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Amplitude combinations in the critical binary fluid nitrobenzene and n-hexane
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We have determined experimentally the amplitudes of the correlation length and suscep-
tibility along the three principal trajectories: critical isochore, coexistence curve, and, for
the first time in a critical mixture, critical isotherm. We have also determined the ampli-
tude of the coexistence curve and that of the specific heat along the critical isochore. These
amplitudes allowed us to compute several universal amplitude combinations, which are all
in agreement with current theoretical predictions, except C+/C which agrees better with
the renormalization-group value than with the high-temperature-series one. Moreover,
linewidth measurements allowed us to determine the dynamic constant R, found to be close
to unity.

I. INTRODUCTION

The hypothesis of universality has played a cen-
tral role in the study of phase transitions. It arises
from the fact that characteristic lengths near a criti-
cal point are much larger than the microscopic in-
teraction scale. Therefore, these details are forgot-
ten and most of the observed quantities depend only
on the dimensionalities of the space (d) and of the
order parameter (n). For instance, the three-
dimensional Ising model and the fluid and binary
mixtures transitions belong to the same class of
universality d=3, n= 1. At the present state of the
theory, the exponents are universal and related by
the so-called scaling laws, while the microscopic na-
ture of the system is reflected through two indepen-
dent amplitudes, at least asymptotically close to the
critical point. The other amplitudes can then be de-
duced using universal amplitude combinations.

While the exponents and the relations between
them have been subjects of experiments for a long
time, the amplitudes received attention only recent-
ly. The reason for that is that their study requires
the gathering of results of different kinds of experi-
ments and therefore the knowledge of many param-
eters, including the critical exponents themselves.
These exponents are now well known and the
theoretical methods which have therefore proved
their reliability can be used to calculate these new
constants.

A complete check of the theory, however, re-
quires experimental deterrainations of these com-
binations. The purpose of the present paper is to
determine some of these constants for the mixture

of nitrobenzene and n-hexane. The different tech-
niques involved are static and dynamic light scatter-
ing (self-beating spectroscopy and Fabry-Perot in-
terferometry), interferometry, refractometry, and
volumetry. However, the measurements have been
perforrrted using the very same cell whenever possi-
ble.

Although the theory predicts the behavior of a
system along the three basic trajectories (critical iso-
chore, critical isotherm, and coexistence curve),
most of the experiments so far have been limited to
the critical isochore. However, in this paper, all
these three trajectories will be studied.

II. THEORETICAL BACKGROUND

A. General

According to the standard teriiiinology, we shall
call M the order parameter, H the conjugate field,
T, the critical temperature, and t =(T —T, )/T, the
reduced temperature. Along the critical isochore
(t ~ O,M =H =0) the following quantities will
behave as follows:

susceptibility

specific heat

kit +
CX
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(where the ellipsis stands for regular part),
correlation length

Along the critical isothellf1 (t =0), whose equation
1S

we have

(1+at~+ . . )

must be introduced. '

The values admitted now for the exponents are
y= 1.240, v=0.630, a=0.110, P=0.325, 5=4.815,
and 6=0.50, and we expect the combinations re-
ported in Table I to be universal. We shall now
consider the experimental detei niinations of the
quantities involved.

k Tg=C, H r™=1 HSD'/s (5)

B. Order parameter and coexistence curve

Along the coexistence curve (H =Q, t ~0), whose
equation is

M =B(—t)&,

we have

ktt TX=C ( —t)

AC =k~ ( t)—a
(where the ellipsis again represents regular part),

4=to ( —t) ".
All these formulas hold asymptotically close to the
critical point. Further away, multiplicative correc-
tive factors of the form

We have deliberately chosen magnetic notations
to stress an important problem. The exact order
parameter is not known in the case of binary fluids
(it might be mass fraction or volume fraction or. . .)
as well as in pure fluids. This is of little importance
as far as only exponents are of interest but it makes
it impossible to assign an amplitude to the order
parameter or to the susceptibility without introduc-
ing an arbitrary factor. This factor cancels out in
the final relations but one has to take care of using
coherent conventions throughout. In fact, any
quantity linear in the concentration can be used as a
"practical" order parameter. We must therefore
keep in mind which parameter we use. This arbi-
trary choice will not, however, affect the value of
the amplitude combinations defined above. If we

TABLE I. The expected universal amplitude combinations, their theoretical values and the
experimental values determined for the nitrobenzene —n-hexane mixture.

C+

Universal
combination RG value

4.5'

HTS value

5.03"

Experimental value
(this work)

4.3+0.3

0
A+C+

g2
g +

g +g + i/3

Q2z+z+ =g+c = o C+
Z+ =C+aa'-'

C+ koQ2= c

1 91'

0 066'

0.27

17'

1.96

0.059'

0.25'

0.65

1.21b

1.9+0.2

0.050+0.015

0.27+0.03

0.73+0.05

1.75 +0.30

1.1+0.30

'Reference 3.
"Reference 4.
'Reference 5.
Reference 6.

'Reference 7.



G. ZALCZER, A. BOURGOU, AND D. BEYSENS 28

choose the volume fraction y, we shall define

8~= —, lim(yi —yz)
~

t
~

~=B
t —+0

(12)

C. Susceptibility

(13)

The conjugate field is the proper chemical poten-
tial difference (p ) of the components and
X=(Bc/Bp)~ z.. However, a chemical potential is
not directly measurable and one has to deduce the
susceptibility from the mean square of the order-
parameter fluctuations. This can be readily done by
optical means, at the expense of several additional
parameters, among them the coupling factor be-
tween the refractive index and the concentration
fluctuations. This factor is known not to be the
bulk derivative, as assumed in the Einstein theory.
Indeed, we can calculate the increase of polarizabili-
ty due to a fluctuation which is directly related to
the bulk derivative, but there is no universally ac-
cepted formula for the scattered electric field. For
a discussion of this point see, e.g., Ref. 8. But this
correction is obviously independent of the nature of
the fluctuation. Hence the following scheme, al-
ready used in Ref. 9. (i) Find a fluctuation that
couples with light and whose absolute amplitude or
related susceptibility is known. (Practically, this is
the Brillouin doublet. ) (ii) Record both lines at the
same time, in identical geometrical conditions but
in a way they can be separated (Rayleigh-Brillouin
spectrum). (iii) Deterriiine the bulk derivatives.

This eliminates systematic errors but involves
many parameters, so that the final statistical uncer-
tainty cannot be expected to be small. When
Rayleigh-Brillouin spectra are not available, one can
deteiniine one amplitude for each forni of the Ray-
leigh factor. This allows comparisons between dif-
ferent mixtures but not directly with theory.

The light scattered at a transfer wave vector q by
a liquid mixture consists of three contributions
(neglecting Raman, etc.) from the three indepen-
dently decaying thenriodynamic parameters: con-
centration y, entropy S, and pressure p, with the in-
tensities (omitting geometrical factors)

r

77 g BnIi(q)=IO ~ Sn . «(rI» ka&
go l

'2
Pl

Bl
'2

Bn

Xi
(14)

The intensity of the entropy line is quite negligible
in this mixture compared to that of the concentra-
tion one, which can be confounded with the whole
Rayleigh peak. We therefore have

BM
BH

r r

Bn By
Bq& BM,

Bn
(15)

Bp

s, q

Using the foiiiiulas

Bn' Bn' Bp

Bp Bp Bp

Bn BT Bpn
Bp Bp

and
r

1 Bp 1

p Bp, pv
(17)

where v is the sound velocity, we get
2

Bq

2' Bn P BT

2 r

~ C+t i'
Bq

pU
kii T, BM

2

(18)

If we define
'2

relative to the variable i, and X; the susceptibility
associated with the variable i. Therefore k&TX; is
the amplitude of the theriiial fluctuations of the
parameter i T. he coupling of this fluctuation with
light is expressed by the factors S„(Bn /Bi ), where
S„ is unknown but is a function of n only. G;(q) is
the interference teiiii and is the Fourier transforiii
of the noiixialized correlation function of the vari-
able i. Except for the concentration fluctuations
close to the critical point, G;(q) is equal to unity
(see below). Therefore, far enough from the critical
point, the ratio of two lines can be written as

where Ao is the light wavelength in vacuum, Bn /Bi
the bulk derivative of the squared refractive index

c+ =c+ (19)
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we can notice that

C+ C+
(2Q)

and therefore the choice of the order parameter
does not change the value of R,+.

D. Specific heat

Direct specific-heat measurements cannot be per-
fornied very near a critical point because of the con-
tradictory requirements on the temperature jump
which must be much smaller than the temperature
difference to T, but large enough to allow signifi-
cant measurements. On the other hand, the weak-
ness of the exponent and the importance of the
background make the measurements very close to
T, compulsory. We can make an indirect deter-
mination, however, by separating the theriao-
dynamic forixiula

kii T
I (k, g)=R k Qx(k, g'),

6n. g

where g is the shear viscosity and, using x =kg,

(23}

Qx(x)= — 1+x + x ——tan x1 2

4 2 x

(24)

transforiri G(k, g) of the correlation function. The
deterinination of g can be perfoi-ined by varying ei-
ther the scattering wave vector or the temperature.
The same infoiiriation can also be obtained in an ex-
perimentally simpler way through turbidity mea-
surements' (the integral over angles of the scattered
intensity}. A quantitative measurement of g re-
quires a precise knowledge of the correlation func-
tion which has been available only recently. '

The linewidth of the order-parameter fluctuation
is also a function of g. The previously admitted
function was obtained by Kawasaki, ' ' using
mode-coupling techniques:

C M
—Cr ~——apVT,

P

with

1

V dT

C'~ ——VT,
p~

crit
p

into regular and critical parts; hence,
r —1

(21)

(22)

Originally the parameter R was believed to be unity.
The value R = 1.2 was then proposed
(renornlalization-group theory) and some experi-17

mental data agree better with the former' or the
latter' value.

Very recently, using a fixed dimension RG calcu-
lation, Paladin and Peliti proposed the modified
version:

Qpp(x)=(x +1)" [Qx(x)]

The theiinal dilatation coefficient is directly derived
from density measurements. These can be per-
forrried either by volumetric methods or through re-
fractive index detei:iiiination, the latter method af-
fording much better perforniances. ' It is a little
less direct because the refractive index anomaly
arises, in principle, not only from the density anom-
aly but also from the fluctuations. Two contribu-
tions are expected. " One is in t "and was demon-
strated to be negligible through flow birefringence
measurements. ' The other is unfortunately also in
t and only the cross check of both methods, as in
Appendix C, allows us to estimate it as negligible.

E. Correlation length

The correlation length appears in two different
processes, one static and one dynamic. The static
scattered intensity is directly related to the Fourier

where x„=y„/v=O.Q635 and with R = 1.075.

III. EXPERIMENTAL REMARKS

For sake of clarity, the experimental details have
been deferred to the appendixes. Even then they
will be only sketched since most of them have al-

ready been described in other publications. The
point we want to stress here is that all the measure-
ments have been perfornied using the very same
sample, except for those at varying concentration
and for volume measurements, which could, howev-
er, be calibrated by comparison with the reference
cell.

Indeed, the amplitudes have often been seen to be
strongly dependent on impurities, and it is some-
times difficult to match the amplitudes measured in
different laboratories.

This sample was in a quartz cell, sealed under
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vacuum, of cylindrical shape with an inner length
of 20.0 mm and an internal diameter of 18 mm.
The liquids were of spectroscopic grade and filtered
through 0.2-pm Tefion filters. The experimental
concentration was 0.509+0.002 weight fraction of
nitrobenzene. It turned out in the study of the
coexistence curve that the critical concentration was
rather 0.525+0.005. This difference clearly does
not affect the measurements in the diphasic region
and those above the critical point only in a very
small temperature range, which can be estimated as

1/P

=2X10 ' K.

Therefore, all data closer than —10 mK had to be
removed; they moreover showed systematic
discrepancies with respect to current behaviors (see
Appendix D).

IV. AMPLITUDE COMBINATIONS

than one experimental standard deviation in the
worst cases. We consider this as fairly convincing
evidence of the accuracy of these theories.

We have also deterillined the value of the dynam-
ical constant

Rx ——0.99+0.05

or

Rpp
——0.98+0.05

according to whether we use the Kawasaki or
Peliti-Paladin forlllulations. This value is in good
agreement with the original mode-coupling predic-
tion and disagrees with the renorilialization-group
one (1.20).

The comparison of the Rayleigh-Brillouin and
turbidity measurements also allows the deterirlina-
tion of the light-scattering prefactor S„. The most
widely used folills for this factor are the following:

Einstein

We have detelillined in the appendixes

8 =0.77+0.02,
C+ =(2.8+0.4) X 10 m

A+=(1.Q5+Q. 15)X 10 m
Rocard

2

=0.89,
(n '+ 2)(2n '+ 1)

S„'C+ =(2.45+0.04)X1Q "m',
S„'C, =(0.57+0.02)X10 "m',
g'o+ ——(2.65+0.07) X 10

go =(1.4+0.1)X1Q ' m,
S2(QDg~ —i)—i —(0 29+Q Q5) X 1Q

g'(BD' s) " ~=(0.93+0.10)X10

Hence, we can deteriliine the values reported in
Table I. It should be noticed first that the differ-
ence between both theoretical values is usually
smaller than the uncertainty on the experimental
value. Therefore we are not able to claim that one
theoretical approach is in better agreement than the
other. The only exception is the ratio C+/C
where the renoiillalization-group (RG) value agrees
significantly better with our data.

The large uncertainty on the amplitude A + led us
to construct the combination R~+R, which is
free of this variable to have a closer check of the fit
between theory and experiment. Except for the ex-
ception quoted above, the difference between the
theoretical and experimental value is hardly bigger

S„= =0.73,
n +2

while we get S„=0.94+0.08, about midway between
Einstein's and Yvon's values. This value also en-
ables us to deterilline the amplitude of the critical
isothei iii

D =(1.70+0.7)X10 m

V. CONCLUSION

We have detellllined experimentally the ampli-
tude of the susceptibility and correlation length
along the three principal trajectories of the phase
diagram: critical isochore, coexistence curve, and
critical isotheirll. As far as we know, no data on
the critical isotherin has even been obtained previ-
ously. We have also deteilliined the amplitude of
the coexistence curve and that of the specific heat
along the critical isochore. These amplitudes al-
lowed us to compute universal amplitude combina-
tions. The experimental values are all in agreement
with the renoriaalizaton group theoretical predic-
tions. Except for the combination C+/C they are
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also in agreement with the high-temperature-series
ones. Moreover, we have performed linewidth mea-
surements along the critical isochore which allowed
us to determine the dynamic constant R, found to
be close to unity, in agreement with the original
mode-coupling theory and in disagreement with the
present renormalization-group theory. Let us recall
finally that all the measurements have been per-
formed in a single cell or recalibrated according to
that cell so that drifts associated with impurities
should be minimized.

APPENDIX A: COEXISTENCE CURVE

1. Method

IACOmlhg

beams
m0v lh9

lens

FIG. 1. Schematic representation of the setup used for
measuring the refractive index of the mixture. The cell
can be moved vertically in order to investigate both
phases.

Determining the coexistence curve of a mixture
using a single sealed cell involves measuring at dif-
ferent temperatures a parameter directly related to
the concentration in each phase. As already noted,
the refractive index is an obvious choice for such a
parameter. We choose a refractometric method,
rather than an interferometric one because very
high accuracy was not needed and because it is
much easier to use when absolute values are desired.
The cylindrical shape of the cell and the necessity to
investigate both phases dictated the setup (Fig. 1).
Two thin parallel light beams are sent through the
cylindrical lens made by the cell. The image of the
focus is made on a remote screen by a lens placed
on a translation stage. The position of this lens al-
lows one to deterriiine the focus and therefore the
refractive index of the fluid in the cell, at the level
of the beams. The cell is immersed in a therniostat-
ic water bath (stability 1 mK) and mounted on a
vertical translation stage which allows the investiga-
tion of both phases. The absolute accuracy on a
single measurement is only about hn -0.01 because
the distances were difficult to measure accurately.
However, a single point calibration (mixture just
above the critical point, see below) allows us to gain

one order of magnitude. Moreover, the differences
between two measurements is limited only by the
uncertainty on the position setting, which corre-
sponds to b,n=4X10 . The refractive index was
measured in each phase at different heights and no
significant gradients have been observed.

2. Results

TABLE II. Difference of refractive indices of the
two phases below T, .

bn (10 )

1.1 x10-4
20 X10
2.8 X10 '
4.5 x10-4
4.85 X 10
7.0 x10-'
1.1 X10
1.62x10 '
2.02 x 10-'
2.82 X 10-'
3.82 x 10-'
3.89x10 '
4.66X 10-'
6.17x 10-'
8.16x 10
1.11x10-'
1.47x10-'
1.84x10 '

156
194
215
245
243
271
316
351
380
416
472
477
495
546
610
680
745
802

The refractive index data are given in Table II.
A first evidence is that the cell is not exactly at the
critical concentration. Indeed the meniscus ap-
peared near the bottom of the cell. From the extra-
polation of the diameter, we can deduce a more ac-
curate value of the critical volume fraction 0.377 in-
stead of 0.363. ' The critical temperature is there-
fore -2 mK higher than the phase-separation tem-
perature.

The difference data have been fitted allowing the
critical temperature to vary within 0.01 K. A first
fit, to a single power law with a fixed exponent,

ni n~ 2B„~ t=—
~

showed a systematic distortion. A corrective factor
(1+a

~

t
~

) greatly improved the agreement with
only a small change in B„(Fig. 2). Further im-
provements of the function such as linear or 2P-
power terms are therefore meaningless, though not
excluded in principle. The residuals of the fit are
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-2

I

10-4
I

10 3

~ ~ ~

FIG. 2. Residuals of the fit of the refractive index

difference data with the f
0.325

„~ t
~

[1+a
~

t [ ] withe„=0. 140 and@=3.3.

n = 1.3741+0.1989'—0.0214

which leads to

T,p

Hence we get

=0.183+0.002 .

8~ =0.77+0.02 .

reported in Fig. 2. The retained v 1

B„=Q.140+0.002 .

We have also m easured the refractive index for dif-
an 5890 A, usingerent volume fractions at 22 C and 5, '

g
an bbe refractometer (Table III). Th
fitted b

e . e data can be

APPENDIX 8:
RAYLEICiH-BRILLOUIN SPECTRA

Ray eig - rillouin spectra in this sam le h d 1-

read been o t
pe a a-

the de ol
y tained as a by-product of th destu yof

epo arized Rayleigh scatterin . H
since t e

'ng. owever,
e t e free spectral range (FSR) of t e

'

ferometer was o
e o t e inter-

as optimized for this study (FSR=78
GHz), these spectra were of rather poor quality. At
temperatures greater than 30' (T —T
Brillouin doubletou et was clearly in evidence (see Fi . 3)
but its intensit coul

see ig.

because of th

'
y not be measured accurat 1

e difficult evaluation of the back-
aey

ground and of the Rayleigh win . Big wing. By using the
same approximations for all spectra thra, e variation

~e studied, and is reported in Fi
conclusision is that no background tei-i@i in the Ray-

e in ig. 4. The

eigh line is visible and that Eq. (15) app ies.
Therefore we recorded 'g-

rillouin spectrum using a FSR of 5. z at a
temperature of 41.4 'C (T
o revit we dfb

—T,=21'C). For sake

setu
y, o not repeat the descri t' f

p which can be found in Ref. 25. The s
piono t e

is shown in Fi . 5.
e . . e spectrum

a value

'n ig. . Integration of the lines 1 d
'

es easto

w i e the Brillouin shift gives the s eed of s

3. Literature U =1140 ms

T e data of Ref. 22 have also be 1een ana yzed
an, when fitted to the sam fan w same orniu a, give

C ' & C

are th f
, a= . l, and

e erefore in excellent agreem t 'then wit our result.
I

(a. u. ) N H system
q = 2.03x1Q cm

The other arparameters involved in Eq. (18) will e

TABLE III. R ~efractj. ve index data above T
volume fre fraction of nitrobenzene (NBZ). The can

ve, vs t'e

represented b h

+ 0.1989'—0.0214
y t e function n=1= 1.3741

5890 A
n 22C +5 X 10 'QNBZ

15—

10—

T-T,=38. I K

(x36.5)
1.3741
1.4213
1.4326
1.4427
1.4488
1.4593
1.4682
1.5516

0
25
30
35
40
45
50

100

I

-6 -4 -2 0
v(6Hz)

FIG. 3. Ra lei h-y 'g -Brillouin spectrum recorded
'

h
free spectral range of 78 GHz.
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IR/2II

100

APPENDIX C: REFRACTIVE INDEX
AND VOLUME MEASUREMENTS

As explained above, the specific heat was not
directly measured. Instead we determined a change
of density (or volume), taking advantage of the for-
mula

dT.
C M= —Tc

1 ap a

10

The density itself was deduced from refractive in-
dex and volume measurements.

10

I I I I I I I I

10-'

FIG. 4. Rayleigh-Brillouin ratio measured from spec-
tra recorded with a FSR of 78 GHz, showing the pure
power-law behavior. The square denotes the spectrum
recorded with a FSR of 5.92 GHz.

discussed in the following appendixes.
We finally get

C~ =(2.8+0.4)X10 m

Or, using a more usual terininology,

k~T,
c+ =144 Jcm

1. Refractive index

n(T) n(TO)=—
.P

with To—T,=20'C. The results of the fit are re-
ported in Table IV.

The data of the mixture are reported in Table V
and have been fitted according to (Cl),

The refractive index has been measured using the
simple interferometer described and used in Ref. 26.
The accuracy is of the order of magnitude of some
10 with the 2-cm sample length we used. The re-
fractive indices of the pure components have been
fitted to a linear variation:

dn
n (t) —n(to) = p

Bp

dT g+
(t +aa t + + )dt

dp a 'o

x106
3
x10'

1

~0

f.

~l
e~

Aa ~ \0
~, %r

~ ~ ~ ~ I
~

~ iong ol ~
~ ~

J

\ ~

Og

1,

\

~~

~~

I 6Hz

FIG. 5. Rayleigh-Brillouin spectrum recorded at 41.1 C with a FSR of 5.92 GHz.
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TABLE IV. Values of the parameters determined by refractive index and volume measure-
ments (see text). Fits were performed to b,n =T,(dn /d T)ggt +R„t ' and

hp=pT, [(1/p)(ap/aT) IIt]t +R,t"".
reg

a =0.110 20 C . reg

1 Bp

M

n =0.110

System

Nitrobenzene

n-Hexane

6328 A
20'C

1.5480'

1.3737b

—4.827'+
0.005

—5.376'+
0.007

—5.58+
0.04

1.16+0.09

1.2037

0.6603"

—8.07+0.02'

—12.60+0.06

(10 4 K ') (10 ) (103 kgm ) (10 'C ') (10 ')

Nitrobenzene 1.444g

plus
n-Hexane

0.8753"
0.8635

( —11.82)' 2.79+0.08

'Reference 27.
Cited in Ref. 28.

'This work. In order to obtain absolute values, add
due to the cell expansion.
Cited in Ref. 22.

'This work. For absolute values, add l. %
—(8.16+0.04) X 10 K ' reported in d.
~This work. For absolute values, add 1%
—(12.8520.05))&10 K ' reported in d.
gThis work.
"Ideal value.
'Value imposed to 1.08 times the ideal value. See text.

+ 2.5&10 K ', i.e., the correction

uncertainty and compare with

uncertainty and compare with

where the second ellipsis represents regular ternis.
In fact, no correction to scaling was found neces-
sary and the data were well described by

- reg

n (t) n(0) = T, —
Jp, M

The results are listed in Table IV, and the residuals
of the fit are shown in Fig. 6. Qne can notice that
the regular part

Bn "dn

where the ideal part is deduced from the pure com-
ponents measurements,

= —(5.177+0.007)10 ' K

2. Volume measurements

In order to check that only the density is respon-
sible for the critical behavior of the refractive index,

we also perfoiined volume measurements.
The dilatation of the mixture has been studied us-

ing the usual reservoir and capillary method. Qw-
ing to the small volume of the capillary a limited
temperature range can be studied at a time (-2 K).
An auxiliary reservoir allowed us to adjust the
amount of liquid without unsealing the cell. The
pure components exhibited a linear expansion (see
Table VI). The nonlinearity of the expansion of the
mixture cannot be detected in a single temperature
interval but the average slope changes with the
mean temperature (see Fig. 7). These measurements
are less precise than refractive index ones.

Therefore, it is impossible to deduce simultane-
ously the amplitude of the regular and singular
parts. However, while the singular part of the re-
fractive index might arise from a different process
than the one of the density, this should not be the
case for the regular part. So we imposed the regular
part to be 1.08 times the ideal value as found in the
refractive index data fit. The ratio of the singular
to regular amplitudes for volume measurements is
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First series
bn (10 )

Second series
b,n (10 )

TABLE V. Refractive index variations along the crit-
ical isochore.

T ('C) M (cm) T ('C)

TABLE VI. Dilatation of the nitrobenzene —n-

hexane system near T, . T, =19.522 C (add + 0.5 C to
obtain absolute values).

6.06 X10-'
5.31 X 10-'
4.51 X 10
4.908X10 '
3.998X10-'
3.173X 10
3.174X 10-'
2.445X10 ~

1.902 X 10
1.384X 10-'
1.086 X 10-'
1.085 X 10
7.703 X 10-'
6.323 X 10-'
5.506 X 10-'
4.609 X 10
3.353 X 10-'
2.749X10 '
2.174X 10
1.599X10-'
1.033X10-'
7.512X10-
4.71 X10-'
1.93 X10-'

0
1.111
1.710
1.714
3.081
4.250
4.292
5.368
6.171
6.938
7.377
7.373
7.832
8.035
8.153
8.283
8.465
8.552
8.635
8.715
8.796
8.835
8.875
8.513

2.665 X 10-'
1.087 X 10
8.06 X 10-4
5.54 X 10
4.19X 10-'
2.85 X 10-4
2.09X 10
1.27 X 10-4
0.73 X 10-'
0.63 X 10-4

0.004
0.242
0.272
0.307
0.326
0.342
0.351
0.361
0.367
0.376

=(4.72+0.08) x10

From the literature, the shift of T, with pres-
sure is obtained

= —(1.64+0.08)X10—' K Pa

1.13+0.15 times that found in refractive index mea-
surements. This proves that the measured refrac-
tive index anomaly arises from the thermal expan-
sion only. However, by comparing the changes in n

and p, we can deduce

Set 1

29.7125
29.4330
29.5660
29.6998
29.8340
29.9693
30.1079
30.2445
30.3845
30.5239
30.6700
30.8098
30.9530

Set 2

23.0515
23.1498
23.2487
23.3487
23.4495
23.5505
23.6515
23.8036
23.9590
24.1039
24.2589
24.4050
24.S625

Set 3
20.3215
20.4059
20.5015
20.6298
20.7625
20.8966
21.0288
21.1635
21.2987
21.4342
21.5696

4.575
3.780
4.160
4.530
4.895
5.275
5.645
6.015
6.395
6.770
7.165
7.545
7.935

3.845
4.120
4.38S
4.645
4.505
5.175
5.450
5.855
6.265
6.650
7.060
7.445
7.860

3.820
4.030
4.265
4.580
4.930
5.265
5.605
5.945
6.295
6.645
6.985

Set 4

19.7605
19.6802
19.5993
19.5599
19.5530

Set 5
19.6304
19.5484
19.5330
19.5514
19.5690
19.5845
19.6102
19.6434
19.6824
19.7153
19.7575
19.8413
19.9260
19.8271
19.7429
19.6601
19.5786
19.5465
19.5306
19.5443

5.750
5.510
5.300
5.195
5.170

5.330
5.130
5.085
5.125
5.155
5.205
5.260
5.335
5.445
5.525
5.630
5.820
6.050
5.805
5.590
5.395
5.180
5.100
5.060
5.080

Hence we get

A„=—+ a(1 —a)
Bn

Bp
10 5 10

~ ~ a
0

10-' 10-2

~ ~

10 '

=(1.05+0.15)X10 m
FIG. 6. Residuals of the fit of the refractive index

along the critical isochore.
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g x(mm) 5
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I I I

1.5
T- T~ (K)

FIG. 7. Dilatation of the mixture at different temperatures observed by a volumetric method.

APPENDIX D:
TURBIDITY MEASUREMENTS

The turbidity alone does not allow the determina-
tion of C+, C, or C„but their product by the
light scattering amplitude (Bn /BM)~ z., which is

not a mere derivative and is not known. However,
turbidity measurements can be useful in two dif-
ferent ways. The first is that close to the critical
point the turbidity is also sensitive to the correlation
length g. It is therefore an easy way to measure the
correlation length amplitude since we know an ap-

1 —10—

0.1—

0.01 —0.1—

I

10-2 10-'

I I I I

10-' 10-' 10-' 10-'

FIG. 8. Turbidity along the three principal trajectories. Critical isochore: R, 5-mm cell; 0, 2-cm cell. Coexistence
curve: 0, 5-mm cell; 0, 2-cm cell. Critical isotherm: X, 5-mm cell (inner scales). The

~ P ~

and
~

t
~

scales are related
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TABLE VII. Coefficients of the approximation to
Bray's structure factor [Eq. (Al)].

1.040056

1.058 947
1.053 932

1 —~=0.98425
2
1.554 213
1.627 419

propriate form of the correlation function. ' The
second is that the ratios of turbidity amplitudes do
not depend on (Bn /t)M)~ T and that the ratios
C+/C or C+/C, can be directly measured. Tur-
bidity measurements are straightforward: A light
beam of constant intensity is sent through the mix-
ture and the emergent intensity is measured. The
original formulation of the correlation function be-
ing very cumbersome, an approximation valid
within 1% has been worked out' '

3

G'(Xo) = g c; I [(I+2a; Xo) ' —1]
i=a

&& [I+a; Xo(2—pi )

+a Xo(2+@ +p. )]
—2p;a; Xo(1+a;Xo) I

&& [a Xop;( I +p; )(2+p; ) ]

with Xo ——v 2kog. The a s are given in Table VII.
The turbidity has to be fitted to the function

r

277 ~p t)n (1+t)C' t rG'( v 2—kop'),

3

G(kg)= g C;(1+a;k2$~)
i=1

which can readily be integrated over angles to give

TABLE VIII. Turbidity along the critical isochore.

r (cm ') r (cm')

1=2 cm
9.74X 10-'
5.88X10-
2.90X 10-'
2.17X10-'
1.44 X 10-'
7.54X 10-'
4.81 X 10-4
4.16X 10-'
3.75 X 10-'
3.45 X 10-'
2.49 X 10
2.15X10-'
1.81 X 10
1.6OX 1O-'
1.90X 10-'
1.19X 10-4
1.06 X 10-4

I =0.5 cm
4.22 X 10-'
4.21 X 10-4
3.53 X10-'
3.52 X 10-'
3.23 X 10-'
3.22 X 10-'
2.93 X 10-4
2.92X10-'
2.67 X 10
2-67 X 10
2.45 X 10
2.45 X 10

8.7 X 10-'
1.91 X 10-'
4.61 X 10-'
6.60 X 10-'
1.08 X 10-'
2.09 X 10
3.40X 10-'
3.93 X 10
4.04 X 10-'
4.39X 10-'
5.69 X10-'
6.37 X 10-'
7.24X 10-'
7.88 X 10-'
8.62 X 10-'
9,59X1O-'
1.04X 10'

3.41 X 10-'
3.59X10-'
4.31X10 '

4.31X10-'
4.88X10 '

4.68 X 10-'
5.26 X 10
5.26 X 10
5.46 X 10-'
5.46 X 10-'
5.64X 10-'
5.84X 10-'

1=0.5 cm

2.20 X 10-4
2.20 X 10-4
1.89 X 10—'
1.88 X 10-'
1.52 X 10-'
1.52 X 10-4
1.52 X 10-'
1.32 X 10-'
1.09 X 10
1.08 X 10-4
8.91 X 10-'
8.84 X 10-'
7.20 X 10-'
7.10X 10-'
5.36X 10-'
5.29 X 10-'
3.24 X 10-'
3.17X 10-'
2.87 X 10—'
2.80 X 10-'
2.53 X 10-'
2.08 X 10-'
2.05 X 10-'
1.43 X 10-'
9.90X 10-'
9.56X 10-'
8.53 X 10-'
8.19X 10—'
4.78 X 10-'
4.44 X 10-'
1.71 X 10-'

6.05 X 10
6.05 X 10-'
6.88 X 10-'
6.88 X 10-'
8.41 X 10- '

8.64X10-
8.64 X 10- '

9.58 X 10-'
1.03 X 10'
1.06 X 10'
1.16X 10
1.16X 10
1.30X 10
1.30X 10'
1.54 X 10
1.54X 10'
1.33 X 10
1.86 X 10
1.97X10
1.97 X 10'
2.10X 10'
2.18X 10
2.22X10'
2.52X10'
2.74X1O'
2.74X10'
2.93 X 10
2.99X 10
3.36X 10'
3.36X 10'
4.38 X 100
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TABLE IX. Turbidity along the coexistence curve.

v (cm ')

TABLE X. Turbidity along the critical isotherm.

r (cm ')

l=2 cm
9.27 X 10-'
3.12X 10
2.33 X 10-'
1.86 X 10
1.15X 10
8.70 X 10-4
6.69X 10-4
5.36X 10-4
4.03 X 10-4
2.90x 10-'
2.08 x 10
1.60X 10-'
1.16X 10

2.54 x 10-'
1.29 x 10-'
1..55 x 10-'
2.07 x 10-'
3.30X 10-'
4.96X 10-'
6.96X 10-'
8.26 X 10
1.15X 10-'
1.64x 10
2.36X 10
2.90x 10-'
3.86 X 10-'

4.22 x 10-'
4.03 X 10-'
3.50X10 '
3.28 x 10-'
3.18x 10-'
2.96X 10-'
2.46 x 10-'
2.38x 10
2.03 X 10
2.00 X 10-'
1.50X 10-'
1.34X 10-'
1.05 X 10-'
0 99X 10
0.81 X 10-'

0.39
0.33
0.31
0.45
0.73
0.65
0.85
0.93
1.39
1.43
2.11
1.91
2.7
2.95
3.3

I =0.5 cm
1.40 X 10-4
1.33 X 10-4
7.40 X 10
5.95x 10
5.51 X 10-'
4.38x 10-'
2.50X 10-'
2.26 X 10
1.38x 10-'
1.32 X 10-'
5.46 x 10-'
3.86 X 10
1.82 X 10-'
1.52 X 10-'
8.23 X 10'

3.92 x 10
3.52 X 10
4.52 X 10-'
5.71x 10-'
8.10X 10-'
8.91 X 10-'
1.01
1.15
1.27
1.07
2.15
1.93
3.01
3.21
3.51

The data can also be interpolated at the critical tem-
perature, providing a way of determining both D
and g'p (see Table X). The analysis is the same, pro-
vided we replace t by (M/B)'~~. We therefore get
(instead of S„C+-)

S„(5DB ') ' =(0.29+0.05) &( 10 m

(instead of gp )

gp(BD' s) " ~=(0 93+0.10)&(10 ' m .

APPENDIX E:
CORRELATION TIME MEASUREMENTS

where the superscript i denotes the trajectory
(i =+,—,C).

Since the reference cell was not exactly critical, it
could not provide accurate data close to the critical
point, which are important for the determination of
the correlation length. Therefore we also used data
from a variable concentration cell, the optical path
of which was 0.5 cm. The range in concentration
spanned was P =(+4.2X10 ) and data were taken
from above the critical isotherm down to the coex-
istence curve. These data are a by-product of a
nonequilibrium experiment.

We fitted together both series for the critical iso-
chore and the coexistence curve (see Tables VIII
and IX and Fig. 8) and got

S„C~ ——(2.45+0.04) )& 10 m3,

S„C~ ——(0.58+0.02) &(10 ~9 m3,

g p ——(2.65+0.07) )& 10 ' m,
g'p ——(1.4+0.1)&(10 ' m .

Spectral measurements of the Rayleigh line in
this sample had already been obtained. However,
we felt the need of more precise data. We used for
that a clipped photon correlator (ATNE). The
scattering angle was 90' and the incident radiation
was issued from a small power He-Ne laser
(A, =632.8 nm). No departure from an exponential
decay was noticed. The correlation times are re-

10

5

~ ~
~ ~

~
~

~ ~ ~

~ ~ ~
q+ ~

~ ~ ~

j ~ ~

~ ~

-10

I

10 3

FIG. 9. Residuals of the fit of the linewidth data to
the Kawasaki function with R =0.99.
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TABLE XI. Correlation time of the concentration fluctuations along the critical isochore.

5.52 X 10-'
5.9 1 X 10-'
6.31 X 10
6.71 X 10
7.12X 10-'
8.02 X 10
9.46 X 10-'
1.081 X 10-'
1.2X 10
1.2X 10
1.588 X 10-'
1.614X 10
1.540 X 10-'
1.467 X 10
1.409 X 10
1.328 X 10
1.247 X 10
1.165X 10
1.165X 10
1.165X 10-'
1.084 X 10-'
1.084 X 10-'
1.084 X 10
1.003 X 10
1.003 X 10-'
1.003 X 10
9.22 X 10-'
9.22 X 10
8.40X 10-'
7.59 X 10-'
6.47 X 10-'
6.47 X 10-'
1.202 X 10
1.008 X 10-'
8.38 X 10-'
6.83 X 10-'
6.02 X 10-'
6.02 X 10-'
5.70X 10-'
5.06 X 10-'
4.73 X 10-'
4.42 X 10
4.09 X 10-'
3.77 X 10-'
3.44 X 10-'
3.36X 10-'
3.12X 10

r (ps)

48.1

47.1

44.8
42.2
37.7
35.8
31.8
31.9
27.9
27.9
22.7
19.8
25.9
25.1

25.6
24.3
28.4
30.4
32
27.5
30.7
27.6
27.5
35.2
32
30.9
35.2
28.7
36
36.6
40.3
46.2
26.0
32.5
36
42.4
43.2
43.2
45.3
5 1.2
49.8
5 1.2
59.2
58.4
67.5
61.0
68.3

2.87 X 10-'
2.62 X 10
2.38 X 10-'
2.372 X 10-'
2.120X 10
2.120X 10
2.120X 10
1.864 X 10
1.604 X 10-'
1.413X 10-'
1.413X 10-'
1.215 X 10
1.215 X 10-'
1.027 X 10
1.027 X 10-'
8.43 X 10-4
6.59 X 10
6.55 X 10-'
3.69 X 10-4
3.69 X 10-4
3.69 X 10-4
5 80X 10
3 99X 10
7.61 X 10-4
9.42 X 10-4
1.120X 10
9.45 X 10-4
1.304 X 10-'
1.355 X 10-'
1.492 X 10-'
1.672 X 10-'
1.857 X 10-'
2.041 X 10—'
2.044 X 10-'
2.041 X 10-'
3.672 X 10-'
2.041 X 10
1.501 X 10
1.727 X 10
1.553 X 10-'
1.553 X 10-'
1.345 X 10-'
1.164X 10—'
9.50 X 10-4
8.09X 10-4
6.28 X 10
3.58 X 10

r (ps)

66.7
80.3
75.5
81.6
84
87.2
91.2
96

107.6
112
1 15.2
1 18.4
128
136
128
137.6
156.8
157.4
192.8
193.3
196
176.7
203.4
173.5
141.4
128.5
144.5
121.6
1 13.6
1 10.8
104
97.6
90
88
88.3
60
88
93.2

102.4
101.2
106
1 14.4
122
129.1
153
173.2
199.6

ported in Table XI. The data are in very good
agreement with those of Ref. 31.

Theyhave been fitted to both the Kawasaki equa-
tion (24) (see Fig. 9) and Peliti-Paladin foiiiiulas, us-
ing the value of g'0 detellllined by turbidity mea-

surements. The viscosity was deterrained in Ref.
32. However, a later check of the calibration of the
viscosimeter revealed a 5% systematic error on the
absolute values. The viscosity has therefore been
calculated using
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the values obtained,
y

g =goexp 1+t t

with tin ——1.36X10 P, E=3.58, and y„=0.043.
The only adjustable parameter was R. Since most
of the data lie in the hydrodynamic region, the
functions are very close to each other. Therefore,

Rtt ——0.99+0.05,

Rpp ——0.98+0.05,

are very close to each other. The uncertainty in-
cludes the error on g'o and q.
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