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Chaos in piecewise-linear systems
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A new class of physical systems, those which can be described by piecewise-linear equations, are found
to exhibit chaotic behavior similar to that found in previously investigated nonlinear dissipative systems.
The example of a damped, sinusoidally forced harmonic oscillator with two possible spring-constant values
is investigated in detail. The system exhibits period doubling to chaos characterized by Feigenbaum's
universal exponents for a certain range of parameters and an iterated map similar to that in the Lorenz
equations for another,

There has been much recent work on physical systems
which show chaotic behavior and the equations which model
them, ' These equations, such as the Lorenz equation,
mode coupling equations, and a variety of anharmonic os-
cillator equations, all share a common feature: they are
nonlinear due to the presence of terms which are other than
first order in one or more of the time-dependent variables
(the term "nonlinear" being reserved for the nonadditive
feature of solutions to the equations). In this paper we
present a new class of simple differential equations which
are first order in the dependent variables but which also
have chaotic solutions. Furthermore, the chaotic motion is
similar to that produced by conventional nonlinear equa-
tions.

The equations of interest here are piecewise-linear ordi-
nary differential equations. These are simply systems of
linear equations in which the modification is made that the
coefficients can make discontinuous jumps among otherwise
constant values depending on the values of the dependent
variables. A simple example is the forced harmonic-
oscillator equation

M x + 2Bx + K (x )x = F sin (cur + @)

in which x =x(r), K(x) =K~ for x & 0, and K(x) =Kq
for x & 0. For K~=K2 the solution is that of the well-
known damped harmonic oscillator. For K~ ~ Kq, the equa-
tion is nonlinear in that the sum of two different solutions
is not a solution. As will be shown, there is a variety of
possible behaviors for the solutions with Kt & K2, including
simple periodicity, periodicity with a period equal to multi-
ples of 2vr/co, and chaotic solutions.

Besides providing a new class of equations which have
chaotic solutions, piecewise-linear equations have the fol-
lowing significant attributes. First, they can be solved trivi-
ally with use of a digital computer without time integration.
Since the explicit form of the solution is known within each
piecewise region [i.e., when K (x ) = K ~ or K (x ) = K2 in
Eq. (I)] the overall solution is found by matching solutions
at the boundaries between regions, Solving the equation
reduces to the problem of finding zeros of simple transcen-
dental functions, easily accomplished by use of Newton's
method. The ease of solution, combined with the rich
chaotic behavior produced, makes piecewise continuous
equations ideal test cases for the analytic study of chaotic
motion. Second, certain properties of more general non-
linear equations can be fruitfully investigated by studying
simpler piecewise-linear modifications. This was done, for
example, for the van der Pol equations by Levinson and
Levi. Third, certain physical systems may be accurately

described as being piecewise linear. An example is the hu-
man eardrum which, in a simple model, may be character-
ized as having an elastic coefficient for inward displacement
twice as large as that for outward displacement. ' This has
been conjectured to be the cause of the production of audi-
ble subharmonics. "

In this paper we report the results of an investigation of
the solutions of Eq. (I). It can be written in the dimension-
less form

y' + 2 by + k (y )y = sin ( 27r r + $ ) (2)

g„= (T„—T„ i)/(T„+i —T„), (3)

are consistent with the predicted limiting value 5=4.6692.
The value of Tb at which an infinite period is expected is
close to 7b =0.657466. It is interesting to note that for

by using units of 27r/co, 4' F/Mo&', Mco2/4vr2, and Mcu/2m
for r, y, k(y), and b, respectively. The function k(y) is
defined similarly to K (x), but in terms of the new units.
The solutions to Eq. (2) depend on the three parameters k~,
k2, and b. Note that the amplitude of the applied force F
does not appear explicitly. Thus it serves only to set the
scale of the oscillations and has no effect in producing
chaos, in contrast to previous anharmonic-oscillator equa-
tions. ' The behavior of the solutions varies widely as k~,
k2, and b are changed. Here, we will illustrate the variety of
behavior produced by providing a detailed examination of
some of the solutions in two regions of the parameters, k~,
k q, and b. Each region is characterized by a par ticu lar
choice of k~ and k2 values, while the value of b varies
within each region. The selection of parameter values is
somewhat arbitrary in that many other choices can be made
which produce an equally rich variety of behavior. In the
first region the approach to chaos through period doubling is
clearly observable and the well-known universal exponents
discovered by Feigenbaum' are reproduced. Within the
second region can be found a chaotic solution characterized
by a triangular iterated map similar to that produced by the
Lorenz equations.

For the first region, let k~ and k2 be chosen such that
r~=2m/~k~= 1.1 and r2=—27r/ Jkq=4. 5. The damping
time, rb —=I/b, is chosen as the parameter which controls
period doubling. For values of rb less than 0.5889, there is
a stable limit cycle with period equal to that of the applied
force. Table I lists the values of vb at which period dou-
bling occurs. Table I also demonstrates the convergence of
the period-doubling values of vb, T„, to the geometric series
predicted by Feigenbaum. It is apparent that the values of
5„, defined as
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TABLE I. T„, period-doubling values of ~b, and 5„, convergence
rate exponents, for r

~
=1.1, ~2=4.5. 0.0

—0.2

0.5889
0.6479
0.655 46
0.657 038
0.657 374 8

0.657 446 80

4.79
4.69
4.68

y. —04

—0.6

—0.8

—0.8 —0.4
Y„.

I

-0.2
I

0

these values of vb a harmonic oscillator with the above
value for w~ is underdamped, whereas a harmonic oscillator
with 7.2 is overdamped (note that 7~ and 72 should be corn-
pared with 27r7b).

For values of 7.b slightly larger than 7 b, the chaotic
behavior of the solution causes a large enough sampling of
phase space so that an iterated map can be displayed. It is
most convenient in this case to calculate the y values, y;
which are separated in time by the fundamental period
2m/cu. A plot of y;+~ vs y; for r1, =0.66 (not shown) clearly
exhibits the parabolic maximum implied by the observed
values of 5„.

For the ~b values ~b & ~b & 1.477 there exists a compli-
cated pattern of periodic and chaotic behavior. All the
stable periodic solutions which extend over 7.b interval
widths on the order of 0.01 or more have periods which are
multiples of three times the fundamental period. Small in-
tervals containing period 13 (~b = 0.688), period 11
(7 b

—= 0 690), and period 10 (T&
—= 0 830) limit cycles,

among others, were also found. At least two additional
period-doubling sequences were identified: a 9 && 2"
sequence (0.678 & Tb ( 0.687) and a 3 x 2" sequence
(1.07 ( 7.b ( 1.213). The 3& 2" sequence occupies a ~b in-
terval larger than the 2" sequence just described. Thus it is
not the familiar 3&&2" sequence normally associated with a
parabolic iterated map, ' but an additional one.

The iterated maps are very useful in sorting out the
behavior in this region. Since many of the periods found
are rnultiples of three, it is appropriate to examine the
iterated map y;+ vs y;, where m is an integer multiple of
three. For example, Fig. 1 shows a plot of y, +9 vs y; for
~b = 0.675, a value of v-b just below the 9 && 2" period-
doubling sequence. It sho~s that the system is on the verge
of undergoing a tangent bifurcation. ' A plot of y(T) exhi-
bits intermittent chaos and periodicity characteristic of a
tangent bifurcation. "

As Fig. 1 demonstrates, the iterated maps for these values
of 7~ and v2 may be quite complex. In fact, maps which
consist of several sheets are common. For example, Fig. 2
displays a portion of the y+3 vs y; iterated map for
7.b = 1.305. There are two other portions to this map which
are very similar to the one shown centered near
y;+3=y;= —1.2 and —1.7. After each single iteration the
system goes from one of the three portions to the other in
an invariant order. The chaotic behavior can be analyzed by
fixing attention on just one of the three portions. The por-
tion shown in Fig. 2 consists of four parts, labeled 1

through 4. The system evolves in such a way as to visit the
four parts in the labeled order. Except between parts 4 and
1, it progresses from one part to the next after each triple

FIG. 1. Iterated map, y;+9 vs y;, for r&=1.1, 72=4.5, and

wb ——0.675. The straight line is y;+9=y;.
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FIG. 2. One of three similar portions of the iterated map, y,.+3 vs

y;, for t& =1 1, T2=4 5, and T& =1 305. The straight line is

yi+3 =yi.

iteration. Once the system reaches part 4 it may remain
within it for an apparently indefinite number of iteractions
depending on exactly where on part 4 it first arrives. It then
progresses on to part 1 again. This chaotic behavior can be
deduced with the simple technique involving the y;+3 y;
line' and the iterated map shown.

The phenomenon of hysteresis is also found in this sys-
tem. Hysteresis, in general, is caused by the existence of
more than one stable attractor. ' For example, in addition
to the chaotic attractor just described, a stable period-9 solu-
tion also exists for ~b=1.305. The period-9 solution is first
found for 7b =1.26. The system maintains itself in the
period-9 solution as vb is increased gradually to 1.305. De-
creasing v-b to 1.305 from above produces the chaotic solu-
tion as in Fig. 2. The regions in phase space occupied by
the basins of attraction of the two solutions change size with
respect to each other in a manner similar to that found in
the Lorenz equations. ' The change in size in this case oc-
curs over a small rb interval of width —0.001 about
vb = 1.305.

No stable chaotic solutions were detected for vb values
above 1.477. A stable period-3 limit cycle appears for
Tb = 1.477 and persists at all greater values.

The second region provides other examples of chaotic
behavior in this system. In this region we choose
r~ =0.157, ~2=0.628, and, again, v. b varies. The situation is
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somewhat simpler in this case. For Tb less than 1.455, the
motion is periodic with period 1. For slightly greater values,
up to T b = 1.653, the period is twice the driving period.
Larger values of Tb produce chaotic behavior, with no stable
periodic orbits observed.

The nature of the chaotic behavior is clearly revealed by
examining the second iterated map, y, +2 vs y;. Figure 3
shows such a map with Tb =1.9. The iterated map is remin-
iscent of the triangular map first investigated by Lorenz.
The implications of the map are the same in both cases: the
absence of stable, physically accessible limit cycles is assured
for Tb values which produce such a map.

As Tb is increased, the second iterated map does continue
to evolve, however. Additional features appear which can-
not be interpreted in a straightforward manner. Based on a
partial survey of Tb values and initial conditions, there ap-
parently continue to be no stable limit cycles for arbitrarily
large 7 b values.

The above two examples for two parameter regions of T~,
T 2 and T b provide a small glimpse of the rich periodic and
chaotic behavior of Eq. (2). In this respect, it is similar to
the behavior of previous nonlinear systems that have been
studied. However, the much greater ease of solution of Eq.
(2), and similar piecewise-linear systems (including higher
dimensional equations), imply that piecewise-linear equa-
tions provide an ideal test case for studies of chaos in dif-
ferential equations.

A recent study' ' ' models a driven RLC (resistance-
inductance-capacitance) electronic circuit by a piecewise-
linear equation which has similarities to that of Eq. (2). A
Varactor diode is used as a capacitor to supply the non-

—10—10 —6
Y„

FIG. 3. Iterated map, y;+2 vs y;, for T& =0.157, T&=0.628, and

Tb = 1.9. The straight line is y;+2=y;.
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linearity. It was noted that including both a nonzero for-
ward bias and a reverse recovery time was necessary for bi-
furcations to occur. The present paper shows that a simpler
method to produce chaos, without a forward bias or a re-
verse recovery time, is to have the capacitance switch
between two constant values.
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