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Perturbation theory for nonlinear time-independent Schrodinger equations
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A special nondegenerate perturbation theory is developed for solving the "nonlinear Schrodinger

equation" of the type [0+V(4}]+=Eql, which arises, e.g., from the study of the environmental ef-

fects on molecules. The interaction operator is taken as I (ql }=A(4
~

B
~

'P ). The in uacuo problem

H@=M is considered the zeroth-order description. For the perturbed energies and wave functions
recursive formulas are derived at any order of the perturbation. The formulas obtained are com-

pared to the usual Rayleigh-Schrodinger perturbation theory where V is supposed to be independent
of %. The formal results are applied to the case of the Onsager cavity model.

I. INTRODUCTION

Physical systems are usually treated in Uacuo, i.e., by
supposing that they are not affected by their surroundings.
This fictious model often works well but there are many
important cases where the interaction with the environ-
ment is to be taken into account explicitly. For example,
most quantum-chemical calculations are performed within
the isolated-molecule approach where the goal is generally
to solve the time-independent Schrodinger equation

In Eq. (1) H is the Hamiltonian of the isolated molecule.
However, in studying chemical problems it is often neces-
sary to consider environmental effects on the molecule
under study. ' The interaction between the system and its
environment is usually taken into account by introducing
an effective potential V into the Hamiltonian. The envi-
ronment itself is not treated explicitly. The determination
of the actual form of V presupposes the specification of
some physical model. A particularly interesting situation
is when the environment is not taken to be "rigid, " that is,
the effect of the molecule on the environment is also con-
sidered. In this case, the interaction potential V will de-
pend on the wave function of the molecule itself and one
gets the following type of nonlinear Schrodinger equa-
tion

[H+ V(+, )j+, =E,%,

Usually we can assume that the interaction potential V
depends on 4; through the expectation value of an opera-
tor. ' This assumption permits us to write Eq. (2) in
form

(3)

where A and 8 are operators depending on the particular
choice for the interaction model, while k is a parameter
characterizing the strength of interaction. Note that E;, in
Eqs. (2) and (3), is the effective energy of the system (mol-
ecule) containing the in Uacuo energy e; and the total in-
teraction with the environment.

One physical example leading to such an equation is the
problem of a molecule in a polarizable medium, treated by

the classical Kirkwood" and Onsager' interaction
models. For example, in the simple dipole approximation
both operators A and 8 correspond to the dipole-moment
operator of the molecule, while A, depends on the mean
static dielectric constant of the environment. ' '

It is apparent that Eq. (3) can be solved iteratively for a
given state i It sh. ould be noted that Eq. (3) cannot be de-
duced from the variational principle applied to the usual

energy functional (4
~

H '
~

0') /('P
~

4); an appropriate
variational functional was proposed by Sanhueza et al. '

Application of the standard Rayleigh-Schrodinger (RS)
perturbational theory, or the use of some variational
methods, e.g., the configuration-interaction (CI) pro-
cedure, involves the evaluation of the off-diagonal ele-
ments of the Hamiltonian (@;

~

H '
~
+t, ) over approxi-

mate wave functions N;. These procedures cannot be ap-
plied in a straightforward manner to solve nonlinear equa-
tions of type (3), because in handling the off-diagonal ele-
ments, some ambiguity arises as a consequence of the state
dependency in the Hamiltonian H '(4; )

(4)

Therefore, in this paper we develop a special type of non-
degenerate perturbational theory (PT) for solving Eq. (3),
where the state dependence of H '(4; ) is treated explicitly.
The molecular problem in Uacuo is supposed to be solved.
This solution is considered as the zeroth-order description,
while the interaction operator A, (%;

~

B
~

qt;)A represents
the perturbation. The strength of the coupling is charac-
terized by A, which can be considered as a perturbation
parameter.

We should like to point out that the problem of the non-
linear Schrodinger equation of type (3) is rather general;
the treatment of the interaction of a molecule and its envi-
ronment represents a special application, which will be
discussed in Sec. VI.

II. PERTURBATION OF THE WAVE FUNCTION

Let us expand the exact wave function +; in a perturba-
tional series characterized by the perturbation parameter
A, , in terms of the zeroth-order solutions NJ. .
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q, =e, + g z~ g cue, , (5)
p= & j (&i)

where p labels the order of the perturbation and Cij"' is the
expansion coefficient of +; on +j (j&i). Note that the

, spectrum of H is supposed to be discrete and the so-called
intermediate normalization condition is used

(q, ie, )=I.
The perturbation series for the eigenvalues E; is written

in a similar form

pick up terms depending on A, . The results are

&i —&k

and

2
11 J1 11

2(« —e. )

(10)

Z, =e, + g ~~E,(&).
p=i

Gur aim is to derive expressions for C j"' and E "'.

(6)

III. LOW-ORDER CONTRIBUTIONS

Utilizing Eq. (1), and taking the scalar product of (7) with
N;, we obtain

Let us substitute Eqs. (5) and (6) into the nonlinear
Schrodinger equation (3). In the zeroth order, collecting
the terms independent of X, we recover Eq. (I) as expected.
The terms linear in A, give

A(N;
~

8
~
@;)@;+Hg C~J~'(I)J E'(p;+e; g——C~~j~'4&i .

J (+i) J (+i)

(7)

where the prime on the summation means the restriction
k&i.

Comparing these results with those of the standard RS
PT, we can see that some new terms occur at the second
order due to the nonlinearity of Eq. (3). In E ', this
"nonlinearity term" is 2A;;8;; QIk)A;kBk/(k; —ek) while

CJ ' can be written as

C"'=C"'(RS) 21j 1J +
« —ej k « —ek

where C1j (RS) is the corresponding Rayleigh-Schrodinger
result. Generally, it is not surprising that the nonlinearity
terms are those which contain off-diagonal B;k matrix ele-
ments.

We give the third-order energy expression which reads

(&)
1 11 11

where we introduced the matrix-element notation

(8)
k k

+2g Cik Cii Ai(Bik +Aii g Cik ii Bki
k, l k, l

The scalar product of Eq. (7) with C) k (@&i)gives

(i)
« —&k

(9)

Note again that the zeroth-order states are assumed to be
nondegenerate.

Equations (8) and (9) represent the solutions at the first
order of perturbation theory (PT). These formulas show
that, if we identify the perturbation operator V with B;;2,
a result equivalent to that of the standard Rayleigh-
Schrodinger PT is obtained. [This identification is

straightforward since B;;2 represents that part of the
Hamiltonian (4} which is linear in A, .] In other words, the
nonlinearity of Eq. (3) has no special effect at the first or-
der. This is quite natural since, from the perturbational
point of view, the nonlinearity of Eq. (3) arises from the
fact that the Hamiltonian (4) also contains operators pro-
portional to k, A, , etc., but these terms do not enter at the
first order.

For determining the second-order formulas we have to
I

v, 7
(v+7(p —2)

I C(v)C(7)C(P —v —7—&)g
ik il im im kl

klm

(14)

with C'" and C' ' defined above. Here, using again the
indentification V=A;;3 suggested by the first-order re-
sults, the RS contribution is that in the first sum, while
further terms arise from the nonlinearity.

IV. RECURSION FORMULAS
FOR ARBITRARY ORDER p

One can derive recursion relations for Cij" and E "' at
the general order )M. Substituting Eqs. (5} and (6) into Eq.
(3), picking up the terms which are of order p in A, and
utilizing Eq. (1) one obtains

k

+2Ai g'Cik 8;k
k

p —2

+ g g'Ck Ci (A;(Bki+2A;(B;k)
v=1 kl

Cf"= Bg g'Cg A Jk(e/; —e'i) —g-
k

+2 +' C;k" AJ,.Bk; /(e; —ei )
k

C(~)c(P ~
. ) J' ki i i k' y y C(~)c(l ) C(P —v r 1)A 8 —/—( )

v=1 k 1 v7 k 1 m
(v+7~ p —2)
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These formulas are valid for p) 4. Terms containing
triple summations over k, l, and m are to be omitted to ob-
tain the third-order expressions. Second-order results can
be recognized by dropping the terms with double summa-
tions over k and I as well.

The recursion formulas (14) and (15) contain contribu-
tions from all previous orders. As to the eigenvalues this
is a typical nonlinearity effect, since in the RS PT one has
the simple recursion relation

E;" =g'Cu Vik
(p —&)

k

where V;k represents the matrix element of the perturba-
tion operator. Thus, terms in the second, third, and
fourth lines of Eq. (14) originate from the nonlinearity of
the Hamiltonian, or in other words, from the influence of
the system on its environment.

As for the expansion coefficients, the standard RS PT
yields to the following recursion relation:

QIC(g —1)V QE(v)C(P —v)

k V
CJ'(RS)=

E'. —6.J
which can be put into analogy with the first two sums of
Eq. {15). Any other terms represent nonlinearity effects.

Investigation of the general convergence properties of
the perturbational expansions (5) and (6) for the nonlinear
equation (4) seems to be rather cumbersome. Formal con-
vergence criteria, available for general perturbations {see
the contribution by Palmer in Ref. 14), are not applicable
in the present case due to the wave-function dependency
of the perturbation operator V. However, since Eqs. (5)
and (6) are power series in A, they will converge
(for

~

A.
~

&1) provided that the coefficients (E "' and

QIk) Ck 'Nk ) are bounded. We note that in the treatment
of environmental effects this formal condition is generally
fulfilled (see also Sec. VI). Special attention should be
paid to the particular case, when the spectrum of the
zeroth-order Hamiltonian is quasidegenerate, because of
the expected divergence of the pertubational expansions.

V. COMPARISON %'ITH RELATED PROBLEMS

The development of the perturbational scheme proposed
in this paper was stimulated by the problem of quantum-
chemical treatment of a molecule in a polarizable medium.
However, the general form of the perturbation operator
A(%'~8

~

iP) permits us to use the above results for a
rather widespread class of interacting quantum systems.
It should be noted that although there exist some related
problems where the quantum system is described by non-
linear equations, due to the differences in the form of the
nonlinear terms, the presented scheme cannot be applied
without further changes. Such problems are, e.g., the
solution of the time-dependent nonlinear Schrodinger
equation {see Ref. 15 and references therein), or the "self-
consistent —field perturbation theory"' ' at the Hartree-
Fock level. In the latter case, the problem of nonlinearity
arises from the need of a self-consistent field describing
electron-electron interactions in the Hartree-Fock model.
In spite of certain similarities, our approach is not
equivalent to the self-consistent —field (SCF) perturbation
theory since the Hartree-Fock operator cannot be written
in the form of Eq. (4).

VI. APPLICATION: THE ONSAGER CAVITY MODEL

In this section we apply our formal results to the special
example of a molecule interacting with its solvent environ-
ment. The Onsager reaction field (spherical cavity)
model, ' which is widely used in quantum-chemical calcu-
lations to account for environmental effects ' ' leads to
the following form of the nonlinear perturbation in Eq. (2)
(Ref. 2):

V(qI)= — M(% iM i%),
g 2E+1

where M is the dipole-moment operator, a is the radius of
the cavity, and e is the static dielectric constant of the sol-
vent. We choose a dimensionless perturbation parameter
A, as

2(e—1) (io3

2E+1 a
(17)

(ao is the Bohr radius) to represent the strength of the cou-
pling between the molecule and its environment. In any
real situation A, & 1, since a & ao and 2(e —I)/(2m+ 1) & l.

The comparison with Eq. (4) shows that we can identify
the operators 3 and B with

A= —M, (18a)

B=M/ao . (18b)

ME' '= —3M"g'
&k —&I

(20)

M;kE- '=3M-~~'Ii~
k (ek e;)'-

MkMi
4M;; g' — (M;;M, +i2M,. Mk;() .

(ek Ei )(Fl e( )

Introducing the total dipole moment p; =M;; and the po-
larizability a; of the molecule as

a;=2+™ (22)
&k —&i

we can gain some insight into the physical meaning of
corrections (19) and (20).

The total effective energy E; =e;+g„)AI'E "' reads

E; =e; —p;R; ——,a;R; +P(A, ), (23)

where the reaction field R; is defined' as

1 2(e —1)
a3 2@+1

(24)

As we have mentioned in Sec. I, E; contains the total in-
teraction energy between the molecule and its surround-

Using atomic units we set ao ——1 in the following.
Substitution of Eqs. (17) and (18) into the general ener-

gy correction formulas yields

(j) 2E; = —M;;,
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ings. Let us define the "self energy" of the molecule as

(25)

where the introduction of the factor —,
' corresponds to sub-

tracting the energy spent by the molecule to polarize its
environment. ' Then we essentially recover the familiar
formula for the electrostatic free energy of solvation'

E =g ——p-R- ——u R. +1 3 2 {26)

The first term on the right-hand side of Eq. (26), e; is the
energy of the isolated molecule. The second term
represents the energy of a rigid point dipole immersed into
a polarizable medium (classical reaction field energy),
while the last term of order two describes the interaction
of the induced dipole moment of the molecule with the re-
action field of the permanent dipole moment p;. This
latter effect accounts for the response of the molecule to
the influence of the polarized environment. Higher-order
energy corrections derived in this paper [see, e.g. , Eq. (21)j
take into account changes in the reaction field itself.

The pertubational approach proposed here permits us to

obtain the interaction energy (and the perturbed wave
functions also) in terms of the solutions for the isolated
molecule. This approach appears to be simpler than the
iterative methods leading to self-consistent reaction fields,
and allows us to treat both the ground and excited states
on an equal footing.

The proposed theory, in principle, can also be applied
for the case of coupling schemes other than the Onsager
cavity model (e.g. , continuum 9 and discrete' models).

Interactions arising between a molecule and its sur-
roundings are intermolecular in nature, so they are at least
of an order of magnitude smaller than intramolecular in-
teractions involved in the zeroth-order Hamiltonian. Ac-
cordingly, the strength of the perturbation will be relative-
ly small and it is reasonable to expect that the perturba-
tional series will converge fast in almost all practical (non-
degenerate) situations. The effectivity of the method
remains to be tested by numerical applications.
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