) +

3/2
f(v 3g)

8~
(12)

where f (K) is the Fourier transform of F~( )x/ x
~

.
The first two terms give the result for the plane-waves

jelliurn. The following term represents the kinetic-energy
correction which is always positive for 0 ~ cx ( 1. The last
terms represent the Coulomb-energy correction, which is
positive, because I/g —(I/8vr)f {g) is always positive.
This shows that the introduced inhomogeneity of the elec-
tronic charge increases the ground-state energy, i.e., we do
not observe any tendency towards the formation of a
Wigner lattice. It can be shown that this result is valid for
any periodic charge density and is not produced by our
particular choice of p(r), Eq. (11). This can be understood
if we remember that our map p~W accepts only deter-
rninantal 4 's and, thus, excludes any correlation effects.

IV. EXACT CALCULATION OF I'(p)

In our previous approximation of F, we started from a
single-particle basis y corresponding to the charge densi-
ty p. %'e then constructed antisymmetric X-particle func-
tions 4 by forming determinants. The set of all these X-
particle functions +, which is obtained by antisymmetriza-
tion of the product of the basis y, forms a complete
basis f in the N-particle space. We, thus, can develop any
X-particle function 4' within this basis. The only problem
left is to find the condition under which a given function
4 satisfies %~p. We have the following theorem.

Theorem 3. For all p( r ) E,A~, and with

):s(r) [ (r)/N]1/2ei(): R )s

a one-particle basis,

an X-particle basis, where

X([k,sI;)=N,
and K represents cardinality, and for

an X-particle wave function, where

g /i(, ; /'=1.

If for all i,j with i&j, the set [k,s I; differs from the set

[ k,sjj (a) by at least one spin, or (b) if all spins are equal,

by at least two k, then

The proof of this theorem is given in Appendix F.
This powerful theorem allows us to obtain all +'s which

satisfy %~p. It is thus, in principle, possible to calculate
the functional F(p) exactly. We obtain for F(p)

F(p) =inf[ T(p)+ U(p) I,
T(p)= f (Vv p) dr+ —f p(r) g ~

A, ; ~ g [V'(k R)] —— g V'(k R) dr,X
I k, sI, I k, s I,.

U(p)= —,
' f dr f dr 'P P [1 e„,([Ik,sI—;],r, r ')],
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e„,=g f1' f2

J

2

elk�'Q

I k, s =upi .
I k, s =downI

2
eik ~ a

—i( q,. ~ R + q,'. ~ R ' —q . ~ R —q '. ~ R ') —i( q; R '+ q,' R —q R —q R ')
~ A, (e l l J J
l J 5

l&J

R=R(r), R'=R(r '), a =R—R' . (13)

The sum g' runs over all i,j (i&j) for which the sets

f k, s }; and f k, s }1 differ by exactly two elements k, i.e.,
the elements (q;, s;), (q,', s ) in [k,s}; are replaced by

(qj, s;), (qi, s ) in I k, s }J. Note that the spin part is un-
changed. If we restrict ourselves to a finite basis set

we will obtain an upper bound for F(p). This
I k, sI,

upper bound can be successively improved by extension of-

the basis set.

V. CONCLUSIONS

In order to avoid the inherent difficulties of the HK
theory, Levy and Lieb have proposed a new functional
F(p). We have shown in this paper, that this functional
can be calculated in principle. Following our method it is
possible to approach F by an upper bound. The accuracy
can be pushed to any desired degree. In a first approxima-
tion to F we have shown that this functional allows to
treat the case %=1 exactly. We have further applied a
thermodynamic limit of F(p) to the jellium problem.
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BR &(x,y, z) 1=2m.p(r )
()x f dx'p(x', y, z)

BR2{y,z) = 2m dx'p(x', y, z)
By —oo

1

f dx' f dy'p(x', y', z)

BR,(y, z) =0,
Bx

BR3(z)

Bz

aR3(z)
Bx

f" j" dx'dy'p(x, y,z),

BR3{z)=0,
By

()R, (x,y, z) BR (y, z) M (z) (2
p(x,y, z) .

The Jacobian of the transformation R~r is

respectively. The above relations give a one-to-one map
between (x,y,z) ER and (R)+z+3)E [0,2~] . Points at
infinity in R correspond to points on the surface of the
cube [0,2m. ] . The latter property is important for the lim-
its of integration. We obtain

APPENDIX A: CONSTRUCTION OF THE BASIS
y" (r)

We define

R( r ) = (R ) (x,y, z), R z(y, z), R3(z) )

with Xf dx'p(x', y, z)
R, (x,y,z)=2&, 0&R, &2w,

dx'p(x', y, z)

f' dy j™dx p(x,y, z)
R2(y, z) = 2m. j" j" dxdyp(x, y,z)

'

0&R2 &2~,

D(R),R2,R3)
D(x,y, z)

We define

BR i BR~ BR]
Bx By Bz

Bx By Bz

BR BR BR

Bx By Bz

BR i BR2 BR3 (2 ) p(r) .=
Bx By Bz

=

R3(z) = f dz' f j dx'dy'p(x', y', z'),

0&R3 &2a,

1/2

k( )
p(r) ik R k~Z3

R&, R2, and R3 increase monotonously with x, y, and z,
l

Orthogonality of the basis is shown as follows:

")=f j f dxdydz e""

1 277 2m' 2'
, f f f dR dR dR e"" ""R=s-„-„,.
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Completeness of the basis is shown as follows. We use the completeness of the plane-wave basis ( q I,

q(r)= e'q'',
V

g lv "&&a"
I

= 2 X lq&&qlm" &&v" iq'&&q'I
q, q k

1/2

ik R

6

y(@leak)(~]

I

q*) y f f "" "
[ (-, ) (r )]]i&eiq ] ~ '. q'-~]eik ]a —R']

k k

—+t 1/2

f d3 d3 ~ [P( )P( )l '
i(q ' r ' —q r]V5(R

NV

d'r ' ' e ' '" d'r'e'q '[p('r ')]' 5(R(r) —R(r ')) .1
~
~ r ) ~~

I
e ~ ~ ~ I ~

1 e
I ~ I ~

~ I

We have

f d rg(r)5( f(r)}=gg(rp)
(Df/Dr)

I

f(rp) =0,

where D f/Dr is the Jacobian. In our case, f ( r ) =R(r ) —R{r '),

R(r) R(r—')=0 ~ r=r '

because R is a regular and monotonously increasing function. This gives us

( ) q1/2f d r P 'i e ' q ' ' f d r'e' q ' [p(r ')]'i 5(R(r) —R(r '))

1/2 iq'. r
d3 [p(r)] —i q r[ ( )]]/Q

(2~)3
N

g l(p" &&a"
I
= g 5(q' —q) I

q&&q'I = X I
q&&q I

=I
q, q

(~i ~)
= fd'r, =5(q ' —q)

(2~)3

Proof of theorem 2: Construction of P. We define g —= (I/v ¹)det[P ( r )]. If g is a determinant, p'( r ) is given by

p'( r ) = g I
iI(

"
( r )

I

' =P g l =p( r ) .
k k

Thus P~p(r).

We define

det{y ) .
N!

APPENDIX 8: CHOICE OF THE PHASE OF f
We start with

T(p)= f (VMp) d r

+—f p(r) g I V[k R+0(r)]l~d3r .
N

Ikj
We define

g'=exp i g g(r )

1= ~det
1/2

~i( k ~ R +8)

f p(r) g [V(k R+9)] d r .
I kj

T{p)becomes extremal for stationary G(g}:

5G(9)=—f p(r) g 2V(k'R+9)V58d3r

The phase changes only the kinetic energy: =0.
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The solution is g - V(k R+ 0)=0:Ikj

VO(r)= ——g V(k'R) .
1V

It corresponds to a minimum of the kinetic energy given
by Eq. (5).

APPENDIX C: PROOF THAT I' '(p) =F(p)
FOR %= 1

F '(p) is calculated as follows:

F'(p) =inf[ T(p)+ U(p)j

=inf. f (Vvp) d r+ f p(r)[V(k R)] d r

f f p(r)p(r ')

/

r —r'/

)&(I—~e'"' R
~

)d rd p'

The infimum is obtained for k = (0,0,0):

F'(p)= f (Vv p) d'r .

F(p) is calculated as follows. For %=1, we can construct
all f such that @~p:

g= [p( r )]'~ e'@ ' ', 0( r ) arbitrary .

Thus F(p) can be calculated exactly:

Vg=(V v p+iv pVO)e'

&Vl~o ie&=&alp'IO&= f (V~p)'d'r+ f p(V ~)'d"
F=inf [&010010& I 0 p]

=inf f (Vv p) d r+ f p(Vg} d

= f (Vvp)dr.

It thus follows that F '(p) =F(p).

APPENDIX D: THE THERMODYNAMIC LIMIT

In the following we treat the case of fermions with spins
We start from Eq. (6). We make the following as-

sumptions:

X=1V=—,
T 2

N=N=—
2

[k]~=[k}~.

The latter defines a Fermi sphere, such that

kFX=2K —= z.
I k I I k I1

3m-

Changing the variables k,kF,R according to Eq. (8), we
obtain

F '(p) = T(p)+ U(p),

T(p}= f (Vvp) d r

+ f d3rp(r) f I V[k R(r)]] d k,
(2~) X

U(p)=~ f f d rd r'p p (1—e„),
[r —r'i

2 22V d3k ik ~ a

a=R(r) —R(r') .

Kinetic term. We start with

R=(R),R2,R3} k —(kfyk2 k3),

[V(k R)] =k, (VR, } +kg(VR2)

+(k, )'( VR, P+
where the ellipsis represents cross terms. The cross terms
vanish after the integration by symmetry. With

f d k k, =(4m/15)kF we obtain
[kI&kF

f d'rp(r) f [V'(k R)] d k
(2m) X

= —,
'

kF f d r p(r)[(VR~) +(V'R2) +(VR3) ] .

Exchange term. %'ith

4~ sin(kFa)f d ke'"' = — kFcos(kFa)—
CX CX

we obtain

e„=—,'F (kFa)

3 smxF(x)= cosx-
x x

Thus we obtain Eq. (10).

APPENDIX E: THE PERIODIC JELLIUM

From Eq. (3) we obtain, together with Eq. (11) and Eq. (8),

R ~
——x ——sin(2lx), R2 ——y ——sin(2ly), R3 ——z ——sin(2lz) .CX CX a

2l ' 2l ' 2l

Kinetic energy We calculate .the terms of Eq. (10):
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Bp

)2 BX

f (V'vp)2d3r= f d r= —, f4p p

(2la)2 f dx f [1—a cos(2ly)]dy
31' ~ sin (2lx) 2

23 X (2la) 1 —cos2x d 3 &k2g2[1 (1 2)(/2]
4 L 2l o 1 —czcosx

P 3 k2+k2[ 9 a2+ 3 $2[1 (1 a2)1/2]j

3 2
', kF f d—r [1—ac—os(2lx)] [1—acos(2ly)][1 —acos(2lz)]= ', kFN —1+

= —', k +k [ —,', a + —,'g [1—(1 —a )'/ ]].
Coulomb energy. We have the following.
(a) The exchange integral

F-„= ~ f fd rd r' F2(kFa),

a=
I
R(r) —R(r ')

I

r —r ' ——(sin(2lx ) —sin(2lx '), sin(2ly) —sin(2ly'), sin(2lz) —sin(2lz') )
2I

We approximate a by a=
I

r —r
I

. This approximation is valid if m [Eq. (11)] is large, i.e., if the number of periods is
sufficiently large in the volume V=L .
As p( r ) is periodic, the exchange integral can be calculated by Fourier expansion:

3
m —1

p(r)= g p(Rnid+ g) Rnlp= (n l p) g E 0
n I p=0 m m

the latter being one period. We then obtain

n, l,p n', I',p' kF
I
R.i, Rn i p +—g

n, l,p n', I',p'
f f d'g dg' (pRg~+g)p(R„i~+(')

X
1 d k F2(x)

kF (2~)'
e

—1 k [kF(R I
—R .I + g' —g' )]np n p

i k .[kr( g ——g )] ~ ~ i k.[kr( R „ip
—R „p~)], .

n, l,p n', I',p'
= f d k 2 3 f f d gd'g'p(g)p(g') e

f d3g (g) —iK't f d3gi (g i) iK f' ( )

4 P
fxl

2 X lp(K) I'f(K)
4kF

+2
f(K) f + (x) i K xd3x

K is the reciprocal-lattice vector in units of kF.
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K„&~= (n, l,p) .I.kF
We have still to calculate f(K) and p(K). p(K) can be calculated immediately from Eq. (11):

~

K
~

=0, p(
~

K
)
=0)=—(one term);

V

21
~

K
~

= =g, p( ~

K
~

=g)= —a—(three terms);
kF V

21
~

K
~

=W2 =V 2(, p(V 2(}=a —(three terms);
kF V
21

~

K
~

=v3 =v 3g, p(~3$)= —a —(one term) .
kF V

For K=O we have

f(K=0)=9',
2

V X 3E„= —9m=XkF
4k,' V 4~

This is exactly the well-known result for the exchange term for the plane-waves jellium. For K&0, we have

V 2VkF 3

~
p(K)

~
f(K)=, af(g)+a'f(v 2$)+ f(v 3g)

4kF K &0 4~ 3

E„ 3 kF A=kF + af(g)+a'f(v2$)+ f(v 3$)4~ 3

(b) Classical Coulomb term. The calculation is very similar to that of the exchange integral. We have only to replace

f(K) by the Fourier transform of 1/
~

x ~, which is 4m/
~

K
~

2 I
p(K}

I

'

For K=O we obtain the classical Coulomb interaction term of the plane-waves jellium. This term is compensated by the

contribution of the homogeneous background, which guarantees the charge neutrality. For K&0 we obtain

UD ——2X a u a
kF—1+—+

2 9

Total energy. Summing up, we find the total energy of the periodic jellium, Eq. (12).

APPENDIX F: PROOF OF THEOREM 3.
CONSTRUCTION OF ALL 4 SUCH THAT tg~p

We have

l l

(a) follows from the spin orthogonality. The necessity of (b) is shown in the following way: If I k, s j; differs from

I k,s)i by only one k element (q; and qj },

p(r ) =&g J d'r2

I k,sI,

~Ai
~

~y"'~ + gk;Ajy '(P ' )*

It is obvious that the second term is zero for all r, if and only if only one of the coefficients A,; differs from zero.
The proof of sufficiency is trivial.
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