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Analytically and numerically we give the general solution of the rotating harmonic oscillator. Our solu-
tion verifies the resolution of a disagreement in the literature, and can be understood physically. We point
out that the solution demonstrates the incorrectness of the ‘‘energy equipartition theorem”’ for the ground

state of all quantum oscillators.

The rotating — harmonic-oscillator (RHO) potential
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has a history which can arguably be traced back a century in

the development of quantum theory.!~!® Even so, the

properties of the potential continue to be studied!! ~'®—this
study even including a disagreement on the properties of its
solutions.!2~16

In this Brief Report we will give the general solution
showing how the eigenvalues change continuously from the
three-dimensional harmonic oscillator (zo— 0) to the RHO
‘“‘diatomic molecule’” (zo >>0). In doing so we can verify
the proper resulution!*!3® of the above disagreement,
which resolution can be understood on physical grounds.

To define the problem, start with the Schrédinger equa-
tion. Reduce out the angular variable, write the wave func-
tion as X(r) =r¢(r), change variables to z and write all
energies in terms of units of Aw:
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First consider the large-zy case. 'Physically, this case is
important. If the RHO potential is taken as a model
diatomic-molecule potential, zo can be written as

the wave number for transition to the first vibrationally ex-
cited state in 1000 cm ™!, and r, is the equilibrium distance
of the atoms in angstroms. Thus, even for the hydrogen
molecule, zy is 6.01 , and for other molecules it is larger.
Now by writing the function of z in Eq. (3) as a McLaurin
series about zy, we can approximate the Schrédinger equa-
tion as
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For zy >> 0 the effect of the boundary condition at z =0 is
negligible, so this is a one-dimensional harmonic oscillator.
Thus we have the approximate eigenvalues (/=0,1,2...;
v=0,1,2,...)
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In essence, the above is a variant of what Schrédinger did,?
exhibiting the first three terms in a power series in zg 2. In
the 1930’s, papers appeared® !° using WKB and perturbation
methods which carried out this power series higher, agree-

ing up to order (zg72)%

20=5.446 114(paki) ry ) Now consider the small-zo case. There, one can use
_ o e standard first-order perturbation theory about the zp=0
kie=1/A=vie/c=we/2mc ®) three-dimensional —harmonic-oscillator limit to obtain
where wu, is the reduced mass in atomic mass units, k; is (1=0,1,2, ..., n=4LI4+2,1+4,...)
J
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For the general solution, first consider /=0. Changing
variables in Eq. (3) to y =z — zy, one has the standard one-
dimensional —harmonic-oscillator equation, but with the
boundary conditions X(o0) =0 and X(—zy) =0. Such a
solution is well known analytically. It is the parabolic
cylinder function D,L(y\/f), with eigenvalue ,u.+% deter-
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mined by the boundary condition D,(—2z9v/2) =0."7 The
eigenvalues €,-(zo) are shown as the thick lines of Fig. 1.
For arbitrary / one can numerically integrate the
Schrédinger Eq. (3) to obtain the eigenvalues. Start by ob-
serving that at the origin and infinity, the wave function
behaves as (z)'*! and exp[—%(z—zo)zl, respectively.
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FIG. 1. Eigenvalues of the RHO potential as a function of z,.
The thick lines are for /=0, thin lines for /=2, and dashed lines
for /=4. The heavy circles show first-order — perturbation-theory
predictions for /=0 about the z5=0 three-dimensional —harmonic-
oscillator limit. [See Eq. (11).]

Thus, by using the standard numerical-integration tech-
niques of splitting the Schrédinger equation into two first-
order differential equations satisfying the above boundary
conditions, integrating out from zero, and demanding that
the wave function be small for z >> z;, one can obtain the
eigenvalues for all /and zo. We show these eigenvalues for
/=2 and 4 in Fig. 1 and /=1 and 3 in Fig. 2.

Figures 1 and 2 allow us to see the general properties of
the solutions. For the transition from the small-z, to the
large-z, case, the solutions change as

limoCurve(n,l)H lim Curve(v=2L(n—l),l) . (12)
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By Eq. (12) we mean that in the two limits of zy shown, the
two eigenvalue levels connect. This is reminiscent of the
transition from L,S to J,S coupling.

Our results verify the conclusions of Refs. 13, 15, and 16
in the disagreement!?~!® mentioned above. Contrary to
Refs. 12 and 14, for / #0, there is a continuous change in
all the eigenvalues which is dependent on the value of z.

L 1 1 I 1 I L 1 Zo

FIG. 2. Eigenvalues of the RHO potential as a function of z,.
The thick lines are for /=1 and the thin lines for /=3. The heavy
circles show first-order — perturbation-theory predictions for /=1
about the zp=0 three-dimensional —harmonic-oscillator limit. [See
Eq. (11).] The small squares are specific values for /=1 given in
Table 2 of Ref. 13.

There is no solution which is independent of z, with eigen-
values (n +—;—). From our point of view this makes sense
intuitively. As zo gets larger, we are changing continuously
from the three-dimensional —harmonic-oscillator problem to
the one-dimensional —harmonic-oscillator problem. The
change is a continuous perturbation from one limit to the
other, and is nonsingular.

Further, our figures show where the special-case exact
results of Ref. 16 fit in. In Ref. 16 it was shown by
continued-fraction methods that for certain specific values
of z,, the continued-fraction solution terminates to give ex-
act eigenvalues (% +1 +positive integer). [These methods
also specifically exclude the predicted exact solutions of
Refs. 12 and 14, s=(l+%), 1 #0, supposedly true for all
zo.] The above intuitively is not in disagreement with us.
For any given (n,/), as z, increases the eigenvalue curves

always decrease and thus can cross the value
(% + [ +positive integer).
In particular, Ref. 16 derives'®
e=1+3 atz=1/(1+2)\2 | (13)
and
1/2
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Table I shows the /=0, 1, 2, and 3 special-case eigenvalues
of Egs. (13) and (14) that are contained in and agree with
Figs. 1 and 2.

Finally, this brings up the' quantum ‘folk theorem,”
that a confined oscillator has % quantum per degree of free-
dom as a ground-state energy. For the z,=0 three-
dimensional harmonic oscillator, this is correct. But as zg
gets larger, the ground-state energy goes down to % (as
Figs. 1 and 2 show) for all I Further, if we consider the
N-space-dimensional rotating harmonic oscillator, the same
phenomena will occur, with the even higher ground-state
energy of N/2 also going down to %

What is going on? Descriptively, in the one-dimensional
problem, the ground-state Gaussian is large, approximately
between some —xr and +x7. In the three-dimensional
case, the boundary condition at the origin means that the

TABLE 1. Special-case exact eigenvalues of Egs. (13) and (14)
that are contained in our Figs. 1 and 2.

! e Z

0 = (3)2=0.707
0 z (3)1/2=1.225
1 7 (3)12=0.577
1 3 ($5)12=1.041
2 - +=0.5

2 L (35)2=0.922
3 & (+)12=0.447




28 BRIEF REPORTS 473

wave function must go to zero at the origin (this is like the
first excited state in the one-dimensional problem) so that

the ground-state energy is raised to % However, as zg gets

large, on the left the wave function does not have to go to
zero near zo. Thus the distance in the radial direction over
which the wave function can be large becomes effectively
that of a one-dimensional problem (say, from — x7+z to
+x7+20). This allows the ground-state energy to approach
that of a real one-dimensional oscillator.

Physically, one must realize that the above amounts to
describing the results of analyzing the expectation values of
the kinetic- and potential-energy terms of the Hamiltonian,
minimizing the energy with respect to an x-p uncertainty
limit. This is the type of analysis that Messiah?® applies to
the hydrogen atom, and which must be done before a
““theorem’”’ is applied to any particular potential. To show
this we repeat Messiah’s analysis?® for this system. (Note
that all the arguments used to show the incorrectness of this
‘““theorem’’ could be realized from any three-dimensional
potential with many bound states and a minimum away
from the origin, such as the Morse potential.)

Putting units back in, for ro=0, the lowest state has / =0.
First consider the x direction. The average of the potential
energy in the x direction around some classical turning
points *+x7 is mw?x?/6. If we take Ax =xr in the x-p un-
certainty relation, this yields a lower bound for Ap of %/2xy.

Take the kinetic energy as (Ap)?/2m =#%/(4mx}?). The
sum of this kinetic energy and the average potential energy
has a minimum at xf =3%%/(4m?w?), giving a value for the
total minimum energy in this degree of freedom of

E;=3hw3 ™ 15)
(This answer is not precise, as it need not be.) However,
now the total ground-state energy is predicted to be three
times E,, from all the x, y, and z degrees of freedom.
Contrary to this, in the large rg limit, the above argument
goes through for one degree of freedom (the radial degree),
but the angular coordinates give a vanishingly small
number. To see this, consider the 6 coordinate. (We here
ignore the complications of using the rigorous angular
operators,?' to make the arguments simpler.) At the posi-
tion rg, the potential energy is zero. The angle variable can
vary over w. Taking this as A@, the py— 6 uncertainty rela-
tion says that Ap, = #/(2m). Using Apg as pg in the kinet-
ic, and hence the total, energy gives??
Eo=Fw/(87%28) , (16)

which is vanishingly small as r, gets larger.
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In 1886, one year after Balmer (Ref. 2) had empirically determined
his form of the hydrogen spectra, Deslandres did the same for
the diatomic molecule (Ref. 3). Later, in his fundamental old-
quantum-theory papers, Bohr was able to solve the hydrogen
atom (Ref. 4), but he could not obtain the Deslandres terms for
the diatomic molecule (Ref. 5). That remained for the last paper
of Schwarzschild (Ref. 6). Finally, although most people known
that the first of Schrédinger’s basic papers on quantum mechanics
solved the hydrogen atom (Ref. 7), few know that in his second
paper, he approximately solved the rotating harmonic-oscillator
problem for the diatomic molecule (Ref. 8). A more detailed his-
torical account will appear elsewhere.
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