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Rotating harmonic oscillator: Its general solution and the lack
of ground-state energy equipartition
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Analytically and numerically we give the general solution of the rotating harmonic oscillator. Our solu-
tion verifies the resolution of a disagreement in the literature, and can be understood physically. We point
out that the solution demonstrates the incorrectness of the "energy equipartition theorem" for the ground
state of all quantum oscillators.

The rotating —harmonic-oscillator (RHO) potential
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First consider the large-zp case. Physically, this case is
important. If the RHO potential is taken as a model
diatomic-molecule potential, zp can be written as
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where p, , is the reduced mass in atomic mass units, k;, is
I

has a history which can arguably be traced back a century in
the development of quantum theory. ' ' Even so, the
properties of the potential continue to be studied" ' —this
study even including a disagreement on the properties of its
solutions. " "

In this Brief Report we will give the general solution
showing how the eigenvalues change continuously from the
three-dimensional harmonic oscillator (zp 0) to the RHO
"diatomic molecule" (zp)) 0). In doing so we can verify
the proper resulution" "' of the above disagreement,
which resolution can be understood on physical grounds.

To define the problem, start with the Schrodinger equa-
tion. Reduce out the angular variable, write the wave func-
tion as X(r) = r(/((r), change variables to z, and write all
energies in terms of units of tee.
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In essence, the above is a variant of what Schrodinger did,
exhibiting the first three terms in a power series in zp . In
the 1930's, papers appeared ' using WKB and perturbation
methods which carried out this power series higher, agree-
ing up to order (zp 2 ) 4.

Now consider the small-zp case. There, one can use
standard first-order perturbation theory about the zp =0
three-dimensional —harmonic-oscillator limit to obtain
(I =0, 1, 2, . . . , n = I, /+2, /+4, . . . )

the wave number for transition to the first vibrationally ex-
cited state in 1000 cm, and r~ is the equilibrium distance
of the atoms in angstroms. Thus, even for the hydrogen
molecule, zp is 6.01, and for other molecules it is larger.
Now by writing the function of z in Eq. (3) as a McLaurin
series about zp, we can approximate the Schrodinger equa-
tion as

2e —S' —/(/+1)/(zp+5)'+ Y2+ x=0 .
dY [1+3/(I+1)/(zo+&)"]' '

Y= (z —zp —5) [1 +3/(I +1)/(zp+S) 1

5 = I(I +1)/zo

For zp ))0 the effect of the boundary condition at z =0 is
negligible, so this is a one-dimensional harmonic oscillator.
Thus we have the approximate eigenvalues ( I =0, 1, 2. . . ;
v=0, 1, 2, . . . )
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For the general solution, first consider I =O. Changing

variables in Eq. (3) to y =z —zp, one has the standard one-
dimensional —harmonic-oscillator equation, but with the
boundary conditions X(~) =0 and X( —zp) =0. Such a
solution is well known analytically. It is the parabolic
cylinder function D„(yJ2), with eigenvalue p, +—deter-

I

mined by the boundary condition D~( —zp42) =0.' The
eigenvalues E( p(zp) are shown as the thick lines of Fig. 1.

For arbitrary l, one can numerically integrate the
Schrodinger Eq. (3) to obtain the eigenvalues. Start by ob-
serving that at the origin and infinity, the wave function
behaves as (z)'+' and exp[ ——(z —zp) ], respectively.

28 471 1983 The American Physical Society



BRIEF REPORTS 28472

4

0
0 Zo

I 2

a function of z0.RHO potential as age es o e

=0 h d'
circles s ow

al —harmonic-for I =0 about the z0=predictions for
oscillator limit. [See Eq. (1

~

endent pf z0 with eigen-
'

n which is indePen
sense

There is no solution
o' t of view this makesvalues (n +

2
From our po

e are changing uou slyintuitively As z0
—h onic-oscillator p

z gets larger, we
'

r roblem tofrpm t e
'

1 —harmonic-osci} ato;
to the

h three-dimensiona —
'

1 r problem. Thethe one-dimensip
rbatipn from pne limchange is a co

~

i pertur a ip11

d is npnsingu»r.other, an
s show where t e s} special-case exa

b
Further, our figures o

R f 16,t was shownresults pf Re . '
h t for certain specimethods t a

ive ex-
continued- fractipn

'o solution terminates t gthe continued-fraction so '
) [These methods

of z0, t e co
—' + l + ositjve integer

ns «
act eigenvalues

icted exactalso specifically 3, l &O, supposedly tru
~xclude the P« '

rue for all12 and 14
.

d greement ~ith
' '

el is not in isa
h i l0

h.. ... .,...always decrease and t us
( —+I +positive integer .

1 Ref 16 derive$18In particular, e .

numerical-integnu
' -' ration tech-the standard nuThus, by using

-din er equation intof s litting the Schro inge
d differential equations

'
a oorder i

out from zero, a
in the

ditions, integrating o
z one can obtain

W h hfor all l and z0. We s nva ueigen values
l =1 and 3 in Fig. 2.

'sofh 1

l=
Figures 1 and 2 a

from the small-z0-z to thens. For the transition romthe solutions. or
the solutions clarge-z0 case,

v = '(n —1)—, l ) . 12( l) lim Curve(v= —' —, . l2lim Curve n,
0 z0zo

limits of z0 shown, the
Th

th t in the two
w g 1 levels connect. is iwo eigenva uetw g

L,S to J,S coupling.
3 15, and 16
C

ur r
nt" ' mentione ath disagreement

f z.
Re s.f 12 and 14, for l

s which is depen end t on the value o z0.all the eigenvalues w ic

and

= I+ —at zo=1/(l+ 2) 1/2

(41+9)
(&+2) (I +3)

&/2

(13)

(14)

d 3 special-case eigei envaluesTable I shows the
't}1ntained in and agof Eqs. (13) annd (14) that are con

th t folklk theorem, "F' ally, this brings up t e
per degree of free-

F h 0 h
h o t. B

-state energy. or
tas z0nic oscillator, t is i

(asge, e round-state energy
'

er the

gets larger, the g

l. Further, if we cons~derFigs. 1 and 2 s
harmonic oscillator,N-space-dimensio g
h ven higher groena will occur, with t eephenome

problem,
h th -di io 1xT an T.

d' '
}1

~ ~

ns that t ecase, t eh boundary condition a

E s. (13) and (14)-case exact eigenvalues of Eqs.TABLE I. Special-case exac
in our Figs. 1 anthat are contained in

z0

ZQ
I

tential as a functiontentia a of z .

T}1 h a

FIG. 2. Eigenvalues o tent&a a

b io -hop

Eq. (11 .).] The small squares are
Table 2 of Ref. 13.

5

2

7

2

7

2

9
2

9
2

11
2

11
2

(—) '~2 =0.707
2

( —,) 'j2 =1.225

( —) ' =0.577
3

—)'~ =1041
12

—=0.5
2

—) '~2 =0.92220

(—)' =0 447
5



BRIEF REPORTS 473

wave function must go to zero at the origin (this is like the
first excited state in the one-dimensional problem) so that

3the ground-state energy is raised to —,. However, as zo gets

large, on the left the wave function does not have to go to
zero near zo. Thus the distance in the radial direction over
which the wave function can be large becomes effectively
that of a one-dimensional problem (say, from —xr+zc to
+xr+zc). This allows the ground-state energy to approach
that of a real one-dimensional oscillator.

Physically, one must realize that the above amounts to
describing the results of analyzing the expectation values of
the kinetic- and potential-energy terms of the Hamiltonian,
minimizing the energy with respect to an x-p uncertainty
limit. This is the type of analysis that Messiah applies to
the hydrogen atom, and which must be done before a
"theorem" is applied to any particular potential. To show
this we repeat Messiah's analysis's for this system. (Note
that all the arguments used to show the incorrectness of this
"theorem" could be realized from any three-dimensional
potential with many bound states and a minimum away
from the origin, such as the Morse potential. )

Putting units back in, for r() =0, the lowest state has I =O.
First consider the x direction. The average of the potential
energy in the x direction around some classical turning
points +xr is mt0 xr'/6, If we take Ax=xr in the x-p un-
certainty relation, this yields a lower bound for Ap of /f /2xr

Take the kinetic energy as (AP)2/2m =h2/(4mxrz). The
sum of this kinetic energy and the average potential energy
has a minimum at xr =3t2/(4mzo&z), giving a value for the
total minimum energy in this degree of freedom of

Es = ttu/(8zr'zp' )

which is vanishingly small as ro gets larger.

(16)

This work was supported by the United States Depart-
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E„= 2ho)3

(This answer is not precise, as it need not be.) However,
now the total ground-state energy is predicted to be three
times E„, from all the x, y, and z degrees of freedom.

Contrary to this, in the large ro limit, the above argument
goes through for one degree of freedom (the radial degree),
but the angular coordinates give a vanishingly small
number. To see this, consider the 0 coordinate. (We here
ignore the complications of using the rigorous angular
operators, zt to make the arguments simpler. ) At the posi-
tion ro, the potential energy is zero. The angle variable can
vary over n. Taking this as 40, the p&

—9 uncertainty rela-
tion says that bp~ ~ /r/(27r) Using . Ap, as ps in the kinet-
ic, and hence the total, energy gives
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his form of the hydrogen spectra, Deslandres did the same for
the diatomic molecule (Ref. 3). Later, in his fundamental old-
quantum-theory papers, Bohr was able to solve the hydrogen
atom (Ref. 4), but he could not obtain the Deslandres terms for
the diatomic molecule (Ref. 5). That remained for the last paper
of Schwarzschild (Ref. 6). Finally, although most people known
that the first of Schrodinger's basic papers on quantum mechanics
solved the hydrogen atom (Ref. 7), few know that in his second
paper, he approximately solved the rotating harmonic-oscillator
problem for the diatomic molecule (Ref. 8). A more detailed his-
torical account will appear elsewhere.
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