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Static dipole moment of an atom or a centrosymmetric molecule near a perfect metallic surface
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The expression for the dipole moment of an atom or a centrosymmetric molecule in the vicinity of
a perfect metallic surface is given at any distance. The near-zone (London) and the far-zone
(Casimir) limits of these results are also considered.

I. INTRODUCTION

In recent years, there has been considerable interest con-
cerning the behavior of atoms and molecules near sur-
faces. It is well known that a first consequence of the in-
teraction of an atom (or of a molecule) with a surface is
the appearance of an attractive potential energy between
the two partners. Although it has been considerably less
studied, the electric dispersive polarization of the initially
symmetric atom (or of the considered molecule) is another
consequence quite as important as the first.

In the case of turbo spherically symmetric systems, the
existence of such a static dipole moment was previously
pointed out by Buckingham' and then calculated by Byers
Brown and Whisnant. and by Hunt. Recently Galatry
and Gharby gave a more physical form to these earlier re-
sults by expressing them in terms of dynamical polariza-
bilities and hyperpolarizabilities of the two systems. In a
more recent paper Craig and Thirunamachandran ob-
tained these same results by using quantum electrodynam-
ics and one of us generalized all these calculations which
were only performed in the London limit (long-range po-
larization) by giving a general theory of the dipole mo-
ment of a pair of nonidentical systems at any distance.

All these results point to similar effects when an atom
or a molecujie is placed near a surface. In a recent paper,
Antoniewicz considered this case by studying the interac-
tion between an adatom and its image; Linder and
Kromhout and Galatry and Girard also presented a
theory of the long-range polarization of an adatom near a
solid surface. However, these papers only consider the
limit case of adatoms; we then consider in this work the
general problem of the appearance of a static dipole mo-
ment in the coupled system whatever the distance may be
between the atom (or the molecule) and the surface. How-
ever, we restrict our study to atoms or centrosymmetric
molecules near a perfect metallic surface

In vacuum, calculations involving atoms or molecules
interacting with radiation are generally simpler with the
multipolar Hamiltonian than with the minimal coupling
one. ' Although this point is still a matter of controver-

sy, " the connection between these two Hamiltonians can
be formed by using a unitary transformation. ' ' ' Such
a Power-Zienau transformation can be used near a surface
and, as far as we know, Babiker and Barton' were the
first to employ it near a plasma surface (in calculations of
frequency shifts). However, the formal proof of the
equivalence of the two Hamiltonians in a cavity or near a
metallic surface was just recently given by Power and
Thirunamachandran. ' In this work, we use the multipo-
lar Hamiltonian. Instantaneous Coulombic interactions
consequently do not appear explicitly and we only consid-
er retarded transverse waves. To perform calculations, we
have thus to define the normal modes of the electromag-
netic field near the surface and then to introduce the
Feynman's propagator of such modes. The definition of
this propagator (Sec. II) constitutes the first result of this
paper.

To calculate the dipole moment p of the coupled sys-
tem, we proceed as Craig and Thirunamachandran and
we suppose that an external static electric field E is ap-
plied. If the external field is uniform, the energy shift AE
is linear in the field and equal to —p, .E. Thus, from the
calculation of the energy shift, we can deduce the desired
moment p. All these calculations are presented in Sec. III
for centrosymmetric molecules. We also give their limit
form in the near zone (London) and in the far zone
(Casimir) limits. In Sec. IV we consider the more particu-
lar case of a spherically symmetric system (atom).

II. PRESENTATION OF OUR FORMALISM

A. Electromagnetic modes and quantization
of the electromagnetic field near the surface

The electromagnetic field in a half space z~0 bounded
by a perfect metallic mirror (z=O) can be expressed as the
sum of an incident and a reflected isuperscript Rl plane
wave. As presented in Ref. 17 and 18 such a superposi-
tion defines the elementary mode of the field in the half
space. Each mode can be characterized by the wave vec-
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tor of its incident part k = (k ~, k2, k3 & 0) and by its polar-
ization Z(s) [s= 1 for a transverse electric mode (TE) and
s=2 for a transverse magnetic mode (TM)]. We can thus
write

8'(k, s, r)= [E(s)e'"''+E (s)e'" '']

(the scale factor I/v 2 is a normalization factor). The
wave vectors k and k" of these two components are de-
fined by

l
k

l
=

l
k

l
=co/c,

P R
k„(y)——k „(y), k, = —k,

and their polarizations c(s) and c "(s) must verify

e "(1)=—Z(l), E (2)=[E(1)&Ck ]/
l
k

l

(2)

(3)

It can be shown' that Eq. (1) forms a complete basis in
the space of the field states. By combining all possible
modes with arbitrary complex amplitude u(k, s) we can
thus form a representation of any arbitrary electric (or
magnetic) field'

1/2

E(r, t) = f„d k g(2~)3/2 k &0 [u(k, s)S'(k, s, r)e ' '+c.c.] . (4)

By expanding the electromagnetic field in terms of these
doublet modes, the energy and the impulsion parallel to
the mirror is expressible as the sum of contributions from
independent harmonic oscillators, one for each mode. The
situation is therefore exactly the same as for the free field
in vacuum and it is consequently straightforward to quan-
tify the field in the presence of the mirror by using these
modes: The complex amplitudes u (k, s) and u'(k, s) are
replaced by Hilbert space operators u(k, s) and u (k,s)
which can be given the usual interpretation of annihilation
and creation operators for quantum modes.

This quantization is quite similar to the one introduced
earlier by Carniglia and Mandel' in the case of evanescent
waves near a dielectric. The importance of the formalism
of doublet modes is that it permits the performance of cal-
culations which automatically take into account the com-
binatorial aspects of the incident and reflected parts of the
field arising from the presence of the interface. In short,
the interface being included in the definition of the elec-

I

1/2

tromagnetic field modes, we may calculate all the possible
interactions between matter and light near the surface, ex-
actly as we do in a free field in vacuum. (Some examples
of the use of these modes are given in Refs. 20—23; the
first reference deals with the Cherenkov effect, the second
with absorption or emission of evanescent waves and oth-
ers with Raman effect near a dielectric. ) In the present
case, we can then introduce the Feynman's propagator of
the electromagnetic mode near the mirror exactly as we do
in a free field.

B. The Feynman's propagator of the mode

To calculate the Feynman propagator of the mode let us
successively consider the two processes illustrated in Figs.
1(a) and 1(b). In 1(a), a mode (k,s) is emitted at time r]
by atom A and absorbed at time ~2 & ~& by B.

Writing the dipolar emission by A as

(b, ks
l [ D„E(R„)]

l
a, o—) =

iA (2~)3' g (b
l
r~

l
a ) @' ', (k,s, R„)e'

and using a similar expression for the absorption by B, the total amplitude corresponding to 1(a) can be written

2

e g (b
l
rz;

l
a) (d

l rtiz lc) f„d k g. 8'*;(k,s, R~)$'j.(k,s,.Rii)e
~A' (2~) eo

(6)

The propagator of the doublet mode between the two space-time points RA, ~& and RB,~2 corresponds to the integral of
Eq. (6). Using Eqs. (21)—(27) of Ref. 18 this propagator can also be written (co =c

l
k

l
and r2 & r] )

f„d k g 8'*;(k,s, R&)8'j(k, s, Rs)e(0 (2 )3 1 & & A J s & B

In the above expression

g;= —1 for i =1,2

g; =+1 for i =3

] f d 3k Pleo —Ills( TP —t] )

(2~) eo

i j
[

ik ]R]]—R&) ik. R(]]R&)

and RA corresponds to the position vector of the image atom A, that is to say, taking the origin of the reference frame on
the mirror
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Rz =(x,y,z), Rz =(x,y, —z) . (9)

The expression corresponding to Fig. 1(b) is quite similar to Eq. (7) after changing the sign of co(~2 —r~), k (R~ —Rz ),

and k (Rz —R~ ). Then with the use of the identity

CCkP(72 Tl )

2IkI lim dko2im. ~ o+ —~ ko —
I
k

I
'+is

—ic
~

k
~

(w2 —~))
e 'T2) V)

+Ie~ k )(~,—~, )
e &2 «i

and 1ntegrating on ko, it is Possible to write the two results corresPonding to 1(a) and 1(b) by the same exPression:

Dgj. (Rg&& Ra&2) = —
q f dkoe ' '

[gji~( I ko I R)+r)ig J'(
I
ko

I2 (2~} ep

with

R=Rs —Rg, R=Rs —Rg, R =
I
Rs —Rg I, R:—

I
Rs —Rg

I

This expression is the Feynman s propagator of the mode. As for the free field in vacuum,

(12)

g J( I
ko

I
R) =& '

I ko
I

'h, (
I ko I,R),

(13)
3RsR

R
h;, (

I
ko

I
R)= 5ij-

Iko IR
6;J—

R;RJ 1+
R

I
ko I'R '

L

In our calculations, we shall need the first derivative of g;~( I
ko I,R) with respect to the space coordinate. We give

here its expression:

a', (
I
ko I,R )=e '

I ko I 'nkhk, (
I
ko I,R ),

dXk

~k'j( Iko I
R)= R;RJ

R

IkoI R

3Rk
5;~. —

R

6,J-
IkoIR R

] 2Rk

Ik I2R2 R

5R;Rq R;5p,+3
R

3R;RJ R;5jk +Rq 5;k+
R R

+Rq6;k

R

1+
Ik IR

3Rk
5;~. —

R

5RI'RJ' Rj 6jk +Rj 5~k+3
R R

(14)

It must be realized that, when the derivative is taken with
respect to x, we obtain, because of (9), (8), and (12),

III. DIPOLE MOMENT OF THE COUPLED SYSTEM
"CENTROSYMMETRIC MOLECULE-SURFACE"

gag( I
ko

I

R)='gi
~ gjk( Iko I

R) .
~&) l

The dipole moment p of the system can be obtained by
derivation of the interaction energy bE when an external
static field E is applied,

aaEAE = —p.E+, p; =—
aE,

(16)

A A

FIG. 1. Graphs corresponding to a virtual photon exchange
between two systems 2 and B. (a) Virtual photon emitted by A is
absorbed by B; (b) virtual photon is emitted by B and absorbed
by A. Near a surface, the wavy line represents a virtual mode of
the electromagnetic field. Feynman's propagator of the mode is
obtained by adding these two cases.

Our first step to calculate p is therefore to find the R
dependent part of AE. In the case when the system is an
atom or a molecule with a center of inversion, the parity
selection rules show that hE(R) can be obtained in the
lowest order from graphs in which appear [Figs. 2(a)—2(f)]
two dipole vertices (0 ) and one quadrupole vertex ( ) (in
this figure, the external horizontal line represents the in-
teraction with the external static field and the wavy lines
represents a virtual mode of the field).

As explained above, we have pointed out that quantiza-
tion of the electromagnetic field near the surface permits
us to study interactions between matter and light near the
mirror exactly as we do in a free field in vacuum. There-
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EJ.

Ep

(a)

Ep

EF

(b) (c) vertices,

—E'(~,—~, )/m+ oolim, dE',
2im g~o+ —~ E +i g —E„

—iE"(r3 ~ 2) /h
1 . +~e

lim „dE",
2im. q o+ —~ E"+i g —E,

(18)

3

&f I r~i
I
s, m "&(»m"

I rAk I
r m'&

2 iA

x(rm Ir~r~ If&~

(e)

FIG. 2. Graphs corresponding to the energy shift of a spheri-
cally symmetric or of a centrosymmetric system near the metal-
lic surface, in the presence of an external static electric field. 0
and indicate a dipolar and a quadrupolar interaction, respec-
tively; wavy line corresponds to a virtual mode of the elec-
tromagnetic field near the surface.

—IEfr) /A IEfT3/fi
e e (17)

internal atomic terms,

fore, in such a description the attractive potential energy
between the atom and the mirror is given by Fig. 3 which
usually represents the self-energy of the system, and which
contains, in the present case, the interaction energy with
the mirror in addition to the usual self-energy terms. Us-
ing Eq. (11) the identification is immediate: The first
term in (11) leads to the self-energy which diverges as ex-
pected and consequently cannot be calculated by this
method; the second term corresponds to the R-dependent
part of hE and can thus be interpreted as the interaction
potential between the atom and the mirror.

In order to calculate AE we have to add the contribu-
tions of all these diagrams. To be clearer we only present
calculations for the first two [2(a) and 2(b)] and we use no-
tations presented in Fig. 2: states (r,s) are the virtual
states of the atom (or of the centrosymmetric molecule).
Letters i,j,k, l stand for Cartesian components of quadru-
pole and dipole moments. The energy of the initial and of
the final states is Ef.

To get the contribution of Fig. 1(a) to bE we have to
consider external atomic lines,

E (20)

We do not delve into justifications of these expressions
since it is clearly set forth in all electrodynamic books or
papers.

The contributions of the process of Fig. 2(a) to AE(R)
is then obtained by taking the product of Eqs. (17)—(19),
(11), and (20) and by integrating on time ~~, ~2, ~3, energy
E',E",Acko, and summing on energy levels r,s, magnetic
quantum numbers m ', m ", and Cartesian coordinates
i,j,k, l. Integrations on ~i, ~2, ~3 give

(2~) 5 — — 5 +ck-
fi

EI EI I

~5 +ckp— (21)

which expresses the energy conservation for all the lines
joining at each vertex.

Making use of the above result (21) integration on E'
and E"becomes straightforward: using (18) in which only
the denominators remain, noting

Efs Ef Es ~ Efr Ef Er

and using
2

(22)

Ef E' -- A'5 (Ef—E'),2' (23)

the total contribution of Fig. 2(a) to hE can be written

an internal photonic term which reduces to the second
part of Eq. (11) [since the first term does not depend on R
(R=0) and represents the self-energy of the atom], and the
external static electric field,

(~E).= &40 I U140 & T
=—

I

fs srgrf

16vr~e ~ - Bx; —~ (Ef„+iri)(Ef, Sicko+i g)—
(24)

In the above equation we note pi "=e(n
I
ri

I

m ) the components of the dipole moment operator and

gki"=e (n
I
rkri

I
m ) the quadrupole ones. With the use of its parity properties Eq. (24) can be written

X g Ei PVk&f
0 i j,k I rs m', m

+ OO 1 1 1 F
dko + gjk(ko. & )

Bx; — Ef, +ig Ef, —tick +ig Ef, +Kick +ig
(25)
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Integration being performed in the interval [0, + oo),
I
ko

I

can be replaced by ko ingjk(
I
ko I,R ).

To calculate the contribution of Fig. 2(b) we proceed, of course, in the same way. However, we have to point out two
appreciable changes: on the one hand, the mode propagator is now to be written DkJ. Then with the use of Eq. (11) the
R-dependent part of AE will now be given by gkgkj instead of gjgjk. On the other hand, we must not lose sight of the
fact that the quadrupolar interaction acts no more at the point (x,y, —z) but at the point (x,y, z). Taking these two re-
marks into account, using Eq. {15)to calculate the derivative of gjk with respect to (x,y,z), Eq. (13) to be convinced that
gJk

——gkJ, and Eq. (8) to see that qk ——1, we can write

Qkgkj Ii
~ Ikgkj

a Bxi.

8
9l 9j Qk 9jgjkBx. (26)

This allows us to write the contribution {AE)b of the process of Fig. 2(b) to hE as

(~E)b =
2 g g g EIP! +ijPk li 9j 1k g JD dkO16' cP ~ k I ! ii xp Efz + l'Q Ef'p. — oo+ 1 x/

+ E g k . 7jgjk( I 0Ef, +Rcko+ig

(27)

In a similar way, the contribution of 2(c) can be written as

(hE), = — Q g g E(PIk'P!'H~jI I dkP
16m. eo; J k g, , ~ ~- ~~; (Ef, —Acko+ig)(Ef, —Wko+ig)

(28)+
(Ef +Aek o +i g )(Ef + tick o + 1 g )

njg, k( I ko
I

~ )

Because of Eq. (26}, (hE)q is given by (28) after changing qjgjk into g~yjgk(gjgjk), (AE), is given by (27) after chang-
ing rj; rjj rjk (rjjg jk) into gjgjk, and (AE)I is given by (25) with g; g; rjk (rjjgjk ) at the Place of

hajj gjk (Fig. 2).
hE is obtained by summing all these contributions. To perform integration on ko in AE, we can note by looking at

Eqs. (24}—(26) that the integrand has poles at Sicko =+(E&,+ig) and Sicko =+(EI,+i q), that is to say, under the posi-
tive part of the real axis and above its negative part. We may thus consider the contour presented in Fig. 4. with the use
of

E E —Wk +E

+ @ijP!Pk +

fsgsr pf 1 1 11JPk (29)

FIG. 3. Graph corresponding to the energy shift: In a free
field, this graph only represents the self-energy of the system.
Because the Feynman's propagator of the mode contains two
terms, this diagram contains in the present case the interaction
energy with the mirror in addition to the usual self-energy term.

FICr. 4. Integration path in the complex plane. Crosses are
the poles of the integrand.
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the dynamical hyperpolarizability of the system, ' and noting ko ——iu, ~R becomes

bE= g du e " u rijh Jk(iu, R)EI(1+ri;glrik)X~k, J(0, —iu) .
2m,.jkI ~x

The static dipole moment of the coupled system is then obtained by using Eq. (16):

Ac OO R»p(= — g du e " u rijrihjk(iu, R)E((l+q;gjgk)Xg„q(0, —iu) .

(30)

(31)

These two above results are quite general. We want to give now their expression in the near-zone (London) and in the
far-zone (Casimir) limits.

A. Near-zone limit

b E= g E(ri; rij
Ac 3

i,j,k, l

Using (29) and

Denoting EI as the characteristic energy of transitions in the coupled system, the near-zone limit is usually defined by
the condition kIR «1. In this case, we can thus take e "~—1 and only consider in (13) or (14) the last terms which vary
as 1/R and 1/R, respectively. Equation (30) can thus be expressed as follows:

R;5jk+R/5k; +Rk5~J 5R;RJRk
(1+g;g gk) du XIkj(0, —iu) . (32)

R R

dx 7T

O
(33)

we obtain

3 1 R;5p, +RJ5k; +Rk51
EIri;ri (I+r);ri rik)

16mep R 4,
5RiR jRk

R

@ij Pkij P Pf +igPk'
+

Ef,
(34)

Because of the definitions Ef, ——Ef —E„&0and Ef, —Ef —E, &0, we easily see that AE is negative and consequently
corresponds to an attractive potential between the atom (or centrosymmetric molecule) and the surface. pl is easily de-
duced from (34) by using (16); its varies as 1/R

B. Far-zone limit

This zone is defined by kIR &&1. Because of the quickly decreasing factor exp( —uR) when u is greater than some
1/R, the integrand of (30) quickly decreases outside the interval 0 less than u less than some 1/R. In this interval, P is
practically constant: Looking in fact at (29) we see that when u «kr, bucko can be neglected with regard to Ef, or Ef, .
The corresponding expression of AE in the far-zone limit may thus be obtained by taking u=0 in the atomic term.
Therefore, it is clear that we have

Ac OObE= g ri E&(l+g;r)JT)k)X~k;~(0, 0) du e " u h~&k(iu, R) . (35)

(36)

(37)

we obtain

Integration on u can be performed as follows: Using (14), we get an expression which can easily be written in the form

J du e ""(a+Pu+yu +5u') .

Then taking x =uR and using

I„=J dxx"e "=nI„~ n!——

4 AcbE= g vl;vl)EI(1+el(vljvlk)Xg„j(0, 0)
i,j,k, l

In the far-zone limit the shift AE varies as 1/R
obtained by using (16). It is clear it varies as 1/R

2Ri ~jk +RJ'~ki +Rk5&j 6RiRj Rk

R R
(38)

The expression of the static dipole moment of the coupled system is

IV. CASE OF TWO SPHERICAL SYSTEMS

If the species is spherically symmetric the polarizability tensor is isotropic and, summations on magnetic quantum
numbers lead to

X mrs(0, —co)=X (0, —co)[ —,'(5 Pgg+5 s5pr) ——,'5 p5rs] . (39)
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It must be noted that according to Refs. 27 and 28, we have

X (0, —co) =—„X tt p(0, —co), (40)

where the convention in which a repeated greek subscript denotes a summation over all three Cartesian components has
been used.

Equation (30) can be written

bE= g f du e " u (1+r)J)E,X (0, iu)[—,'r1;r)J—(h,j;+hj.,;)—,'h;;—1] .
E&J

Noting that h,jk ——h;kz and using Eq. (8), (42) reduces to

3~ ~ „g 4 . 1 5 12 125E= — E, due "up {0,—iu) - + + +
2m' uR u'R ' u'W ' u'Z '

(41)

(42)

The dipole moment is easily obtained by using (42) and (16).

A. Near-zone limit

36Ac EbE= — f du g (0, —tu)
2m g4 {43)

integration can be performed as in Sec. III A. We get [ac-
cording to (12) and (9), R =2z]

s sr rf fs r rf
hE=— 9 Ez xxPxPx Px ~xxPx+

4tr&p 16z4 „, Ef, Ef,

In this zone, we may only take into account the last
term in (43) and write exp( —uR ) -1. We thus obtain

3A, E,
(0,0)

2m

X f dxe "(x +5x +12x+12) .

Using then (37) we obtain (R =2z)

4E = —
5

X (0,0)E,
15 Ac

8m. z

p =pu= g (0 0)u
15 Ac

8m. z

(46)

(47)

(48)

and (noting u a unitary vector in the z direction)

efs sr rf frosr rf9 1 xxPx Px Px xxPxp=p, u=+
4 + u

4m' 16z „Ef, Ef,

or

15' up=
32& E'p z

~s sr rf ~s sr rf fs~r rf~~I ~I x +~~PxPx +Px ~xxPx

Eys Efr

(49)

We note that, because of the definition
Ef, ——Ef—E, &0, the shift hE is negative and thus corre-
sponds to an attractive potential between the atom and the
surface, and the dipole moment is directed in the positive
direction of the z axis.

B. Far-zone limit

As explained above, the atomic term in this case has no
time to evaluate and we may approximate (30) and (31) by
considering that g(0, iu ) always keeps its initial value
X(0,0). Calculations are then similar to calculations
presented in Sec. III 8:

As in the near zone, the shift AE (negative) corresponds to
an attractive potential between the atom and the surface
and the dipole moment (positive) is directed in the positive
direction of the z axis.

V. CONCLUSION

The interaction of an atom or of a molecule with the
electromagnetic field near a surface gives rise to an elec-
tric polarization of the system. In the long-range approxi-
mation (near-zone limit) the dipole moment varies as z
in the very-long-range approximation (far-zone limit) be-
cause of retardation effects, it only varies as z . In all
cases, it is obviously directed in the direction perpendicu-
lar to the surface.
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