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The effects of the fractal nature of intermittent fully developed turbulence on the fluctua-
tions of passive scalars are assessed. Significant intermittency corrections to the '

3

(-power) law" for the length-scale dependence of the structure function and other laws con-
cerning fluctuation spectra are found. The implications of these findings on phenomena
found in the context of wave propagation through turbulent media are investigated. Inter-
mittency effect on scintillation of light sources, scattering of sound or electromagnetic
waves, and fluctuations in phases and amplitudes of these waves are studied theoretically
and compared to experiments.

I. INTRODUCTION

The aim of this paper is to study the effect of in-
terniittency' 3 in fully developed turbulence on the
spectra of fluctuations of "passive scalars. " By the
terni "passive scalars" we mean parameters of
the fluid that hardly influence its turbulent flow.
Examples of such passive scalars are temperature,
humidity, refractive index, concentration of contam-
inants, etc.

The motivation for our study is twofold. From
the theoretical point of view, which is our main con-
cern, we want to show that interniittency, which is
manifested as spottiness in the turbulent activity on
smaller scales, has interesting effects on the fluctua-
tions of passive scalars. Conversely, studying these
fluctuations, one can learn a considerable amount
about interniittent turbulence. From the practical
point of view we want to argue that many processes
of technological importance are appreciably influ-
enced by the interiiiittent nature of turbulence. In a
previous paper we concentrated on the effects
found in turbulent diffusion and suggested modifi-
cations to the classical Richardson's "—, (-power)
law" of the diffusivity as function of the length
scale. In this paper we shall concentrate on phe-
nomena involving wave propagation through tur-
bulent media. 9

The existence of intermittency in fully developed
turbulence calls for appreciable modifications of the
original Kolmogorov theory' for the inertial range
of turbulence. 3" ' This is unfortunate, because
that theory enjoys ingenious simplicity. In trying to
modify that theory one is faced with two competing
alternatives. The first is to go along the lines of the
Soviet school in correcting the statistical assump-

tions concerning turbulence. This would lead to
something of the nature of the so-called "log-normal
model. "" Some authors, including the present
ones, do not find this approach appealing. It sacri-
fices the simplicity without having a convincing
raison d' etre. A second approach which is original-
ly due to Mandelbrot is geometrical. ' It views fully
developed turbulence as a fractal. The present au-
thors prefer this approach because it allows one to
use scaling concepts combined with fractal statistics
to develop an approach which retains much of the
simplicity of the original theory of Kolmogorov.

The simplest model of turbulence which does jus-
tice to the phenomenon of inteiinittency is that of
"fractally homogeneous turbulence. "' ' Here one
is allowing for the increasing spottiness at small
scales by asserting that the turbulent activity is con-
centrated on a fractal whose dimension is less than
3. By assumption, the activity is homogeneous in
regions where it exists. Certainly this is a simplified
model. It is just the next step towards realistic
description after Taylor's concept of homogeneous
turbulence. As has been found experimentally, this
model agrees with experiments on the statistics of
the higher-velocity correlation functions at least as
well (if not better) as the "log-nornial" model. ' '
Owing to a paper by Frisch, Sulem, and Nelkin'
this approach is sometimes called the "P model. "
This model is however one way of visualizing "abso-
lute curdling"' and is not compelling. Another
physical view of fractally homogeneous turbulence,
which also led to an estimate of the fractal dimen-
sion has been presented by the authors. '

Throughout this paper we adhere to this model of
fully developed turbulence.

The scaling theory for passive scalar fluctuations,
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which is presented in Sec. II is quite general. The
applications considered in this paper, i.e., to wave
propagation, will be more restrictive. The reason is
that we are not interested in the problem of wave
propagation per se, but rather as a mean to investi-
gate the effect of intermittency on passive scalars.
We shall therefore work within the range of validity
of the Rytov approximation. ' This approximation
limits the discussion to shorter propagation paths as
discussed in Sec. III. The experiments we shall
compare with are all within the range of validity of
this approximation.

The structure of the paper is as follows. In Sec. II
we discuss the concepts behind the model of fractal-
ly homogeneous turbulence and the way to get vari-
ous predictions on its basis. In particular, we shall
obtain formulas for the fluctuations of passive sca-
lars. In Sec. III we discuss wave propagation in in-
termittent turbulence and obtain predictions con-
cerning the phenomena of scintillation of light
sources, scattering of sound and electromagnetic
waves, and fluctuations in the phase and amplitude
of sound and electromagnetic waves. In parallel to
the theoretical considerations we compare the results
to the experiments. Section IV offers concluding re-
marks.

II. PASSIVE SCAI.ARS IN FRACTALLY
HGMOCxENEOUS TURBULENCE

lp
(2.3)

One of the most commonly quoted manifestations
of the intermittent nature of turbulence is the long
tail in the correlation function of the viscous dissi-
pation, e(r ). Experimentally one finds

(e(r )e(r+ 7) ) = (e)'
l

(2.4)

where 1 is in the inertial range, ld « 1 « lp, and lp,
ld are the stirring and dissipation length scales,
respectively. (e) is the mean energy input per unit
mass per unit time. Within the model of fractally
homogeneous turbulence one derives this result with
the additional output that p=d D. This is d—one as
follows. '

The average dissipation {e( r ) ) will be caused by
viscosity at the length scale ld. We therefore write

where H( 1) is the probability that a volume of size
1 belongs to the homogeneous fractal. Since d ~D
we see that when the length scale decreases it be-
comes more difficult to find a piece of the fractal.
This is precisely the notion of spottiness or intermit-
tency.

B. Fractally homogeneous turbulence

A. Homogeneous fractals
lp

'd D-
Vd

V
ld

(2.5)

Consider a fractal object of size lp. From the def-
inition of the fractal dimension we know that upon
a change of length scale from lp to 1, where 1 &lp,
there result N objects that contain a piece of the
fractal. ' The relation is

(2.1)

where D is the fractal dimension. If all the objects
are similar (i.e., the fractal is uniform) we refer to
the fractal as homogeneous. For homogeneous frac-
tals it is straightforward to calculate the probability
that a volume of size 1" (where d is the Euclidean di-
mension) belongs to the fractal; this probability will
be extremely useful in what follows.

Since there are N objects of size 1", their volume is

lpNld= (2.2) 1(1„(lo 0

D r ~ d D
ld

2 2
Vd

V
ld

(2.6)

where v is the viscosity, Ud is the velocity difference
across an active region of size ld, and the factor
(ld/lp)d -D weights the probability that the volume ldd

belongs to the active, fractal region. Contributions
to the correlation function (,e(r ))e(r+ 1 )) can
come only from length scales of size 1 or larger. The
probability that both points r and r+ 1 belong to
activity of size 1 &1„&lp is -(1„/lp)" . In addi-
tion, when we know that both points r and r + 1

belong to the active region of size 1„, we have to
weight the probability that each point separately be-
longs to activity on size ld. This would give rise to
the scaling equation

(e(r )e(r+ 1 ))

and thus their probability of occurrence is their
volume divided by the total volume lp, or

The largest term in the sum is the one for which
l„=l. Taklilg this teil&, and using Eq. (2.5),
find
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(2.7)

The rate of disappearance, (,N ), can be always writ-
ten as

(X)=D((V8)'&, (2.11)
Comparing with Eq. (2.4) we see that p=d D—. Ex-
perimentally and theoretically' one estimates
0.25 &(M &0.5. The same exponent p will enter all
our forniulas below.

C. Fluctuations of passive scalars

In the next section we discuss a variety of wave-
propagation phenomena in turbulent media. All
these processes are sensitive to the nature of the
fluctuations of passive scalars, in particular of the
refractive index and of the temperature. As is ar-
gued in Sec. III, most experiments are analyzed in
terms of the structure functions of passive scalars
and their Fourier transforms. Denoting the value of
a passive scalar 8 at a point r by 8(r), the structure
function is written as

D (I)=([8( ) —8( +1 )]') .

The corresponding spectral density Ne(x. ) is defined

(2.12)

or Id -D/v, . The dissipation length scale for thel~'

energy cascade is defined similarly by Id ——v/ut . In
d

many applications D=v and therefore Id=Id. For
convenience we shall disregard their difference in
the following.

In the steady-state situation we can equate the
rate of transfer (or creation) on scale I with the dissi-
pation on scale ld. Therefore

1((

8,'
o

(2.13)

where D is the appropriate diffusion constant. The
length scale ld is found by equating the rate of
creation (or transfer) to the rate of dissipation at this
length scale,

2

cf d

lg

De(l)=am I 1 — @e(ir)1~ di~ .simcl 2
x.l

(2.9)

Thus the analysis of experiments calls for a
knowledge of the scaling behavior of the structure
functions. When intermittency is not taken into ac-
count, one finds the classical result for the structure
function De(l)-I / [the "—, (-power) law" ]. We
shall see now that this result is changed appreciably
when the effect of intermittency is included.

To find the scaling behavior in fully developed,
fractally homogeneous turbulence, we want to con-
sider fluctuations of linear size I, 8t. The main idea
is that inhomogeneities of size I appear as the result
of fluctuations in the fluid velocity across active re-
gions of size I, ut. There are no inhomogeneities
created in the inactive regions of the turbulent medi-
um. With this in mind we can write down immedi-
ately that the rate of creation of (8t ) must scale ac-
cording to

P 2d ~, )
I 8tvt

dt t lo I
(2.10)

where again (I/lo)" weights the probability to belong
to an active region.

In the inertial range these inhomogeneities then
break up to smaller scale structures due to the tur-
bulent cascade to small length scales. This subdi-
vision continues until the inhomogeneities disappear
due to molecular dissipation on a length scale Id.

or

l
Iji

Io
(2.14)

In a similar way we can find an expression for ut in
terms of (e). Equating the energy input on the
length scale lo, (e), to the energy transfer, on length
scale I (which only occurs in the active regions), we
find

I Ut(e)-
lo I

(2.15)

or
' —p/3

( &)1/311/3
lo

(2.16)

Using Eqs. (2.14) and (2.16) we have

8 (X)( ) '/ I (I/I ) (2.17)

I
De(1 )-

Io

p/3
8 —(N)(e) ' I /3 I

Io

(2.18)

Remember that 81 is the square of the passive scalar
fluctuations in an actiue region. Next we wish to
consider the structure functions De(l ) defined by
Eq. (2.8). As before, we find the scaling behavior of
De(l ) by weighting 81 by the probability of finding
an active region of size I:
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as a final foirli to be used below we write
' p/3

Dg(l) =Col /3

lo
(2.19)

c (a-) =AC~Ir "'(I—rl, ) (2.20)

where A is a dimensionless constant.
44Notice that the correction to the "—, (-power) law"

is very large (-20%). In Eq. (2.20) the correction
has been reduced to -5%. It is very unfortunate
that all the experiments on wave propagation in tur-
bulent media pertain directly to Eq. (2.20). If one
could measure Eq. (2.19) directly one could get a
much better probe of the intermittency corrections.
We shall see below that all the experiments at our
disposal are pretty rough and are not sensitive
enough to allow precise determination of p. Taken
as a body of data, however, they provide a strong in-
dication that intermittency corrections are signifi-
cant for wave-propagation phenomena.

III. WA VE PRQPAGATIQN
IN FRACTALLY HQMQCxENEQUS TURBULENCE

Random fluctuations of the temperature and
humidity of the atmosphere result in corresponding
fluctuations in the index of refraction. ' These
fluctuations are functions of position and time, so
that the index of refraction can be written as

n( rt)=1 +n (irt) . (3.1)

The propagation of an electric field E in the tur-
bulent atmosphere is governed by the equation

V' E+k (1+n i ) E=0, (3.2)

We see that the structure function contains a univer-
sal correction to the classical "—, (-power) law" for
passive scalars. It is straightforward now to find the
intermittency corrections to the spectral density
@~(lr) defined in Eq. (2.9). Using Eq. (2.19) we im-
mediately see that

V' gi+2Vgo V/i+2k ni-0 . (3.7)

is obviously independent of the fluctuations
ni(r, t). On the other hand g& is proportional to ni
through the solution

A. Scintillation of terrestrial light sources

The scintillation of light sources is caused by fluc-
tuations in the amplitude of light which has pro-
pagated through a distance L. In experiments the
mean-square fluctuation (Xi) is measured. To find
a scaling expression for this quantity, we take L to
be in the x direction, and define Bz(p) by

(3 9)

t/i&(r )= I d r'n~(r ')ED(r ')
2vrEo(r )

exp(ik
~

r —r'
~

)X
f
r —r'/

where Eo =exp go.
Writing gi(r ) =Xi(r ) + iS, (r ) where X, and S,

are the fluctuating logarithmic amplitude and phase,
respectively, it becomes clear that their correlation
and structure functions can be expressed in terms of
the refractive index structure function (2.19) or
(equivalently) the three-dimensional spectral density
(2.20). Similarly, the formulas for scattering of
waves are related to the structure function of the re-
fractive index.

We turn now to the various applications. As
mentioned before, most of the interIuittency correc-
tions are found to be rather small and most experi-
ments are rather rough. Our aim is to point out that
almost invariably one finds at least qualitative agree-
ment with our predictions and as a whole the data
seem to support this approach.

where k is the wave vector. Writing

E=exp(f) =exp(X+ iS),
and substituting in (3.2), one finds

V'g+(V f)'+k'(1+n, )'=0 .

In the Rytov approximation, one writes

(3.3)

(3.4)

p=fU i
—x2)'+(~i —~.)'l'".

We see that (X', ) =8~(0). The expression for B~(p)
which follows from Eq. (3.8) has been derived in
Ref. 9 with the result that B~(p) has the two-
dimensional spectral representation

B~(p)=2m f Jo(~p)F~(~)~de.(3.10)
(3.5)4= 4o+ 0i

and neglects Vgi compared to V go, to get the two
following equations:

V'@o+( V@o)'+k'=0, (3.6)
Fy(lr) =mk L 1 — sin —@„(Ir) . (3.11)

k . IrL
xI



PASSIVE SCALAR FLUCTUATIONS IN INTERMITTENT. . .

Using Eq. (2.20) in Eq. (3.11) we see that in the
inertial subrange of turbulence, i.e., when

l«&&A, L «lo, (3.12)

This result modifies the expression given by the
Kolmogorov theory for which p=O. There are in-
termittency corrections both to the k and L depen-
dence of &Xi &.

2. Experiments

An investigation of the scintillation of a terrestrial
light source was described in Ref. 23. A portion of
flat farmland was selected for its homogeneity of the
turbulent activity along the propagation length, and
a light source was located at various distances from
a fixed point. The fluctuations &Xi & as a function
of distance were measured. The experimental results
are reproduced in Table I. If one plots the data on a
double-logarithmic plot one can obtain a good fit to
the forinula &Xi ) ~ L ". Theoretically we expect
n=(11 +p)/6. A least-squares fit produced the
value p=0.68. As is seen from the table a best fit
with p =0 gives much worse agreement with experi-
ment. The value p=0.68 is higher than the usually
quoted upper bound on p, i.e., p&0.5. However,
the errors in this early experiment are quite large
and one clearly cannot hope to obtain precise infor-
mation on the value of p.

In other experiments the dependence of &Xi & on k
was deteriiiined. According to Eq. (3.13) we ex-
pect a dependence of k' "~ . In Ref. 24 the values
of &Xi & were determined for three values of k with a
fixed propagation distance L=1 4 km. These mea-
surements allow a comparison with theory without
any free parameter. The reason is that a double-

TABLE I. Fluctuations in amplitude of the light of a
terrestrial source at distance I. from the source. The third
and fourth columns were calculated by fitting straight
lines to a double-logarithmic plot of the experimental
data.

L (~) &X) &..„&X)&„=o &X) &„=o,68
&X(&„=o

X( &expt

1.07
0.86
1.13
1.12

2000 0.420 0.389
1(X)0 0.128 0.110
500 0.027 0.031
250 0.0078 0.0087

&X) &„=o.68

&X) )expt

1.05
0.90
1.07
0.99

the fluctuation in amplitude is expressed as

&Xi & =&y(0)—C„k L" (k4) " (kL)"~

(3.13)

logarithmic plot of &Xi& for ki as a function of
(Xi) for kz should yield a straight line with a unit
slope and a known intercept:

(7—p)/6

(3.14)

In addition, the advantage of this type of measure-
ment is that it avoids the dependence of fluctuations
on long-tei-in changes in C„due to atmospheric con-
ditions (which is a problem that enters all other
types of experiments discussed here). In Fig. 1 we
show two sets of experimental results and two sets
of straight lines. In both cases the upper line per-
tains to p=O. The lower line has been calculated
with p=0.5. It seems that the lower line represents
the data better in both cases.

B. Phase fluctuations and their frequency spectra

1. Theory

The quantity considered here is the time struc-
ture function of the phase fluctuations,

& [S,(t+~) —S,(t)]'& =H, (~), — (3.15)

and its experimentally measurable frequency spec-
trum W, (co), which are related by

ao

H, (~)=—f () costa~)W—(m)de . , (3.16)

where again

p [(y i y2 )'+«i —&2 )'l

The relation is

These time-dependent quantities can be related to
the fluctuations of the refractive index by invoking
the "Taylor hypothesis. " The basis of this hy-
pothesis is the assumption that the time dependence
of the index of refraction fluctuations is determined
by their space dependence as they are convected by
the velocity field. In the context of phase fluctua-
tions it is argued that motions transverse to the
propagation directions are most important. The
reason is that the effective "width" of a diffracted,
propagating wave is much smaller than its propaga-
tion distance (v'A, L «L ). Consequently, in a short
time r there can be drastic changes in the transverse
inhomogeneities but not in the longitudinal ones.
These considerations lead to an approximate expres-
sion for H, (r) in terms of the structure function
D, (p), which is

D, ( p) = & [Si ( L,y, ,~, ) —S, ( L,y„z, )]'&,
(3.17)
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IO-4
I

IO- 5
I

IO- I

IO

(x',)
I.I5p.m or 10.6p. m

I
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0FIG. 1. Scintillation of terrestrial light sources. The logarithmic amplitude variances (g) )q for A,
&

——4880 A is plotted
E

against (g)q for A, 2
——10.6 (Mm and 1.15 pm (Ref. 24). Experimentally the points X represent A, 2 ——10.6 p, m while ~2

represent A,2 ——1.15 pm. Theoretically the upper two straight lines are the theory for A, 2——10.6 pm. The dashed line corre-
sponds to classical theory p=0, while the solid line is that for p=0.5. Similarly the lower two lines correspond to
A,2 ——1.15 Pm.

H, (r) =D, (uTr), (3.18) 8' (co)-ru ' +"' (3.23)

F,(~)=mk L 1+ sin C)„(ir) .2 k . IrL
lr L

(3.20)

Using Eq. (2.20) we find, in the inertial subrange of
turbulence (i.e., ld « v'A, L « lo),

p/3

D, (p) 0(:C„k Lp i (3.21)

From this relation we see that

H (r) r(5+y)/3

and, consequently, using this result in Eq. (3.16), we
find the scaling relation

where uz. is the average wind velocity transverse to
the propagation direction. Within the Rytov ap-
proximation we can relate D, ( p) to the three-
dimensional spectrum of the refractive index fluc-
tuations for which we have an expression including
interrriittency corrections. D, ( p) has the two-
dimensional spectral representation

D, (p) 4m f [)—JD(up=)]F, (s)eddic, (3.19)

where

2. Comparison with experiments

The phase spectra W, (ro) were reported, for exam-
ple, in Refs. 25 and 26. A clear scaling behavior
seems to be found over a wide range of frequencies.
Comparing with Figs. 83 and 84 of Ref. 9 and Fig. 2
of Ref. 26 one convinces oneself that a slope higher
than —, is needed to fit the data. In fact, p-0. 5

would do justice to both sets of data. However, al-
though one gets a clear feeling that intermittency
corrections are found there, one has to admit that
the accuracy of the data is not sufficient to draw
firm conclusions.

Finally, we have the amusing result of Ref. 27
which studied experimentally the fluctuations of the
functions

b, ,(r, r) =S(r,t+r) S(r,t)—
hz(r, ~)=A&(r, t+r) h&(r, t) . —

Their fluctuations can be expressed in terms of the
frequency spectrum by
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(4)=—f ((—cosrs)sW (r)cdrc,

(&s &
=—f [3 &co—s(~~)

(3.24)

+cos(2'~)] W, (ru)dry .

If the phase frequency spectrum scales as W, (co)
-co™,then the ratio (h2)/(h~ ) is a number
which depends only on m,

Q2
=4(1—2 3) . (3.25)

Experimentally, this ratio was measured giving
m=2. 87. As

C. Scattering of electromagnetic waves

m,„...=(8+p) /3

we find @=0.61, which, although somewhat high,
agrees reasonably with other estimates.

I's ~ (1 ((()/3d (19+&)/
Pg,

(3.28)

A plot of log~o(P, /P~, ) vs log, od can be seen in Fig.
19

2. The gradient is clearly greater than the —, ex-

pected if p=0. However, the experiment is clearly
not accurate enough to allow clear-cut statements.

2. Comparison mth experiments

Experimentally the ratio of the received scattered
power to the power ideally received in a vacuum
P, /P~, -d do/dQ is normally measured, where
d is the distance of propagation. This ratio as a
function of distance d has been measured in long-
range tropospheric propagation of ratio waves. Un-
fortunately this distance is probably outside the
range of validity of the Rytov approximation. How-
ever, lacking better data we shall use these results in
a comparison with theory. The distance d is related
to the scattering angle 8 by O=d/(2 where a is the
radius of the earth. Thus using Eq. (3.27) we see
that the normalized scattered power scales like

1. Theory

Suppose aglane monochromatic electromagnetic
wave Eoe'" ' ' ' is incident on a volume V of a
turbulent medium. This wave will be scattered by
the fluctuations of the refractive index n(r ). If we
assume that the fluctuations are stationary and
homogeneous, we can use Maxwell's equations and
perturbation theory to show (within the Rytov ap-
proximation) that the differential cross section
do./dQ for scattering through an angle 0 is given

y'

=2mk V(sin rl)@„[2ksin(8/2)], (3.26)

CL —7

Q Ch

where rl is the angle between Eo and r. Substituting
Eq. (3.20) we have

(klo) " 3(sin g)[sin(g/2)] +" /3,

where

2~/lz &&2k sin(0/2) &&2~/ld . (3.27)
2. I 2.5 2.5 2.7 2.9

Thus there are clear intermittency corrections to
Il

classical theory. The change in the —, exponent is
small (-4%). However, the change in the differen-
tial cross section with wave number at fixed angle of
scattering 9 is large. The exponent is reduced from

1

a —, by up to 50% and should be easily observable.

FIG. 2. A double-logarithmic plot of the ratio of the
received scattered power to the power ideally received in a
vacuum, with distance of propagation (Ref. 9). A least-
squares fit gives a slope of —6.75. Theory gives a slope
of —(19+(u)/3. Thus for )M=0.5 we expect a slope of
—6.5.
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For the dependence on wavelength we have the
surprising result that our correction is in the right
direction but too small. Experimentally one finds a
behavior of the form A, where a is always less
than —,, but in fact in half of the cases a- —1 was
found. This may be due to a breakdown in the
Rytov approximation. In any case, it clearly would
be worthwhile to do shorter-range multiwavelength
experiments, especially to check the large correction
to the A,

'~ behavior predicted by the classical
theory.

D. Amplitude and phase fluctuations of sound waves

1. Theory

As in the case of electromagnetic waves, there
also occur fluctuations in the phase and amplitude
of sound waves as they propagate through a distance
L of a turbulent medium. However, here the fluc-
tuations will mainly be due to velocity and tempera-
ture inhomogeneities. This is due to the fact that
the speed of sound c depends on the air temperature
T through the relation c=v'AT with y= C~/C„
while in addition the sound waves are transported by
the air motion and therefore the turbulent velocity
fields cause additional fluctuations. The theory in
this case follows essentially the same lines as for
electromagnetic waves except that the constant C„
in the structure function of the refractive index fluc-
tuation is replaced by the constant C„ for the "ef-
fective refractive index'* of the sound waves

CT 4C„n= 2+
Tp Cp

(3.29)

where CT and C„refer to the temperature and velo-

city structure functions, respectively, while Tp and

cp are the average temperature and speed of sound.
Experimentally the standard deviations
o', =QD, (crT&) and o&——(Xi )' are nonrially mea-
sured, and thus theoretically we would expect the
scaling behavior

2. Experiment

In Refs. 9 and 28 there is a description of a series
of 28 experiments on the logarithmic amplitude
fluctuations o~ at frequencies from 3 to 76 kHz.
Writing o~~L an average a=1.1 for acoustic
waves and a =0.95 for ultrasonic frequencies
(30—76 kHz) were found. As a,h, ,(p) =(11+ p)/12
we see that a,h„,(p =0)=0.92 while

a,h„,(p =0.4) =0.95. Thus the interixiittency correc-
tions are in the right direction, and in the case of ul-
trasonic sound waves they are also quantitatively
correct. Again this result should not be considered
by itself but with the body of other data.

E. Scattering of sound waves

1. Theory

T'
V II+k II= —a; a;II

Tp

2 a
i co axe axk

an
axI

(3.32)

where the right-hand side is correct to first order in
the temperature and velocity fluctuations T' and U,
resPectively, and co =cpk. Writing II=np + II,
where IIp is the incident field and II, the scattered
field we have, on substituting in (3.32),

v'n, +k'n, =o,

v'n, +k'n, =—
axi

T' anp

Tp ax)

(3.33)

The turbulent velocity and temperature fields will
not only cause fluctuations of sound waves —they
will also cause scattering. The propagation of sound
waves is described by the equations of hydrodynam-
ics. Specifically the reduced acoustic pressure
II =p, /ypp (where p=pp +p are the constant
external and acoustic pressures, respectively) obeys

o, ~C„kL'~ (~UT) ~
'T UT

lp

' p/6

(3.30)

(3.31)

2 a
leo ax(ax~

The solution of (3.34) is

an,
(3.34)

(3.35)1,'k ' '
~ a T'(r ') p(r ) 2 a an, (r ')

ax,'

Note the similarity of (3.35) to (3.8), except that temperature and velocity fluctuations cause the pressure fluc-
tuations instead of refractive index fluctuations which scatter electromagnetic radiation. Thus it is not surpris-
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ing that the expression for the differential cross section for sound scattering into an angle 8,
r

ere(8)= —k cos 8
@T[2ksin(8/2)]

To

cos (8/2)N„[2k sin(8/2)]

II11[2k sin(8/2) ]
(3.36)

where NT(a) and @„(a)are the three-dimensional spectral densities for the temperature and velocity fluctua-
tions, should be very similar to (3.26). Substituting in the expressions for the spectral densities valid in the
inertial subrange of turbulence 2m./4 « 2k sin(8/2) « 2m./ld,

( ) A'( 2 —11/3(aI )
—P/3

NT(~) =ACTir " (~la)

in (3.36) we find

B'CUcos (8/2)
oo(8) =k' (kin) " (cos 8)[sin(8/2)] '"+"' '

2
Co

BCT

4T

(3.37)

(3.38)

(3.39)

where B and B' are dimensionless constants. Thus there is no scattering at 8=~/2 as cos 8=0, while all
scattering at 8=m. is by temperature fluctuations as here cos (8/2) =0. Inspecting Eq. (3.39) we see that as in
the case of electromagnetic waves there is a small correction to the angular exponent to a value (11+)Lt)/3
while the wave number exponent is reduced greatly to (1 —p)/3 and should be easily observable.

2. Experiment

There exist some experiments which measure the
angular dependence of sound scattering by a tur-
bulent atmosphere. To eliminate the nonstationar-
iness of the meterological conditions the ratios
CTO(8)/0'p(25 ) were measured as a function of angle.
We can neglect the effect of temperature fluctua-
tions if 8 is not too large, and in this case we have,
theoretically,

the intermittency correction is much smaller. It
would be advisable to design modern experiments
that would probe directly the corrections to the "—,

(-power) law. "
The comparison of the theory to experiment has

been done in the context of phenomena related to
the nature of wave propagation through turbulent
media. The examples discussed in Sec. III were all
in qualitative, and sometimes quantitative, agree-

oo(8)
op(25')

cos 8cos (8/2)
~

sin(8/2)
~

cos (25')cos (12.5')
~

sin(12. 5')
~

(3.40)
20

A comparison of this expression with experiment
(see Fig. 3) shows that the inclusion of interriiittency
gives a qualitative improvement of the agreement
with experiment, especially for higher scattering an-
gles.

IV. CONCLUDING REMARKS
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We have presented a scaling theory of fluctuations
of passive scalars in intermittent fully developed
fluid turbulence. The theoretical model has been
that of "fractally homogeneous turbulence. " The
main results were the expressions for the structure
function Ds(l ) [Eq. (2.18)] and its spectral represen-
tation [Eq. (2.20)]. The expressions contained inter-
mittency corrections to classical theory. In Eq.
(2.18) the interiiiittency correction is very large. Un-
fortunately most of the experiments that have been
perfoiiiied so far pertained to Eq. (2.20) in which
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FIG. 3. A double-logarithmic plot of the normalized
differential cross section o(8)/cr(25') versus sin (8/2) for
the angular dependence of sound waves scattered by a tur-
bulent medium. The experimental points ~ (Ref. 24) are
compared with the dashed curves of classical theory p =0,
and the solid curve which includes an intermittency
correction of p =0.5.
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ment with our approach. Taken as a body of data
they provide strong support for the notions ad-
vanced here. If correct, these inteririittency correc-
tions cannot be neglected in technological applica-
tions. Together with our previous results on tur-
bulent diffusion they point out the fact that moni-
toring the behavior of passive scalars might provide
insight to intermittent fluid turbulence that is not

easily attainable with the widespread methods of
looking at higher velocity correlation functions.
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