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A generalized Euler transformation (GET) is introduced which provides a powerful alterna-

tive method of accurately summing strongly divergent Rayleigh-Schrtidinger (RS) perturbation
series when other summability methods fail or are difficult to apply. The GET is simple to im-

plement and, unlike a number of other summation procedures, requires no a priori knowledge
of the analytic properties of the function underlying the RS series. Application of the GET to
the difficult problem of the RS weak-field ground-state eigenvalue series of the hydrogen atom
in a magnetic field (quadratic Zeeman effect) yields sums of good accuracy over a very wide

range of field strengths up to the most intense fields of 10'" G. The GET results are compared
with those obtained by other summing methods.

The work of Bender and Wu' and of Simon' on the
anharmonic oscillator inaugurated an era of intense
interest in large-order perturbation theory; several re-
cent reviews' of these developments are available.
In this context, very high-order Rayleigh-Schrodinger
(RS) perturbation series have been obtained" 6 for
the eigenvalues of a number of simple one-particle
systems; these series are strongly divergent, at best
asymptotic. Further, in the case of the widely em-
ployed RS 1/Z expansions of %-electron atomic
isoelectronic sequences, which are known to be con-
vergent, the radii of convergence have been shown"
to be quite small. Since one anticipates that RS
series with poor convergence properties will prove to
be the rule rather than the exception, summability
procedures are of utmost importance. Several power-
ful summation techniques exist which have been suc-
cessfully applied ' '8' to some of these divergent
series, often with results of phenomenal accuracy.
These include the classical methods of Pade approxi-
mants'o (PA's) and Borel summability" (BS), extra-
polated PA [Ref. 4(b)l (EPA's), modified BS [Refs
3, 4(a), and 6] (MBS), and the recently intro-
duced 6 method of order-dependent mapping
(ODM). Nevertheless, each of these approaches
suffers from certain drawbacks. Thus, in a number
of cases, conventional PA's fail and EPA's converge
very slowly, e.g. , the quadratic Zeeman effect for the
hydrogen atom in a magnetic field (HAMF) for in-
tense field strengths4'b' of B & 109 G. Further, BS
and MBS are in general difficult to implement'
and although in theory' applicable to the HAMF sys-
tem, there are problems " in obtaining accurate
summations for 8 & 10' G. The sophisticated ODM
gives impressively accurate values for the HAMF
ground-state eigenvalue over a very wide range of
field strengths up to B =10' G. The success of
ODM, as well as of EPA and MBS, is dependent,
however, upon incorporating into the formalism quite

detailed information (which in other cases may not
be available) concerning the large-field asymptotic
behavior of the eigenvalue or of the large-order
asymptotic behavior of the RS series. In this Com-
munication, we introduce an alternative method for
accurately summing divergent RS series, namely, a
generalized Euler transformation" (GET), which has
the advantages of being extremely simple to imple-
ment and of not requiring any a priori knowledge of
the analytic properties of the eigenvalue; further, we
demonstrate the efficacy of the GET by applying it to
the difficult HAMF problem.

The HAMF system is a logical candidate for testing
the GET, not only because of its intractability both to
variational calculations and summability methods but
also because it is of great current interest4~ 6 ' "per
se in atomic physics, solid-state physics, and astro-
physics, particularly for intense fields; for a concise
review of the physical and mathematical background,
see Ref. 6. The spinless HAMF Hamiltonian (in
a.u. ) has the form

H(y) = —
—,
'

b, —r t+yL, +(y'/8)(x'+y')

where y is a dimensionless coupling parameter giving
the strength of the magnetic field (y =1 corresponds
to 13 =2.3505 && 109 G). For the ground-state eigen-
value, the linear term in y makes no contribution,
and the RS weak-field series can be written as

~(y) = QE, (y'/8), (2)
j=0

where the E, have been computed' exactly through
10th order, to 12 digits through 100th order, and
more recently, 6 to 20 to 27 digits through 61st order.
The formidable task of summing this series is evident
when it is recalled~ that for large j, the controlling
factor in E, is ( —1)J+'(2j+

2 )!;for example, the
conventional sum of the 33rd order RS series (2) for
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TABLE I. Comparison of ground-state energy (a.u.) of the HAMF system for 0(y~10 obtained by various methods.

Evar
Ref. 4(b)

EEpA
Ref. 4(b)

EMBS
Ref. 6

EeET EODM
Ref. 6

0.1

0.2
0.5
1.0
2.0
3.0
4.0
5.0

10.0

—0.497 53

—0.447 21
—0.331 17
—0.022 23

0.335 47
0.71920
1 ~ 11963

—0.497 53

—0.447 21
—0.331 17
—0.022 19

0.3357
0.7206
1 ~ 1235

—0.447 210 538 458 1
—0.331 168 895

0.3355

1 ~ 120

—0.497 526 480 401
—0.490 381 565 035
—0.447 210 538 8
—0.331 169 22
—0.022 234

0.335 390
0.719 129
1.11976
3 ~ 2564

—0.490 381 565 034 8a
—0.447 210 538 458 1
—0.331 168 896
—0.022 213 9

0.335 466

1.11960
3.2522

' Rounded from 22 digits.

y = 1 is 0.11538 & 10 while the corresponding varia-
tional value4' ' is —0.331 17. Using the accessible"'
data, i.e., 12-digit E, through 36th order, '6 and work-
ing throughout in ordinary double-precision computer
arithmetic (about 16 significant digits), we applied
the GET to (2) to obtain the EopT entries of Tables I
and II. In Table I, EGET is compared with the varia-
tional E„,and EFpA of Clzek and Vrscay, 4 ' and the
EMBS and EppM of Le Guillou and Zinn-Justin, in
the range 0 & y ~10 (0 & B & 2 x IDto G). As pre-
viously mentioned, EEpA, EMBS, and EODM were all
obtained by explicitly including in the formalism via a
variety of methods the dominant elements of the an-
alytic behavior of the eigenvalue; the EGET, however,
is free of such a priori bias. Further, it should be
noted that both EMBS and EODM were computed with
about twice as many significant digits in the input,
twice as much computer precision, and to twice as
high order as EGET. It is seen that EGET is markedly
superior to EEpA and, bearing in mind the relative ac-
curacy of the input and precision of the computer

arithmetic, slightly superior to EMBs and comparable
to EppM. Table II collects EGET, adiabatic' or varia-
tional" Eath«, and EooM (Ref. 6) for very large y
(5 x 10'o & B «10'4 G) of astrophysical interest
(e.g. , neutron stars); the EM&s have not been com-
puted throughout this region since the method fails'
here. As might be anticipated, EGET can no longer
keep pace with EODM for such larger y due to the
comparatively limited accuracy of our input data
which introduces severe cancellation" of significant
digits in the calculation of the GET expansion coeffi-
cients. Despite this handicap, E~zT sums (2) with
promising accuracy, the deviation from E„h,„reach-
ing a maximum of 3% in the neighborhood of
8 = 5 && 10" G and diminishing to 0.6% at 8 = 10'4
G. The fluctuations of EGET above and below Eother
observed in Table II, and to a very slight degree in
Table I, may be attributed to numerical rounding ef-
fects; as yet, there is insufficient evidence to draw
any conclusions about possible bounds furnished by
the GET.

TABLE II. Comparison of ground-state energy (a.u. ) of the HAMF system for large ~ obtained

by various methods.

a
Eother EGFT EODM

b

2.0 x 10

1.0 x102

2.0 x 102

3.0 x 10'

1.0 x 10'

2.0 x 10'

2.127 51 1 x 103

4.255022 x 10

4.255022 x 104

7.7847

4.621 07 x 10

9.527 30 x 10

1.451 811 x 1P2

4.959 388 x 102

9.9P6 953 3 x ].02

1.075 883 4 x 103

2.161 602 8 x 10

2.269 842 x 104

7 ~ 855

4.48 x 1P

9.25 x 10

1.41 x 102

4.87 x 102

9.93 x 1p2

1.06 x 103

2.16 x 103

2.28 x 104

7 7847c

4.621 x 10

9.5275 x 10d

1.446 45 x 102

4.9236 x ]P2

9 9073 x 1P

' The first, second, third, and sixth entries are
from Ref. 14 and the remainder from Ref. 15~

b Reference 6.

EMBS = 7.8.
EMBs 9.3 x 10.
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The GET formalism may be summarized as fol-
lows. Consider any formal RS power series,

a(A) = gujAj,
j~

(3)

order, the GET series (6) are known through
(2n+1)th order.

One gains insight into the analytic properties of the
GET by introducing the tth-order GET approximant
for the general case of natural A. ,

where A is a real natural (variable) or dummy (fixed
at unity) coupling parameter, 6 is the eigenvalue, any
expectation value, the eigenvector, or an operator-
valued function of A (e.g. , the Hamiltonian), and 8,
is the jth-order RS expansion coefficient. As the
first step of the GET, for A & 0 introduce the simple
but nontrivial transformation, '8

F'"(m n) a (Z) = j j—g-n (m ~) i.
J' amsQ

Equation (9) can be written in the alternative A. form,

F ' ( m, a.)2 ( A. ) = n '~ (A.)/( I —a.k) '+ (10)

where Qt'~(A. ) is a polynomial of tth degree in A. ,

e(A) =&() ) = gnjZj,
jemP

A
& A2k Qk~ 0'2k+] 0~ k 0~ 1 ~

&/2.

For example, to apply (4) to (2), we take A =y'.
For A (0, (4b) is readily modified. As the next
step, transform (4a) to

A(Z) =Z mama(Z) =F(m, o-)A(Z)

(4a)

(4b)

0'"(X)= /co, (t+m, o-)Z',
j~

t 1

t+m
Oj, (t+m, a-) = g . (—a.)' "nk .j —k

(11a)

(lib)

For arbitrary m and o-, it follows from (10) and (11)
that

= G(m, p)A (Z)
3 ( X ) —Ft '~ ( m, a )A ( X ) = 0 ( A.

'+' ) (12)

where the GET operators F( m, o-) and G ( m, p, ) are
defined by

F(m, ~)a())—= j- Z gnj(m, ~)jj,
J aseQ

(6a)

G(m, p, )A (Z) =—Z™v $ pj(m, p, )vj .
j~

(6b)

In (S) we have decomposed the factor of unity in
A (A, ) in order to introduce a disposable GET ex-
ponent m which can assume arbitrary real values; the
GET n, (m, o.), X and P, (m, p, ), v are the appropriate
transforms of the RS o.j, A. when A. is, respectively,
natural and dummy, and the tilde denotes GET
quantities throughout. The GET coupling parameters
A. and v are homographically related to one another
and to P by

thus exhibiting a fundamental property of the GET.
Further, one can read off directly from (10) the na-
ture of the GET singularity A., as a function of the
exponent m.' For m =0, +1, +2, . . . , and t +m )0,
(10) is meromorphic and X, is a pole of order t + m,
whereas, for m =noninteger, (10) is a multivalued
function and A., is a branch point of index —(t + m).
The extension of m to nonintegral values is nontrivial
as it completely changes the character of the GET ap-
proximant and enhances its capacity to simulate or
reproduce the leading singularities of A (A.); this can
be demonstrated analytically in simple cases and has
been verified numerically for the divergent series
considered.

Finally, the GET gains enormously in power by ap-
plying it in a reiterative manner; thus, for natural X,
by indexing m, a-, o,j, and A. suitably, we can write
for f successive applications,

g = g(1 + a.g) ' = v[p. + (1 —p ) v] '
cr =1 —p. f

W(~) = gF(m„~, )W() ),
e 1

(13)

t

j+m —1
n, (m, a-) = g ( ~)j—k

j+m —1
P (m ) —(j+m) g, ( 1)j—k

kM
(Sb)

Note that if the RS series (3) is given through nth

~here o- or p, is a second diposable GET real parame-
ter. Equation (7) is defined for all X except for the
inherent GET singularity X, =o- '=(1 —p, ) '. The
GET expansion coefficients are given by

A e-i = A e( I + a-ee) ', ~o = ~, (14)

e=1, 2, . . . ,f (1S)

where A., is a selected value of A. (normally 1.0 or
2.0) used to test convergence. This, in turn, led to

where the n, ' (m„o.,) are computed from the
nk' (m, ~, a., ~) via (Ba) with nj, =nk. Similar
results hold for dummy A. . The determination of the
GET parameters was reduced to a routine numerical
procedure, the criterion being rapidity of conver-
gence. The most effective choice of the cr, was
found to be
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simple determination of the m, where, for the series
considered, m~ is a noninteger in the range —2 & m ~(0, and the m„e = 2, 3, . . . , f, are negative in-
tegers satisfying m, & m, ~. The resultant n, ~,
derived for a fixed value of )t„were then used to
sum A ()t) via (13) over a wide range of A. values.
Each successive GET cycle greatly increases the accu-
racy of the results but, in practice, double-precision
computer arithmetic limits one to a maximum of
f =5 before rounding effects predominate. It will be
noted that the entire GET process is algebraic requir-
ing but modest computational effort, indeed, even
less than for PA.

We now touch upon the relationship between the
GET and ODM. Qualitatively, the principal distinc-
tion between these methods lies in their selection of
the mapping functions which transform the original
RS series (3) in powers of A into another series in
powers of, say, X. In ODM, this mapping function is
selected so as to mirror the supposedly known analyt-
ic properties of the function underlying the RS series.
In the GET, however, A is always transformed with
two prespecified mappings, first with (4b), and then
with (7), where the latter is rendered more flexible
with the adjustable exponent m introduced in (5);
still greater flexibility is then achieved via the reitera-
tive procedure of (13).

It is also of interest to note that several apparently
unrelated previous transforrnations are special cases

of the GET. These transformations, which have
been widely used in attempting to improve the con-
vergence of low-order RS series for atomic and
molecular properties, can be recovered by omitting"
(4) (thus taking )~ = A, nk ——Gk), considering only a
single GET cycle, and restricting m to certain integral
values. For example, F(l, o-) or G(l, iu, ) corre-
sponds to the classical ET. '9 For dummy A. ,
G( —1, p, ) is equivalent to the Feenberg-Goldham-
mer~o transformation" (FGT) for the RS series of
the Hamiltonian and eigenvalue; here, p, scales the
zero-order Hamiltonian. Similarly, for RS I/Zex-
pansions of atomic isoelectronic sequences, F(—2, a-)
generates the screening transformation"2 (ST) of the
eigenvalue series; here, o- is a nuclear screening
parameter, A, =Z ', and )t=(Z —o-) '. Both the
FGT (Ref. 20) and ST (Ref. 22) were derived by
heuristically repartitioning the Hamiltonian without
noting that the resulting transformations were either
the ET or minor variants thereof. The above analysis
has the pleasing feature of unifying the theory and
providing a firmer mathematical foundation for the
FGT and ST.
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