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Statistical mechanics of neocortical interactions. Dynamics of synaptic modification
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A recent study has demonstrated that several scales of neocortical interactions can be con-
sistently analyzed with the use of methods of modern nonlinear nonequilibrium statistical
mechanics. The formation, stability, and interaction of spatial-temporal patterns of colum-
nar firings are explicitly calculated, to test hypothesized mechanisms relating to information
processing. In this context, most probable patterns of columnar firings are associated with
chemical and electrical synaptic modifications. It is stressed that synaptic modifications
and shifts in most-probable firing patterns are highly nonlinear and interactive sets of phe-
nomena. A detailed scenario of information processing is calculated of columnar coding of
external stimuli, short-term storage via hysteresis, and long-term storage via synaptic modi-
fication.

I. INTRODUCTION

An analytic formulation of neocortical informa-
tion processing, consistent with and based upon
current data, has been developed which is applicable
to a broad range of relevant spatial scales, with the
use of methods of modern nonlinear nonequilibrium
(e.g., evolving irreversibly) statistical mechanics. As
referenced in that work, there are many previous
studies of cortex that have made severe approxima-
tions not found to be necessary here. Perhaps the
most important feature of this work is that some as-
pects of neocortical phenomena now come within
the scope of current paradigms of collective systems,
expanding the interdisciplinary approach to this
complex system.

A major contribution of this work is the analytic
treatment of minicolumns. Minicolumns are struc-
tures observed to span -7X10 pm . Mesocolum-
nar domains are defined here as the spatial extent of
minicolumns, in order to distinguish their scale
from that of microscopic neurons, but they retain
neuronal chemical and electrical properties. The
proper stochastic treatment of their interaction per-
mits their development into macroscopic regions re-
sponsible for global neocortical information process-
ing.

The basic hypothesis is that neocortical develop-
ment and function can be correctly represented by
specific microscopic circuitries, upon which is su-
perimposed a set of short-ranged interactions con-
strained by a nonlinear nonequilibrium statistical
mechanics which guides the more microscopic
electrical-chemical biophysics. Furthermore, in the

context of global inforination processing, even the
specific microscopic circuitries are subject to further
averaging. Support for arguments invoking stochas-
tic processing to explain empirical observations
range from electroencephalographic (EEG) and
magnetoencephalographic (MEG) ' (having resolu-
tion in the range of millimeters) studies to studies of
neuronal development and death. "

Since neuronal and columnar firings transpire in
epochs on the order of milliseconds, and synaptic
modifications take place in epochs on the order of
tenths to many seconds, modifications must take
place in the (nonlinear) environment of changing
eigenfunctions, i.e., firing states, of the firing pat-
terns. I.e., it is reasonable to assume that synaptic
modifications generally follow changes in firing pat-
terns adiabatically. Linear algebraic approaches are
appropriate only after the nonlinear problem has
been solved for most probable firing states for a
given set of neuronal parameters.

Previous approaches do not consider the evolution
of synaptic modifications as transpiring in the con-
text of interacting with changing firing patterns. '

This is essential since the latter most usually cause
the foriiier. In this study these efficacies can be
better represented as more specific presynaptic or
postsynaptic modifications, and therefore ultimately
they permit theory based on them to be more test-
able. Instead of somewhat nonrigorously examining
synaptic modifications of an "average" neuron, this
theory relatively rigorously examines the average
synaptic modification of a mesocolumn consisting
of over a hundred neurons.

Section II outlines the derivation of the statistical

395



LESTER INGBER

mechanics of firing patterns' in the context of this
paper, and adds explicit polynomial expansions to
detail the ranges where such approximations are use-
ful. More detailed biological, mathematical and
physics support and references for this development
are given in Ref. 1. However, enough descriptive
and mathematical detail are given here to be self-
contained, and to at least convey the nature of the
nonlinearities and multiple hierarchies inherent in
neocortex.

Section III considers the dynamics of synaptic
modification, and includes calculations of synaptic
coding of extrinsic stimuli and the stability of
synaptic modifications. Estimates of the probability
of hysteresis are calculated using the development of
Sec. II. Initial results are presented of a Monte Car-
lo program that explicitly calculates the probability
distribution of firing patterns. Extensions of this al-
gorithm are described for future study of interlami-
Ilal Riid lllteI'-I'eglollR1 lllteI'Rcflons Rnd cllRotlc
behavior.

Thus the statistical mechanics of a detailed
scenario is explicitly calculated, of columnar coding
of extrinsic stimuli, short-term storage via hys-
teresis, and long-term storage via synaptic modifica-
tion. The price paid for using a statistical mechan-
ics paradigm to obtain the conceptual simplicity of
these results consists of a relatively long formal
development and computer calculations and rather
tedious expansions of the derived highly nonlinear
functions.

II. STATISTICAL MECHANICS OF
FIRING PATTERNS

A. Microscopic ncurons

Briefly stated, at the membrane level neuron-
neuron interactions proceed at ionic and molecular
scales via gates regulated by electrical and chemical
activity, by mechanisms currently under biochemi-
cal and statistical mechanical investigations
Voltage-gated axonal transmembrane ionic flows
along a firing efferent neuron, e.g., of Na+ and K+
sequentially, propagate an action potential of —100
mV. This acts to voltage-gate presynaptic
transmembrane ionic flows, e.g., of Ca +, causing
the release of "quanta" of neurotransmitter, each
quanta containing —10 molecules, e.g., glutamic
acid (exclfatory) or p-Rmlnobutyrlc acid (lnhlbltory).
Molecules of neurotransmitters that survive interac-
tions through the synaptic cleft act to chemically
gate postsynaptic transmembrane ionic flows, e.g. ,
of Na+ and K+ simultaneously (excitatory) or of
K+ and/or Cl (inhibitory), which depolarize or
hyperpolarize the postsynaptic membrane. With

sufficient depolarization transduced at the trigger
site of its axon from its synapses, typically located
on dendrites and the cell body (soma), the afferent
neuron fires, i.e., initiates an action potential, and
becomes efferent to many other neurons via its
branching axon and axonal collaterals. Coincidence
gating mechanisms, not considered here, can cause
specific microscopic circuitries to be sensitive to
time scales -0.01 msec.

Calculations' demonstrate that the pmbability of
a given neuron firing within a refractory period of
~„-5 msec because of its neuronal interactions is
essentially independent of the functional form, not
the numerical mean and variance, of the average in-
terneuronal distribution of chemical quanta. r„ is
taken to lie between an absolute refractory period of
—1 msec, during which another action potential
cannot be initiated, and a relative refractory period
of -0.5—10 msec (larger neurons typically having
larger periods), during which a stronger stimulus is
required to initiate another action potential. A
Gaussian distribution I is reasonable to describe the
average intraneuronal distribution of electrical po-
larization across the various shapes and sizes of neu-
rons in a mesocolumn. Throughout this study, exci-
tatory (E) and inhibitory (I) firings retain their
chemically mediated independences in neocortex.

Consider the interaction of neuron k (k =1,Ã )
with neuron j across all jk synapses according to a
distribution %' for q chemical quanta with mean effi-
cacy ajk ———,Ajk(ok+1)+Bjk -0.01, with BJk a
background spontaneous contribution; o.k ——1 if k
fires; Irk ———1 if k does not fire. Synaptic efficacy
is a measure of ionic permeability, and an inverse
measure of electrical impedance. Efficacies
measure chemical synaptic activity; efficacies 8~k
measure various small but measurable influences,
e.g., local couplings between transient postsynaptic
polarizations (electrotonic potentials), ' remote cou-
plings to transient extracellular fields of action po-
tentials (ephaptic interactions), and fluctuations in
extracellular ions especially in the wake of action
potentials. As portrayed in Fig. 1, the final electri-
cal effect at the trigger zone of j is described by a
Gaussian distribution I with mean qu k and vari-
ance 1/q Pjk, with uzk -Pjk -0.1 mV. Neuron g
fires if the threshold electric potential VJ —10 mV is
attained at the trigger zone of the axon. Numerical
values of these parameters agree with those observed
in experimental studies. ' ' A net effect is to make
the firing of neuron j, near its firing threshold
within r„, sensitive to changes of firing of
—10 —10 N of its efferents Ik I. Neuronal fir-
ing rates typically are &0.1/v.„.

[Although recent studies favor a binomial distri-
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FIG. 1. Illustrated are three biophysical scales of neocortical interactions: (a)-(a )-(a') microscopic neurons; (b)-(b') meso-
columnar domains; (c)-(c) macroscopic regions. In (a ) synaptic interneuronal interactions, averaged over by meso-
columns, are phenomenologically described by the mean and variance of a distribution %. Similarly, in (a) intraneuronal
transmissions are phenomenologically described by the mean and variance of I . Mesocolumnar averaged excitatory (E)
and inhibitory (I) neuronal firings are represented in (a ). In (b) the vertical organization of minicolumns is sketched to-
gether with their horizontal stratification, yielding a physiological entity, the mesocolumn. In (b ) the overlap of interact-
ing mesocolumns is sketched. In (c) macroscopic regions of neocortex are depicted as arising from many mesocolumnar
domains. These are the regions designated for study here. (c ) sketches how regions may be coupled by long-ranged in-
tcra, ctions.

bution for 4 over a Poisson distribution, ' it should
be noted that in that paper, albeit studying goldfish
synapses, their variance cr in their I. (I here) should
be replaced by Vko (~qgjk here), which arises
from the application of the "central limit
theorem" to independent Gaussian processes of q

I

released quanta. That error appears to bias their re-
sults for their pk (4 here) towards the binomial dis-
tribution, although their final conclusions may not
require substantial revision. ]

The derived probability for neuron j to fire, given
its interaction with k =1, . . . , X neurons is

p~. = j j exp —o.jFj exp j exp —FjOJ' p'

&j —g ajkUfk
k

2 2
ajk' ~jk' jk'

k'

1 f2

Sl= f f dWj, dlV ~ Sl, . S. .B IVl.—g WJ„

SJk= g I%',
q=0

I =(2mqpjk) '~.exp[ —(8'Jk qUJI, ) ]l(2qpjk)—,

lim I =5( WJ.k),
q~O
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where Sjk is the probability of neuron j developing
an electric potential from all synapses with neuron
k, and SJ. is the probability of j developing WJ from
all N neurons. 4' is an alternative possibility for
4; f is defined by ajk =Pe, e the number of repeti-
tions of an "experiment, " and is likely correlated
with the number of synaptic knobs. ' This result is
found to be essentially independent of the distribu-
tion taken for '0; i.e., Eq. (2.1) results from +' as
well as from 4 [with Ujk ~(1 g)u~k —]. This averag-
ing process assumes averaging over much neuronal
circuitry and other microscopic details, e.g. , some
spatial nonadditivity and some temporal summation
of postsynaptic potentials.

The large bulk of N —10 intrinsic efferents to a
neuron (extrinsic efferents are added in the next Sec.
II B) originate within the extent of a "macro-
column" -7X10 pm corresponding to —10 neu-
rons. ' However, clustering of interactions, synch-
ronization and reverberation of small numbers of
firing states, the greater importance of larger and
more strategically placed synaptic interactions, and
multiple synaptic contacts between fibers, all act to
effectively reduce N' by perhaps a factor of 2.

B. Mesocolumnar description

The neocortex has -5X10' neurons distributed
rather unifornily over -5&&10s minicolumns. (The
visual cortex has double this density. ) These colum-
nar structures define unit modules by virtue of their
afferent inputs and the nature of their processing of
that input. Within these minicolumns, a "vertical"
structure is defined perpendicular to six highly con-
voluted laminae of total thickness -2.5)& 10 pm.
However, there is also a horizontal stratification to
columnar interactions, and although the columnar
concept has anatomical and physiological support,
the minicolumnar boundaries are not so clearly de-
fined. For instance, although minicolumns may be
considered aptly as afferent modules, there is rela-
tively much greater efferent connectivity between
minicolumns within the range of a macrocolumn,
rather than between two neighboring minicolumns
or within a minicolumn. ' Therefore intrinsic min-
icolumnar interactions within a macrocolumn of
—103 minicolumns might be represented well by in-
cluding efferent laminar circuitry of nearest-
neighbor (NN) minicolumnar interactions, next-
nearest-neighbors (N N), . . . , and N' N. However,
given the clear anatomical and physiological support

for the afferent minicolumnar module, and seeking a
correct but more spatially homogeneous substrate
for first study, a mesocolumn is defined here as an
average afferent minicolumn (e.g. , averaged over
several minicolumns) of N neurons, and as an ef-
ferent average over a macrocolumn of N neurons
efferent upon this average minicolumn.

Therefore a rough measure of divergence and con-
vergence of columnar interactions is N'/N, whereby
a minicolumn interacts afferently via N neurons,
and efferently via -N axonal collaterals to a subset
of its efferents as well as to other minicolumns. (If
the empirically observed existence of minicolumns is
arbitrarily ignored, then, as calculated in the previ-
ous Sec. IIA, divergence and convergence of neu-
ronal interactions can only be measured by that of
individual neurons, which may be as high as -N .)
The empirics of N and N justify the extrapolation
of the global conjecture, that to facilitate communi-
cation between all neurons the number of neurons
per macrocolumn in a given mammalian neocortex
is approximately the square root of the total number
of neocortical neurons, — to the more local conjec-
ture, that to facilitate communication between all
neurons within the unit of a macrocolumn
N cc N'~ . By including NN mesocolumnar interac-
tions and inter-regional constraints from long-
ranged fibers, a blend of these global and local op-
timum connectivities is forniulated.

However, the functional relationships between ef-
ferent and afferent interactions are highly nonlinear,
as explicitly calculated subsequently here and in Sec.
IIC. The following describes this averaging process
calculated previously, ' which peiiIiits a minimal
homogeneous spatial scale of the extent of min-
icolumns to be developed for macroscopic study
over regions of neocortex. In this way, stratification
of interactions as well as other long-ranged input to
groups of minicolumns can be included in a defini-
tion of a physiological unit consisting of one to
perhaps several minicolumns, defined by its spatial-
temporal excitatory (E) and inhibitory (I) afferent
and efferent firing states. ' This study formalizes
these circumstances by defining a mesocolumn with
extent p-10 pm, corresponding to N —100—200
neurons, as an intermediate integral physiological
unit. Dynamic nearest-neighbor interactions be-
tween mesocolumns are analytically defined by their
overlapping neuronal interactions, in accordance
with the observed horizontal columnar stratifica-
tions. Calculations verify that in macroscopic ac-
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tivity, where mesocolumnar patterns of firing vary
relatively smoothly over neighboring mesocolumns,
it is consistent to approximate mesocolumnar in-
teractions by including only second-order gradient
correction terms.

As derived, ' the probability of effecting a change
I

P= [$PG[M (r;t+~) ~M (r', t)]
G

in firing within w ) v „—5 msec in mesocolumn
M (r;t+w), G =E or I, located at space-time point
(r;t) =(x,y;t) containing N =N+ =N~+Ni neu-
rons from NN interactions with M (r', t) (scaled
down from M as discussed subsequently), G =E
and I contributions, within r =r (p, is

go, M(r —t+~) 6 go, M'(—r t+~) j[p
o jE jI j

G

(2n) ' f dg exp[ig M (r;t~v)]

N+
X

~~
[1+ &[D'+ —, [e ['D']cosh[F (r;t)+iQ ]sechF (r;t)

= ] (2~&g )'~ exp( NrL G),—
G

L G=(M —g ) /(2Ng )+M JG/(2N&) —V'

V' ~g V"G(pVM )
Gt

V'G= —(2Ng GG) 'g (g +2M /~)dF

dF = —tanhF (dF1 —2tanhF dFz ),
dF, =NG(p /24)a~(l+aGM+) '~

I
— F(1+a—M+) 'i (V' M+) — P(V' M —

)

+a (1+a M+) '(VM+). [P
— (V'M )+ ,F (1—+a M—+) '~'(V'M+)—]I,

dF2 ——N (p /24)(a ) (1+a M+) '[P (V'M )+ —,F (1+a M+) '~ (VM+)] (2.2)

where ~ and p measure the temporal and spatial
scales of a mesocolumn, M =M —M, and
M+ =M +M . Mesocolumnar firing rates are
measured by (M +N )/(2~). D are directional
derivatives along @=e/

~

e
~

=(r' r)/
~

r' r~—. The—
7 M terms are calculated by integration by parts
on all factors to their left in V' to yield an expres-
sion proportional to (VM ) . These parameters are
further defined by

MG(t) =~ '[MG(t+~) MG(t)], —
V'MG(x, y) =p '[MG(x+p, y) —M (x,y)]x

+p '[MG(x,y+p) M(x,y )]y, —
g'= —~-'(M +N' thanF'),

g
GG ~ 1N GsechzFG

F'=P'(P a'M )/(1+—a'M+-)'" .

(2.3)

JG are constraints on M from long-ranged fibers,
and Ia,P,y I are six mesoscopic parameters de-
rived from the electrical and chemical synaptic

I

parameters averaged over a mesocolumn:

aG=N'GA G/(2N N a ) &~1,

a = —2 +8
P = IN'a' [1+(P /u )'~]

yG=VG/(a u N ) N /N—

(2.4)

where N =N N, N =N +—=N +N
are the efficacies weighting transmission of polariza-
tion, 8 are spontaneous backgrounds, u are post-
synaptic polarizations, P are the variances of polar-
izations delivered to the trigger site, and VG are the
threshold electric potentials to be exceeded to trigger
presynaptic activity. The forward difference defini-
tion of M (t) permits L G to possess a relatively sim-
ple functional dependence on this order parameter.
I.e., P which measures the probability of transition
to M (t+~) from M (t) is much more nonlinear in
M (t) than in M (t+w). This is consistent with
M (t+w) being a firing state after interacting with
efferents M (t). Also note that, only for notational
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convenience leading to facilitation of subsequent
analysis, a are scaled parameters, thereby also
causing efferent M (t) to represent scaled firings.
I.e., in the continuum limit of M for large N
M (t)=M (t)N /N, ~M

~

&N still represent
N' efferent interactions, just scaled by N /N
and a =a N /N are still defined by averages
over N efferent and N afferent interactions.
This scaling accomplishes the efferent definition of
a mesocolumn described previously.

This development includes spatial-temporal meso-
columnar constraints, JG JG (r——; t ), from long-
ranged inter-regional and extrinsic sources. These
JG constraints can also mimic other proposed chem-
ical and electrical microscopic mechanisms that
alter macroscopic firing states. ' ' Empirically,
N:N —10:1, but this includes extrinsic efferents
which are essentially all excitatory, comprise
S—20% of all excitatory teririinals, and typically ter-
minate on inhibitory fibers. Their net effects are in-
cluded in JGM . For the remaining short-ranged
interactions, considering the relative importance of
inhibitory synapses (size, proximity to soma, etc.),
perhaps a better ratio is N:NI-5:1.

It is known that neighboring minjcoiumnar
teractions are predominantly inhibitory. This might
be accounted for by the mesocolumnar NN's defined
here as arising from overlapping efferent domains of
macrocolumnar extent, with domain centers offset
within the extent of a minicolumn, interacting with
neighboring afferent minicolumns. As discussed
previously, this definition is consistent with observa-
tions that the bulk of interminicolumnar efferents
come from within the range of a macrocolumn.
Therefore, it is particularly interesting that most sets
of neuronal parameters to be discussed subsequently
do give rise to gradient mesocolumnar NN interac-
tions that are effectively inhibitory, i.e., they yield a
net ( —)(V'M ) or (+ )(VM ) contribution to
L~+I.l. Inhibitory NN interactions permit signifi-
cant sharpening and identification of processed pat-
terns across mesocolumns. Gverlapping efferent
domains also may be a contributing mechanism to
the development of minicolumnar structure, in addi-
tion to other proposed mechanisms, e.g., two-
dimensional weakly graded chemoafflnities and
quasipreservation of distant mappings of neighbor-
ing efferents to neighboring afferents.

C. Macroscopic regions

&[M(r)(dM(r)= f ' ' ' f DM exp( )VS), —
S= f, dt'L,

L=AQ ' f derL,

u+1 A E I
DM= ] 1[ I

(2m.O) '~(g,")'~dM, "
s=1 v=1 6

(2.5)

bilities connects mesocolumnar firings at one time to
the firing at any time afterwards. Many paths or
strings may link given initial and final states. A La-
grangian 1., the argument of the exponential expres-
sion representing the time evolution of macroscopic
regions, each containing -N neurons, is derived
from strings of mesocolumnar conditional probabili-
ties. ' A major benefit derived from this forinalism is
a variational principle that perrLiits extrema equa-
tions to be developed.

It is interesting that for neocortex, N, the number
of neurons per mesocolumn, is large enough to per-
mit the development of a Lagrangian macroscopic
statistics; yet N is small enough for macroscopic
mesocolumnar interactions to be developed as NN
interactions. As determined by Eq. (2.2), N ' mea-
sures the scale of fluctuations.

This Lagrangian can be expanded into a simple
fourth order polynomial of powers of the meso-
columnar firings, yielding a generalized Ginzburg-
Landau (GL) expression. At the present stage of
development of statistical mechanics, for many pur-
poses this simple forrLi is a practical necessity to
continue future studies. This expansion is valid for
the neocortical system. This also makes it possible
to draw analogies to the "orienting field" and "tem-
perature" of equilibrium collective systems. (There
are also several forn|al developments relevant to col-
lective equilibrium systems, based on specific GL
expressions, which are not relevant to neocortex. ') It
should be noted that some investigators have been
unwilling to accept the GL analogy between ideal
equilibrium and large nonequilibrium systems to
describe phase transitions and long-ranged order.
However, recent research demonstrates that this
analogy is indeed often appropriate. z'25

Using the prior form of the short-time conditional
probability, the long-time probability for global re-
gional activity persisting for tenths of a second to
seconds is derived as'

This work has calculated the conditional probabil-
ity that a given mesocolumn will fire, given its
direct interactions with other mesocolumns just pre-
viously firing. A string of these conditional proba- M= [M "I

&&5[M, =M(t)]5[MD ——M(to)],



28 STATISTICAL MECHANICS OF NEOCORTICAL. . .

where v labels the two-dimensional laminar r-space
of A-5)&10 mesocolumns spanning a typical re-
gion of neocortex, Q (total cortical area
-4X10"]Mm ); and s labels the u+1 time inter-
vals, each of duration 8(v, spanning (t —to). At a
given value of (r;t), it also is convenient to define
M = IM I. The path integral in Eq. (2.5) defines M
as a continuous, not necessarily differentiable,
mesoscopic variable to study macroscopic regions.
The "inforiaation" contained in this description is
well defined as

f'[P]= f f Dipl'P(n(pyP)

DM'=DM/dM„+ [,
(2.6)

whereP is a reference stationary state. Although
many microscopic synaptic degrees of freedom have
been averaged over, many degrees of freedom are
still present, as measured by dM, ". For example,
neglecting specific coding of presynaptic and post-
synaptic membranes, detailed neuronal circuitry,
and the dynamics of temporal evolution, in a hy-
pothetical region of 10 neurons with 10'3 synapses:
considering each synapse as only conducting or not
conducting, there are =exp(7)& 10' ) possible synap-
tic combinations; considering only each neuron as
firing or not firing, there are =exp(7&& 10 ) neuron-
al combinations; considering only each mesocolumn
as having integral firings between —100 and 100,
there are =exp(5 X 10 ) mesocolumnar combina-
tions.

The prepoint discretization of L (M ),
BM(t')~M, + i —M, and M(t') ~M„ is derived
from the biophysics of neocortex, Eqs. (2.2)—(2.4);
this is not equivalent to the Stratonovich midpoint
discretization of a proper Feynman Lagrangian
L~, 9M(t')~M, +i —M, and M(t')~ , (M,+[-
+M, ). ' The discretization and the Lagrangian
(and g) must be consistently defined to give an in-
variant P(M)dM. The Feynman Lagrangian is de-
fined in terins of a stationary principle, and the
transfoi-ination to the Stratonovich discretization
perrgIits the use of the standard calculus. The Ein-
stein convention of summing over factors with re-
peated indices is henceforth assumed:

g I Iggg'l l
det(ggg') gEEgII g

GG' —1

(gEE, II +gII, EE )
—1 1

+ I gII [gEE,EgII, E +(gEE,I ) ]

+gEE [gII IgEE I + (gII E )

~ ~ ~ ~ ~ ~

=i) ' f d r[ , Sggg(—g P) —'Bg(g P)]'
=i) ' f d'r[ , (g p) gg —(g p) g+piV—'p]

=i) ' f d r( —zpgpgg &pgg +piV')p—

—:—(Q ' f d rH(pg, M)P,

",= —ia/aM',
rgrg:~gg dF I

g IN I
G

wg' =wg +5gdF N sech F
(2.8)

~g [ ]= [ ],g —V.[ ],v, g+ V'[ ] v2G

—= [ ]G [ ]G, :.+[. ]g:
],g,:.= [ ],G.,GM

+[ . ]G.G.,M

[ ]: =i)[ ' ' ]/Bz

z= Ix,y),

The Riemannian curvature R arises from the non-
linear inverse variance ggg. , which is a bona fide
metric of this parameter space; P(M)dM is covari-
ant under general M "transformations. It has been
noted that neocortex is the first physical system to
be investigated with these methods that is measur-
ably sensitive to R.' '

To first order in (VM ), the differential evolu-
tion of P associated with Eqs. (2.5) and (2.7) is'

= gi ranmn' f dt' f d rLr,
LE —,N '(M —h ——)ggg (M —h ) —V,

V= V' —( —,h.g+R/6)/N,
V'= V' + V' MJG/(2Nw), —
Gg i/2(g i/2hG) (2.7)

where vertical bars on an index, e.g. ,
~

G ~, indicate
no sum is taken over that repeated index. The
Fokker-Planck functional differential equation, i.e.,
possessing no potential term, corresponds to the
derivation in Ref. 1 of NN interactions in L. How-
ever, the simpler partial differential equation arises
from expansion of the VM perturbations, yielding
a Schrodinger-type equation with a V' potential of
NN interactions. This also defines the Hamiltonian
operator FX (Note that the previous discussion
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modifies corresponding discussions of L and H in
Ref. 1.)

If all the V and g in this differential equation
are arbitrarily ignored, the corresponding Langevin
rate equations, written in te~s ot "average neu-
rons, " are just those taken as the starting point for
the phenomenological pioneering modeling of cortex
in previous studies, ' upon which most other stud-
ies are based. In some studies, simple additive noise
is arbitrarily included, and then typically several
thousand computer "trials" are examined to find
most probable trajectories. This ad hoc procedure is
unjustified in systems where mesoscopic fluctuations
arise from intrinsic, i.e., in contrast to extrinsic
sources, such as occurs in neocortex. Here, the
mesoscopic fluctuations are derived from the micro-
scopic system. Furthermore, a variational principle
is derived to directly calculate extrema trajectories.

Numerical calculations demonstrate that, for
reasonable neuronal parameters, rM and pV'MG

contributions to LF are significant but small. There-
fore, it is meaningful to solve for extrema, ( (M ) ),
of LF(M) in terms of "uniform" M ' (vM G

6=O=pVM ). Minima represent most-probable fir-
ing states for LF, and are determined by finding
roots of the Euler-Lagrange variational equations,
Lz G ——0, such that the Hessian determin-
arlt

i

HALF

GG'
i i
)0 and orle of its diagonal erltr'ies

not be mmima of LF for all time.
In the following examples, for convenience only,

N have been scaled down to N, and the efficacies
A and 8 have been scaled up by N /N to A

and 8G (and a'G aG). I.e., ao, PG, and yo are not
affected by this scaling. This scaling is performed
after the scaling in Eq. (2.4), and defines an
equivalent mesoscopic system independent of N
with the same efferent sensitivity. Table I details
some representative calculations. The following no-
tation is used to represent calculations at minima:

((M ) ), calculate (M,M';L, ), and the
coefficients of [(V'M ) ~~(V'M ) ] and
[(M ):(M )::M:M ] that contribute to LF. Also
included are V—V' terms at minima, illustrating
that these Riemannian contributions are a measur-
able contribution to LF.

(Numerical calculations verify that at minima of
Lz, h =g (h =g for yG=O), and that V—V' is
a smooth contribution to LJ;. Therefore, given the
realistic constraint of limited computer resources, in
Ref. 1 it was decided to search for minima by
minimizing L, instead of Lz which requires process-
ing of two orders of magnitude additional algebraic
expressions. Here some of these calculations using
Lz have been performed, verifying that the calcula-

tions in Ref. 1 give good estimates of those per-
formed using L~. Also note the corrections to the
[(VM ')

~

~(VM ) ] coefficients of the corresponding
entries in Table I in Ref. 1. Inadvertently, coeffi-
cients of (VM .V'M ) were added to those of
(VM ) . Coefficients of (VM .V'M ) are not given
here since they average to zero in L, but they most
likely will not average to zero when interlaminar
and efferent intei. niinicolumnar circuitries are in-
cluded, as discussed in Secs. II 8 and III E.)

Examples A and a. Consider the following rather
arbitrary example of a region of mesocolumns, each
with 150 neurons, selected to model minicolumns
and to symmetrize the mesoscopic parameters, with

y =0. Take N =—125, N =25, V =10 mV,
AG=1. 5, 8 =0.25, U =P =0. 1 mV. Contribut-
ing to V—V' at ( (M ) ) are the curvature
R =0.175 and h. G ——0.418. This corresponds to ex-
ample a in Ref. 1. Since y =0, g =h . At a scale
at which gradient interactions are still small contri-
butions, a fine structure yielding other local minima
of L also becomes apparent. At the nearest integral
values of M, data at these local minima are includ-
ed in Table I together with data calculated at global
minima. The local minima at (6,3), ( —5, —3), (8,4),
and ( —'7, —4) have been calculated to trap firings
only for integral & (M

Examples 8 and bl. The mesoscopic parameters
are changed from example A, by changing the
synaptic efficacies from A =1.5 to 3 =1.25 and
2 =1.75. Contributin~ to V—V' at ((M ) ) are
R =1.06&&10 and h. G

———1.26; h = —5.78 and
g = —5.60; h =-0.277 and g =0.289. This corre-
sponds to example bl in Ref. 1. (See Table I.)

Example b2. Example b 1 is changed to
2~=1.75, 3 =1.25. (See Table I.)

Example c. Example b 1 is changed to
N = 150, N =30. This retains the same ratio of
N /N, but increases ¹ (See Table I.)

Example d. Example b 1 is changed to
N =150, N =50. This decreases the ratio N /N
and increases N. (See Table I.)

The variational principle expressed by Eq. (2.7)
straightforwardly leads to a set of 12 coupled first-
order differential equations, with coefficients non-
linear in M, in the 12 variables
IM,M,M, V'M, V M I in (r;r) space. Howe-
er, as discussed before example A, it is a good ap-
proxirnation to consider the nonlinear most probable
firing states of L. In the neighborhood of ((MG) ),
LJ; can be expanded as a CxL polynomial. To inves-
tigate first-order linear oscillatory states, only
powers up to 2 in each variable are kept, and from
this the variational principle leads to a relatively
simple set of coupled linear differential equations
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TABLE I. At minima ( (M ) ), for the mesoscopic parameters given in examples A and B, calculated are (M, M;L~),
E2 ' I2 'E ' I

the coefficients of [(VM ) 11(VM ) ] and [(M ):(M )::M:M ], and the values of the Riemannian contributions V —g'
to L~. Examples a, b j. , b2, c, and d are calculated using L.

(ME MI. I ) [('VM ) II (VM ) ] [(M )2:(M )::M:M ] ( v—v')

Example A

(1.90,0.939;1.63x 10 )
Example a

(0,0;0)

(6,3;4.29x10 4)

(—5,—3;4.52x10 4)

(8 4 7 54x10 4)

(—7,—4;7.57x 10-4)

(117.85,23.57;1.83x10—&4)

(—124.99,—25.00;1.09x10 ]0)

[7.37x 10 I I9.71x 10 ]

[oIlol

[6.59x 10 6II9.06x 10 6]

[2,95x 10 I I4.22x 10 ]

[l.»»0-5I
I
l.s7x lo-5]

[7.63x 10 I I
1.01x 10 ]

[—1.44xlo 3II1.68x 10 3]

[—11.09I I
—0.741]

[2.67x10 5:1.33x10 4::—5,36x10 5:9.57x10 5]

[2.67x10 5:1.33x10 4::0:0]

[2.68x10 5:1.34x10 4::—1.58x10 4:3.25x10 4]

[2.67x10 5:1.34x10 4::6,57x10 5:—4.69x10 4]

[2.69x10 5:1.35x10 4::—2.06x10 4:4.40x10 4]

[2.68x10 5:1.34x10 4::1,29x10 4:—5.68x10 4]

[2.40x10:1.20x10::3.66x10 9:4.58x10 9]

[1.17x10 ~:5.83x10 ~::—7.12x10—6.0 00]

—1.59x 10

—1.68x10—3

—1.41x10 3

—1.92x 10
—1.32x 10
—2.03x 10

6.12x10—3

6.66x10—3

Example B

(94.92,23.42;—2.25x10 )
Example b1

(89.02,23.14;1.59x10 3)

[—l. 1s x lo—4I I1.14x[0-3]

[—5.33x 10 I I9.65 x 10 ]

[5.45x10:1.32x10::6.30x 10:—7.33x 10 4]

[4.81x10 ~:1.09x10 3:;5.38x10 4:—6.14x10 4]

4.17x 10

3.69x 10

Example b2

(122.69,21.87;1.17x10 i3) [—5.64x 10 111.61x 10 ] [7.30x10 4:5.69x10 4::—1.11x10 8 —1.30x10 8] 6.77x 10

Example c

(21.15,21.42; 2.38x 10 i4) [3,19x 10—
5I I1.45x 10 4] [1.89x10:1.89x10 4::—1.15x10:—2.16x10 9] —9,66x10 4

Example d

(109.48,43.15;1.02x 10 ) [—3.86x 10 5II6.89xlo 4] [2.63x10:2.70x10::9.79x10 4:—1.07x10 ] 3.28x 10

with constant coefficients:

0=5LF LF g., 5——gLF, —
For instance, using I., extrinsic sources

J~ ———2.63 and Jl ——4.94 drive the global minima of
example b2 to M~=25 and M =5, and yield disper-
sion relations

M I I+fgM g Ig
I

~ M I

+b
I
g M I

g
I +bMg'

co~= +
I
—1.86+29.6(gp); —1.25i

+18.7i(gp)2I, (2.11)

k=141 ~

[ ] g., ——[ ] ggM +[. ] ggM (2.9)
The boundary conditions in Eq. (2.5) further specify
these solutions. In those regions where real co exist,
wave propagation velocities, U, are determined by
de/dg'. Several different mesocolumnar mechan-
isms, defined by the influences of the b, f, and g
coefficients in Eq. (2.9), can produce real wave prop-
agation rates. Examples are manufactured straight-
forwardly.

Table I demonstrates that even modest changes in
or N cause dramatic shifts in ((M ) ) and in

properties of Mg solutions to Eq. (2.9). This is a
highly nonlinear system, even after taking meso-
columnar averaged parameters. The closest example
to linearity arises in the special case of y 0 and

M =M —((M ))

fr= fr=f~——

These equations are then Fourier transformed and
examined to determine for which values of
Ia,P,y I = IA,B,V,u, i]],N I and of g, the
conjugate variable to r, can oscillatory states, co(g'),
persist. ' E.g., solutions are sought of the forin

Mg=ReM„, exp[ i (g r tot)],— —(2.10)

MG, (r, t)= J d gdmM2„„(t, a&)e p[i(i rxmi)] . —
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M =M, when the mean wM =N P (a M
—y ) —M . More generally, even if M, 7'M, and
V—V' terms are neglected, a true minimum is often
determined by competition between the two condi-
tions O=M +N I ItanhFI I each weighted by its
variance g =~ 'N ' ' sech E I I Furthermore

as demonstrated, ' there are often multiple minima,
which will eventually require more detailed studies
of subharmonic (period-doubling) bifurcations,
phase transitions and fluctuations. '

A complete CrL expression for L is derived for ex-
ample bl:

~L = 1.59 && 10—' —5.33 X 10—'( %ME)'+ 9.65 X 10-'(VM')'+ 4.81 X 10—'(M~)'+ 1.09 &&
10-'(M')'

—9.05&& 10 'MEM +2.37X10 'M'M' 1.45—~10 'M~—M'+1. 12X10 'MEM—'
+&.38X10-'ME—6.14X10-'M'+1.15X10-'(M )' —1.72X10 'M M'

+1.36~10 '(M')' —5.91&&10 '(ME)' —7.44&&10
—'(M~)'M'

+4.29X10—'M~(M')' —5.43X10 '(M')'+8. 67X10 '(M )'—3.96X10-'(M )'M'

+7.64&&10 '(M M')' —1 99X10 'ME(M')'+1 38X10 '(M')'.
M =0 is the range of maximum redundancy of mesocolumnar firing; i.e., there are more combinations giv-

ing M =0 than any other firing state. ' Therefore, when suitably constrained by JG, e.g., Jz ——1.27 and
JI ———1.12 drive ((M ) ) to 0 for example b1, this is the range most likely to induce plastic synaptic modifi-
cations, e.g. , during development. The CxL polynomial for this state is

~L =0.0970+4.24&& 10 '(VM~)'+ 3.39 && 10—'(V'M')'+ 3.20&& 10—'(M~)'+1. 54&& 10—'(M')'

—1.49&&10 4M~M~+5. 51X10 4MIMI 2.26&&10—4M~MI+1. 94&&10 ~MIMI

+3.28X10 'M~ —2.82&&10 'M'+2. 14X10 "(M~)' —7.38~10 'M~M'

+7.19X10—'(M')' —1.01X10 '(M~)' —1.06&&10 '(M~)'M'

+1.00X10 'M~(M')' —8.30X10 '(M')'+2. 42~10 '(M~)' —1.92X10 '(ME)'M'
(2.13)+6.09&&10 '(M~M')' —7.89&&10 'M~(M')'+3. 52X10 '(M')'.

The measure DM in Eq. (2.5) contains a weighting factor g' which is also expanded and included in an effec-
tive Lagrangian L,&&. For brevity, to second order,

L,p=L+(Nr) 'ln(~g '~ ),
~ ' 'i-=00211+2 76&&10 'M —3 60X10 'M'+1 06X10 '(M )' —2. 13~10—'M~M'

+1.10~10 '(M')'.

(2.14)

These polynomial expansions, besides being start-
ing points for more detailed investigations, also
serve to explicitly display simple functional forms
that can be directly used or truncated after the non-
linear eikonals are calculated. This specificity is
necessary if theoretical and experimental investiga-
tions are to eventually merge. More intuitive in-
sights are gained by examining three-dimensional
plots of spatially temporally averaged L versus M
at various resolutions.

D. Corrections to previous modcliag of ncocortcx

Many previous theoretical studies and computer
simulations that have modeled neural systems have
been careful to initially describe the empirical situa-

tion, but unfortunately they have also often arbi-
trarily and erroneously used simple linear differen-
tial rate equations for "average neurons" as the
essential underlying foundation of their specific cal-
culations, thereby opening to question the net validi-
ty of their results. It is understandable that a rela-
tively simple set of readily solvable differential
equations is required for many models and
modelers. However, it is clearly better to be con-
sistent with the actual empirical situation, e.g., by
attempting to use a set of Langevin rate equations
corresponding to the Schrodinger-type equation
(2.8). This still would not add much labor to exist-
ing computer calculations.

This might be achieved in the following manner:
For a given set of neuronal parameters, within a
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neighborhood of an established set of minima, it
might be possible to have the contributions to the
potential from M JG be simulated by appropriate
boundary conditions. This is sometimes possible. '

E.g. , if the effect of JG is known beforehand to sim-
ply s»ft ( (M ) ), then these "boundary condi-
tions" are essentially accounted for by writing all ex-
pressions in terms of M =M '—( (M ) ), and con-
sidering all calculations to take place in a neighbor-
hood of ( (M ) ). If this hurdle could be overcome,
then the ensuing Fokker-Planck equation can be
written with V=Q in Eq. (2.8). If only most prob-
able transition states are sought, simple coupled
first-order rate equations are given by'

a ~G iG ~ ii/2i i —i/2 EGG')

g~ (detg~GG') —1
(2.15)

where g' and g' are defined in Eq. (2.8).
However, if fluctuations are required, these can be

included in the coupled Langevin rate equations cor-
responding to Eq. (2.8) with M JG simulated by
boundary conditions. The Langevin equations in the
Stratonovich representation are

6 (6 & 'k~G' ~G ~G
gj gk, G'+gj '9j ~

gj'gk'&"=g'" «
(2.16)

where rjj represents Gaussian white noise arising
from the microscopic neuronal system labeled by j.
Because of the derivations in Secs. IIA and IIB, it
is reasonable to take gJ =g [g' /(X ~)]'/,
j=1, . . . , Rand jEG; gj =0, jEG'&G.

Equations (2.15) and (2.16) also may be rewritten
for individual mesocolumnar-averaged neurons, m
by setting M =Nm . The terms dFG, defined in
Eq. (2.2), appear in accordance with their deriva-
tion, ' and they may be retained to include inter-
columnar interactions. F, defined in Eq. (2.3), and
dF may be further simplified to linear terms in

—( (M ) ), expanded about minima
((M ) ) after these are correctly calculated.

In the neighborhood of minima ((M ) ), the
coefficients of M G in rate equations may be substan-
tially altered, e.g. , by a factor ranging fmm 10 to
10 . As deduced by scaling these equations to set
the MG coefficients = 1, this essentially radically
changes the effective time scale of r-5—10 msec
assumed in previous studies by this factor. Also, the
"noise" contribution is multiplicative, not simply
additive as has been assumed in previous studies.

III. DYNAMICS OF SYNAPTIC MODIFICATION

A. Firing patterns and synaptic modifications

There are several new and useful features to be
added to neocortical description by this formalism:

Depth and breadth of processing. The sharpness
of the mean rate of firings, the depth of information
pmcessing, is measured by the "step-function"
tanhF, where the "threshold function" F is sensi-
tive to a factor of X '/. The strength of coupling
between mesocolumns, the breadth of information
processing, measured by the potential term V', is
roughly proportional to a factor of NX'/. It is
noted that visual cortex possesses twice the density
of neurons per mesocolumn as other cortical re-
gions, and therefore is better suited than other re-
gions to process large patterns of detailed informa-
tion. Calculations of formation, stability, hysteresis,
and interaction of patterns of firings, upon which
are based other calculations describing plastic synap-
tic modifications, exhibit this dependence on these
depth and breadth dimensions.

Columnar development and processing Using. the
variational principle, most-probable firings can be
simply calculated even in the presence of highly
nonlinear means and variances. Because both tem-
poral and spatial differentials have been developed,
space-time properties of these most-probable states
are easily examined. For example, for some reason-
able values of synaptic parameters, oscillatory states
are found for small space-time fluctuations. There
exist many sets of gradient couplings in V' that
cause nearest-neighbor mesocolumns to fire M
(M ) oppositely (similarly), in accord with empirical
observations that favor periodically alternating
columnar organization.

An interesting set of hypotheses of columnar
development and physiology is immediately suggest-
ed: Synaptic stimulation of fibers is most likely
necessary for trophic as well as communicative pur-
poses, and during early development extrinsic
stimulation is necessary but probably relatively
nonspecific, statistically favoring the observed alter-
nating columnar development. In mature cortex, ex-
trinsic regional stimulation by a given extrinsic
source, JG, is sufficient to stimulate all columns in a
region to facilitate nonspecific global attention
in preparation for pattern formation, as well as to
facilitate specific selective attention and processing,
e.g., by increasing the signal-to-noise ratio. This
shift in columnar activity would be parallel to shifts
in sensitivity during selective attention noted in indi-
vidual neurons, which exhibit a decrease in spon-
taneous activity due to their extrinsic stimulation,
modeled here by Bjk.



LESTER INGBER 28

Plastic synaptic modifications can develop new
sets of eigenfunctions of firing states which retain
the information from these sets of external stimula-
tion, if they can reproduce and sustain the externally
induced most-probable firing patterns and their as-
sociated set of eigenfunctions. Induced chemical
and developmental processes, several of which are
conjectured in the literature, may be considered
to have evolved to pei-init the columnar system to
achieve its most-probable firing states which are
commensurate with the mesocolumnar firings calcu-
lated before. Further, these firing states may pro-
vide favorable statistical backgrounds to facilitate
the development of specific neuronal pathways that
also have been hypothesized to process informa-
tion.

Latency and spatial extent of pattern formation
With regard to pattern forniation, latencies of
evoked potentials and fields' on the order of hun-
dreds of milliseconds most likely involve delays due
to slower short-ranged mesocolumnar interactions,
despite faster long-ranged axonal propagation of im-
pulses at rates of 600—900 cm/sec, larger myelinat-
ed fibers affording faster transportation of action
potentials. It has been noted that phase changes of
evoked fields often only occur over distances greater
than several centimeters, on the scale of a region, so
that long wavelength low-frequency processing, suf-
ficient to process patterns of infoiixiation involves
many columnar interactions requiring long temporal
and spatial coherencies of short-time and short-
ranged interactions. These latencies and spatial ex-
tents can be explicitly calculated, e.g., as propaga-
tion rates of inforrixation processing as calculated in
Sec. II. These latencies also express the long tem-
poral scales necessary, albeit not sufficient, to favor
plastic synaptic modifications.

Calculation ofpattern interactions. A large litera-
ture deals with inforillation processing of neural net-
works, but the experimental and theoretical values
of their conclusions are generally diminished be-
cause they do not properly include relatively funda-
mental synaptic interactions or properly treat non-
linear and nonequilibrium aspects of neocor-
tex. ' Once the information states referred to by
these authors have been calculated and or tabulated,
then their proposed mechanisms and conclusions
can be tested. For example, an eigenfunction expan-
sion of the probability function derived in Sec. II,
into a set of spatial-temporal solutions, provides a
mathematical framework to rigorously discuss pat-
tern forination, stability, and interactions, e.g.,
short-term and long-teiin memory, nonassociative

B. Synaptic modifications coding extrinsic stimuli

Section II describes the nonlinear nonequilibrium
dynamics of patterns of mesocolumnar firings, for-
mulated in terir|s of mesocolumnar-averaged static
neuronal parameters. Perturbations of these param-
eters correspond to plastic synaptic modifications,
associated with new firing minima and their associ-
ated sets of eigenfunctions, related to learning new
sets of information. Especially during development
of synaptic forrL|ation, at a rate determined by suc-
cessive small increments of these perturbations,
changes in the coefficients of gradient couplings also
represent shifts in oscillatory states and in the de-
gree of interaction between columnar firings.

To further clarify this methodology, an explicit
calculation is given, demonstrating how a small in-
crement of extrinsically imposed firing activity can
be learned and stored as plastic synaptic modifica-
tions. Moderate changes in efficacies of even one
neuron per mesocolumn give rise to moderate
changes in macroscopic activity, and therefore it is
proposed that macroscopic measurements can be
sensitive to microscopic details of neocortical in-
teractions.

Consider the change in probability of firing of
neuron j, p, associated with modifications of the
neuronal parameters that enter Eq. (2.1). For exam-
ple, changes can occur in

Z=IAJk Bjk Vj ujk pjk N N I

which leads to

(3.1a)

learning (habituation and sensitization) and associa-
tive learning (classical and operant conditioning), the
latter especially requiring temporal correlations.
This is a straightforward, albeit modest, computer
project, similar to that accomplished in other physi-
cal problems possessing gradient ("momentum-
dependent") potentials, e.g., in nuclear physics ', i.e.,
the "momentum" operators pG in Eq. (2.8) operate
on nonconstant factors multiplying I'.

As calculated, simple localized or oscillatory pat-
terns exist for specific mesoscopic parameters in re-
gions of small spatial-temporal fluctuations, but
nonlinearities and fluctuations now can and should
be included to perforia more definitive calculations.
For example, overlaps of eigenfunctions from dif-
ferent sets of mesocolumnar parameters can measure
the formation and stability of patterns of plastic
changes in presynaptic and postsynaptic parame-
ter's.

Z+&Z=Z+ I ~jk, ~~~k, b Vj, h, ujk, hpj.k, EN'E, b.N' I, (3.1b)
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where changes in each parameter Z, hZ, can be in-
dependent or proportional to the (repeated) firing of
neuron(s) postsynaptically (j) or presynaptically (k ):

EZ=bZi+okbZ2+crkcrJAZ3+ojbZ4 . (3.2)

More theory and experiments are needed to further
detail the biophysics and biochemistry of
~Z1,2, 3,4

All these b,Z effects collect to modify

F, F, '=F, +(~,i+~,2)+~,(~,3+~,, ) .

(3.3)
To order ~j i 2 3 4 to preserve the noriiialization of
probability, p++p =1, it is derived that p is

J
modified as

p~. ~p~. '=exp(crJFJ")/[expFJ" +exp( FJ")], —
J J

(3.4)

F,"=F,+m, , +m, 2 (m, 3+—m, 4)tanhF, .

Thus, the change in response of a single neuron
associated with its synaptic modifications is a highly
nonlinear function of the synaptic parameters
IZ, b,ZI. Nonlinearities persist even after meso-
columnar averaging, but then, because of the derived
variational principle, explicit calculations can be
perforiaed to portray most-probable changes in pat-
terns of columnar firings associated with changes in
the Lagrangian:

aLF
LF~LF +b LF LF + —g b Zaz' (3.5)

To emphasize the point that linear response
models of neuronal activity should be scrutinized
with respect to the biophysics and mathematics they
are assuming to be linear, the following equation
represents the first-order change in L, Eq. (2.5), as-
sociated with modifications of only the columnar
averaged efficacies A

bL= dd" (2N Nr) 'I[(N ) +(rM +M ) ]sinh(2F )+2N (~M +M )cosh(2F )I

—m '(a V",'./aA ')(pVM')',

(2Fd ) '—~ [u (M +N )+m.(u +P )(M++N+)F /(2F )],
Fd [m(u +——P )(A M+/2+a N+)]'

~G=MG+M, —(M, +~, )tanhFG.

(3.6)

—9.80X 10-'(M' —«M'» ) . (3.7)

The shifts in the most-probable firing state ((M ) )
associated with this synaptic modification are ob-
served to be algebraically equivalent, within a con-
stant increment to L, to those that could also have
been caused by extrinsic stimulations measured by

Examining ~ in Eq. (3.6), it is clear that even
after mesocolumnar averaging, groups of synaptic
modifications dependent on postsynaptic firings can
be discerned from groups of modifications indepen-
dent of this activity, by the additional tanhFG fac-
tor. However, mesocolumnar averaging washes out
discrimination of bAi 3 from bA24 unless these
possess additional distinguishing functional features.
Similar calculations are proposed to further investi-
gate phenomena as encountered in habituation.

For instance, if the system described by example
bl is synaptically modified about its most probable
firing state by M3 ——0.01 [requiring modification
by —tanhF as in Eq. (3.6)], e.g., numerically
equivalent to a substantial change in Ajk of one E
neuron per mesocolumn in a region, then the change
in the unifoi-ixi Lagrangian is

rbL= —4.87X10 +3.99X10 (M —((M » )

I

JE/(2~N) =3.99X 10 and Jt/(2rN) = —9.80
X 10 . This shifts ( (M ) ) and L from
( 89.02,23. 14; 1.59 X 10 ) (see Table I) to
(89.20,23.19;—3.25X 10 ), and changes the
derivative coefficients to [—5.72 X 10

~ ~

9.65
X 10 ] and [4.82X 10:1.10X10::5.43
X 10:—5.28 X 10 ]. cur is shifted from
+ IO 392i —1..68i(gp); l.oli —0.541i(gp) ] to
+ I0.396i —1 79i(gp);1 O. li —0. 5. 50i(gp) ). These
numbers indicate that the sensitivity of mesocolum-
nar statistics to microscopic dynamics is barely
within the present range of experimental determina-
tion.

This calculation also represents an explicit
demonstration of how extrinsic constraints on firing
patterns can be learned and coded by plastic synap-
tic modifications. In general, there exist (a set of)
synaptic modifications KZ(r;t') that reproduce the
most probable firing states ((M(t')) ) induced by
JG(r;t'). The examples in Table I also serve to
demonstrate that relatively larger shifts in b.Z
represent highly nonlinear changes in firing pat-
terns.

It is interesting to take both local and global views
of the influences of JG on extrema ( (M ) ), as typ-
ically large ranges of ((M ) ) appear to have sim-
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Fi ure 3 gives a closer look at a rather smoo
structure relevant to neocortex by examining a sma

Maxima and minima of L are conveniently ascer-
tained by examining the Hessian (H) o L. or

2',EE JE,E (or JI,I () 0 Lhasalo-
cal minimum; if H &0 and 2NL EE&—ca minimu, ' — 0 L has a
local maximum; e se

'
lse if H & 0, a local extremum does

2' t. Figure 4 gives contour plots of 4N, to
be consistent with the scalings in Figs. an
of JEE.

Thus, although the dependency of (( «on
M is highly nonlinear, the interaction between
( (M ) ) and JG is only mildly nonlinear. T is ex-
plicit y e mes

'
1 d f how the macroscopic interaction o

most-probable firing patterns with extrinsic sources,
still sensitive to microscopic circuitries, is a smoot-

er p enomenon than the mesoscopic and microscop-
ic responses o et th se sources. Note that a selecte
pair of ( (M ) ) defines a pair of JG unique y, ut

that different pairs of JG may induce t e same ex-
trema ( (M ) ). Furtheriaore, it may be expecte
t at when spatial-temporal variations are include

h f 11 L Lagrangian, there will be even more
nonlinearity in the interaction between JG(r;

C. Hysteresis of firing patterns

It is generally conceded that a short-term memory
mechanism is necessary, albeit not sufficient, or
long-term stability of coding to take effect. Hys-
teresis of firing patterns encoding inforlnation is a

as a mechanism for other neocortical phenomena. '

For hysteresis to be prominent, the typical perio
within which synaptic parameters are altered, e.g.,
alterations of hZ in Eqs. (3.1) due to changes in ex-
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those at 3&10

hZ Net„p b,L
b,Z

(3.10a)

and relative to differential spatial-temporal contri-
butions, thereby permitting this analysis. However,
values of L, at maxima between the far minima near
maximal and minimal ((M ) ) firings, or between
minima clustered about (O, Q) and minimal ( (MG) )
firings, are &1, thereby contributing an argument
on the order of 10 to this exponential, yielding an
enormous t„z, typical of many physical systems un-
dergoing hysteresis.

Relaxation times t„about this stationary state are
estimated by (g G) ', and are on the order of ~
This is also the relaxation time of most-probable fir-
ing rates, as calculated in Eqs. (2.9)—(2.11), and is
consistent with the basic hypotheses of this develop-
ment.

For changes in Z that transpire within a b,t of
several tenths of a second to many seconds, e.g., dur-
ing typical attention spans, hysteresis is more prob-
able than simple jumps between minima if the fol-
lowing inequalities are satisfied. These estimates
necessarily require more details of the system in ad-
dition to t„and t„z. For example a,

which leads to

AZ50' ' » —10 r ' » 10 —3 r ', (3.10b)

where the numerical estimate has used t, =r,
t„ —1 —1066 ~, At = 10 ~, AZ = 10 ~,

f
M

f

= 10,
and from Eq. (3.6) about the minima at (6,3) taking
b,Z =M 3, 7 b,L ~ lb, Z =2.28 x 10 and ~AL /b, Z
=2.29)&10 3. ffL GG f f

has been taken to be of the
same order of magnitude at peaks and valleys; e.g. ,0 only varies between 2.45X1Q and 3.49)&10
throughout the range of minima clustered about
(Q, O), although it increases to 8.04X 10 7 at
(117.85,23.57) and to 0.271 at ( —124.99, —25).

Therefore, it is possible for hysteresis to be highly
more probable than simple jump behavior to another
firing state. This provides a mechanism whereby an
extended temporal firing pattern of inforination can
be processed beyond the time scale of relaxation
periods, e.g., reverberation among several local mini-
ma. It is to be expected that the effects of JG(r;t)
on AZ( r; t ) create more complex examples of
spatial-temporal hysteresis. These sustaining
mechanisms may serve to permit other biochemical
processes to store infoi-niation for longer time
periods as stable synaptic modifications, discussed
subsequently.
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for long time periods, i.e., to increase as well as de-
crease efficacies. For instance, consider keeping
fixed ((M ) ) =0 for example B, e.g., by extrinsic
J~ ——1.33 and JI ———1.19 [cf. constraints on exam-
ple bl in Eq. (2.13)],and observe shifts in LF associ-
ated with changes in A, e.g., ~z. Expanding in
powers of ~, to second order in LF to gauge theG

stability of A2 with respect to ((M ) },and to first
order in the differential contributions to gauge ef-
fects on spatial-temporal interactions, obtain the
modifications HALF from Eq. (3.5) to L~..

As calculated in Eq. (3.10a), it is interesting that
neocortex possesses intrinsic parameters and extrin-
sic driving forces that make hysteresis sometimes
highly improbable as well as other times highly
probable, i.e., the second inequality in Eq. (3.10b) is
not always satisfied. With respect to this flexibility,
neocortex is quite unusual.

D. Shifts in synaptic modifications

It is important to examine how spatial-temporal
shifts in synaptic modifications may be stabilized

~F——0.774~2+0.0989~&+2.27(~2 ) —4. 13X10 M2 ~&+0.204(~2)

+( —3 95X10 3~ +1 36X10 LhA )(VME) +( —2 77X10 ~ +1 76X10 bA )(VMI)

—490X10 ~2(M ) +163X10 ~2(M ) —( 001 7~62 115X10 4~2)ME
—(0.0125~,'+8.62X 10 '~E2)M'. (3.11)

I

E.g. , a stable pattern is possible for bA z
——7.82~ 2,

since the remaining coefficients of the (~2 ) terms
are positive for this example.

Most likely, synaptic modifications, hysteresis,

This calculation demonstrates how the stability of
synaptic modifications and associated columnar in-
teractions may be statistically maintained during the
codification and sustenance of a given firing pattern.

FIG. 5. In (a) the stationary Lagrangian, L, for example a is plotted versus M . Axes and perspective are as described
in Fig. 2. (b) gives a contour plot of L. (c) gives the contour plot for ~L & 1.0. (d) gives the contour plot for rL &0.01,
where labels give ranges from low to high contours for 6 minima. The single closed contour about 0.01 is essentially a pla-
teau, not to be considered a minimum. The global seventh minimum is at (0,0).
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mesocolumnar interactions, shifts in firing patterns,
long-ranged couplings, and constraints from exter-
nal stimuli are highly interactive phenomena in Uiuo

Indeed, all these aspects are relevant in Eqs. (3.7),
(3.10a) and (3.11).

Any definitive calculation of the dynamics of
macroscopic regions of neocortex must include
spatial-temporal effects in Lz from M, V'M, and
JG. A Monte Carlo program has been formulated to
directly calculate P[M(t)] from the path integral in
Eq. (2.5) using the prepoint discretization defined by
L. An importance-sampling algorithm is used, ex-
tended to weight arbitrary paths according to
exp( —XrL ) and to accumulate probabilities of find-
ing M in (M,M;x,y;t') space. Each accumulat-
ed probability is weighted by the measure
g'~ [M (r;t'), M (r;t')], and afterwards normalized
by summing over all (r;t') points sampled, g P= l.
By also accumulating probabilities within several
large t' bins, [t& I, P(M, M;x,y;tz ) can be reason-
ably estimated at several interniediate subdivisions
of t The e.rror in disregarding appropriate periodic
boundary conditions for intermediate tz is probably
on the order of nz

' Incre.ments of M are
thinned as the number of t' iterations increase, mak-
ing for an efficient algorithm.

For instance, for example A, for one mesocolumn
at an arbitrary (x,y) point, thereby neglecting V'M

spatial interactions but including M temporal in-
teractions, the probability distribution P[M(t)] of
M, at macroscopic times was calculated, at 25~,
50', 100&, 200&, and 300'. Table II gives the means
(M ) = $M P, the mean-square deviations
~GG'= [n,— y (M' —(M') )(M' —(M G ) )P]»'
and nz ——number of t' points sampling macroscop-
ic times in bin t~. Initial Markov paths were taken
to be Gaussian distributions with means ((M ) )
and standard deviations Oo ——5 and o.o ——2, but
with initial time M and final times M ~~& and M3oo
set equal to ((M ) ). The coarse t' sampling of
only 400 iterations was dictated by availability of
computer resources. For the first 200 iterations,
paths were incremented randomly and independently
within ~ =+5 and hM =+2, and tested for
chance increases in exp( X~L) to identify m—ost
important contributors which were then accrued in
P(M, M; t~ ) bins. The last 200 iterations set

=~ = + 1. Probabilities were collected
within bins of integer —X &M (N, within bins
of t~. For example, for the second set of calcula-
tions in Table II, values of MG actually selected to
populate the largest bin ranged from —12&M & 13
and —6 (M (4, sufficient to span the local mini-
ma clustered about (1.90,0.939). One set of values
at 100' was calculated as an end point in the first

E. Future studies

(a) Other applications of this formalism using the
the Stratonovich paradigm will require using LF in
Eq. (2.7), instead of L in Eq. (2.5), making it neces-
sary to do further numerical studies of L~, despite
two orders of magnitude increased algebraic com-
plexity. Note that the Riemannian terms V—V'

given in Table I illustrate that these give a measur-
able contribution to LF.

(b) Future calculations will add spatial V'M in-
teractions and spatial-temporal JG(r;t') to study the
evolution of evoked potentials, and their effects on
synaptic modifications b,Z(r; t ). The GI. expan-
sions calculated in Sec. II C can be utilized to inves-
tigate long-time and long-ranged order in the evoked
regions, e.g., roll or polygon patterns.

(c) The previous Monte Carlo calculation also per-
mits inclusion of effects of interactions at (r;t') in a
given lamina, labeled by A, , from other statistically
independent laminae at point r and nearest-neighbor
r' points at time t —~. Along with the inclusion of
interlaminar circuitry, the definition of a meso-
column can be extended to include interminicolum-
nar efferent circuitry, by including higher order
NN's as mentioned in Sec. II 8.

TABLE II. At two macroscopic times t&, 100~ and
300~, each sample with three subdjtvisions of n& points, a
Monte Carlo calculation of the path integral for example
a yields the means (M ) and mean-square deviations
o. . Differences at 100& and nonzero o. are due pri-
xnarily to the small number of points sampled.

n, (m ) ~~E (M')

25 96
50 202

100 400

—1.50
—1.58
—1.60

3.40
2.41
1.68

—1.22 1.55
—1.28 1.10
—0.929 0.825

1.31
0.730
0.476

100 129
200 273
300 400

—1.05 3.33
—1.19 2.28
—1.49 1.83

—0.928
—1.24
—1.11

1.39 0.781
1.03 0.623
0.831 0.552

set of three values, and another set as a subdivision
of the next set of three values. The difference of
these two sets of values is due primarily to the small
number of iterations. However, the first set of
values does demonstrate that for example a the sys-
tem remains stable in its relaxed state, and the calcu-
lation of the evolution of means and mean-square
deviations of MG demonstrates how (M ) is shifted
due to M influences and fluctuation among other
local minima. This formalism does not warrant cal-
culating a path integral for small time scales, e.g.,
less than 25'..
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For example, to address interlaminar circuitry, us-
ing the prepoint discretization of Eq. (2.2), replace
G~A, G and let A, =1, . . . , 6. A reasonable descrip-
tion has the predominantly middle and upper lami-
nas driven by JIG, e.g., to account for thalamocorti-
cal and inter-regional processes. The predominantly
lower efferent laminas and higher afferent laminas
are described by (a,P,y ) in modified Eq.
(2.4), determined from [A B,U"

which are obtained from g«&, in Eq. (2.1). These
effects accumulate to cause firing transitions from
M (r';t') to M (r;t'+w), where A, is an internal
index summed over in L = g&G L "G similar to the
sum over G in the absence of the A, indices. For ex-
ample,

(UA, I,'G)2(~I, 'G 2.A, 'G+ ~ g2.2, 'GMI, 'G)
jgk j~k ~

keA, '

(3.12)

OMG(t') OM (t') =M'G(t'+8) M'G(t'—) .

The readily derived result is a probability distribu-
tion highly nonlinear in A, . This permits explicit in-
clusion of ongoing alterations in synaptic parame-
ters: For a given path chosen as described previous-
ly, changes in L in lamina A, at location r at time

+7 aI'e determined by changes in JqG and hZ
transpiring at time t' from laminas A,

' at locations
r(r+p. These bZ modifications may in turn be
due to changes in JlG and/or to changes in firings
M necessary to encode and process patterns of fir-
ings ((M ) ).

Interactions between two or more macroscopic re-
gions, denoted by indices A, arising from long-
ranged fibers, may be modeled by LF ——QALF by
adding to LF

(rA.

t~)MAGOG(r

A. t~)

CAA'I. A, 'GG™ ~ y ~ tAA'
A'A, 'G' —&'. AAG A.

(3.13)

where tAA is the time of transmission from A' to A,
which can be on the order of 10—30 msec,
CAA22 GG are empirically fitted couplings between
firings in regions A and previous spatially averaged
firings in region A', and GG' is predominantly EE.
The spatial averaging in region A', denoted by r, is
not required, but is suggested for reasonable first or-
der computer calculations.

(d) There is some empirical evidence to support
the conjecture of chaotic behavior '5 ' in neocor-
tex, driven by changes in concentrations of neuro-
transmitters. The observed time scale of this
phenomenon is hundreds of seconds, but no metric
or measure space yet has been established to analyti-

cally explain the empirical evidence. It is reasonable
to assume that these chemical changes effect synap-
tic changes, e.g. , in ~ (r;t') and && (r;t'), which
drive neuronal firing states. This may induce chaot-
ic behavior in firing states, and/or particular firing
patterns may be an essential component of a
mechanism causing chaotic behavior of the chemical
product accumulation rates. E.g., under some con-
ditions, the "information dimension" measuring the
space mapped out by the probability distribution of
M (r;t') may be a noninteger less than the initial
phase space dimension, essentially 2[dMO ] in Eq.
(2.5). There is good evidence that the measure of
this information dimension can be calculated effi-
ciently from the Lyapunov dimension, which mea-
sures the (in)stability of M (r;t') trajectories; chaos
results if at least one Lyapunov exponent &0. A
direction for future study of these phenomena exam-
ines the evolution of the conditional probabilities of
mesocolumnar firings as given by the previous path
integral. A relatively simple function for first study
of this stochastic evolving map on M (r;to) is given
by the prepoint-discretized Lagrangian L expanded
to first order in the external driving parameter bA G

or AB , as in Eq. (3.6).
Chaotic behavior of mesocolumns induced by

long-ranged constraints JG may account for ob-
served intermittent bursting of firing patterns on
time scales of tenths of a second. Synchronized
bursting of mesocolumnar firings is also a candidate
for explaining information processing, in addition to
stochastic processing and reverberation among local
minima of firing patterns. For example, changing
JG drives LF to various local minima, giving rise to
various evolving L or H stochastic maps, some of
which can lead to chaotic behavior, similar to that
observed for the logistic map, via the route of inter-
mittency.

(e) As more detailed neuronal parameters become
available, more detailed renormalization-group stud-
ies of regional activity can profitably utilize GL po-
lynomials, demonstrated in Sec. II C to be valid ex-
pansions about stationary firing minima, to study
phase transitions. The expansion coefficients of CxL

polynomials of L are expected to be measurably re-
normalized by multiple scales of fluctuations present
between mesoscopic and macroscopic scales. Fluc-
tuations present between microscopic and mesoscop-
ic scales presumably have been included in develop-
ing the mesoscopic scale. For example, these studies
are also necessary for definitive analyses of the pre-
vious future projects (b) and (d).

(f) Beyond their classical interactions across
several spatial-temporal scales, spanning membrane
to regional activities as presented here, under some
conditions of cooperation and competition among
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these multiple hierarchies, there may exist sensitive
interactions between macroscopic regional scales and
quantum synaptic or membrane scales. Critical
points, of cooperative behavior or diverging chaotic
trajectories defined at a given scale, essentially may
reflect sensitivity to initial conditions and interac-
tions at smaller scales. For example, as noted previ-
ously, these critical points may plausibly exist at the
following: membrane scales—phase transitions
among gated synaptic and membrane activities' '

mesoscopic scales "haotic behavior or second-order
phase transitions of columnar firing states; and mac-
roscopic scales "haotic behavior of neurotrans-
mitters or wave propagation. Competition at a
given scale, causing large cancellations among in-
teractions, also enhances sensitivity to smaller scales.
For example, as noted previously, these cancellations
occur at the following: membrane scales —at ionic
and neurotransmitter gates; microscopic scales —E
and I competition among many synapses; and
mesoscopic scales—NN minicolumnar interactions
from neighboring macrocolumnar domains.

Hypotheses of decision-making and problem-
solving based on interactions between relatively
small and large scales, ' may require interactions
at critical points of chaotic or phase transitions of
mesoscopic M (r;t) trajectories. For example, a
wave function or packet involving synaptic and
membrane interactions over regional scales may
represent alternative future macroscopic events by
branching into distinct wave functions, the abso-
lute square of each being a statistical measure asso-
ciated with a specific P(M). At these critical
points, reflecting microscopic sensitivity to these
quantum alternatives, mesoscopic processing, and
stored infoririation structures —represented by L,
neuronal~arameters [a,P, y ), and initial condi-
tions P[M(0)]—"recognize" (or reduce) one of these
alternative quantum wave functions, thereby necessi-
tating a true freedom of choice or even creation of a
macroscopic firing pattern. This also may generate
macroscopic nonlocal interactions of information as-
sociated with the other branching wave functions.
Empirical verification of these events would have
important implications for current unresolved issues
in the foundations of quantum theory and the
mind-body problem. Note that a "weakened"
stochastic choice of a firing pattern is still operative
at macroscopic scales due to the evolution and in-
teraction of nonlinear nonequilibrium probability
distributions of alternative M trajectories: This sto-
chasticity arises from statistically averaging over
microscopic and membrane scales which represent
chemical-electrical processes transpiring at quantum
scales, but not necessarily from statistical correla-

tions induced by the process of macroscopic mea-
surement of quantum interactions.

IV. DISCUSSION

Detailed calculations have been presented to sup-
port a scenario of neocortical columnar coding of
extrinsic stimuli, short-teiui storage via hysteresis,
and long-teini storage via synaptic modification.
This development has assumed that, at the synaptic
interaction scale of 10 pm, neocortical infoinia-
tion is statistically processed primarily by voltage-
gated presynaptic and chemically gated postsynaptic
interactions. Among a collection of hundreds of
neurons, mesocolumns encompassing one to several
minicolumns on a scale of 10 pm communicate via
—10 synaptic interactions. Long-ranged fibers
contribute driving forces on these rates of flrings of
short-ranged fibers.

This description of neocortical interactions, al-
though correctly viewed for purposes of single neu-
ronal studies as a gross simplification of complex
microscopic details of neocortex, is reasonable and
appropriate to investigate macroscopic properties of
neocortex. In the literature, there are many theoreti-
cal treatments of neocortical phenomena based on
averaged neuronal interactions and random noisy
backgrounds. These basic assumptions must be
analyzed with the same scrutiny given to the empiri-
cal data and to mechanisms proposed for their ex-
planation. In this development much empirical neu-
ronal information is explicitly retained without add-
ing any undefined or unphysical parameters, and the
net forriialism falls within the scope of modern
treatments of collective systems. A direction is
specified for correcting previous modeling of neo-
cortex that includes the salient features of this
development. Some tentative conjectures on neo-
cortical and neuropsychological mechanisms have
been made elsewhere. ' ' ' This approach to under-
standing properties of macroscopic neocortex offers
a reasonable balance between two realistic con-
straints: to include as much microscopic neuronal
detail as possible without requiring unreasonable
computer calculations of the mesoscopic columnar
system.

Although experimental uncertainty prohibits giv-
ing definitiveness to any particular set of neuronal
parameters, within the empirical range of these sets,
several macroscopic properties of neocortex have
been analyzed, giving insight into inforriiation pro-
cessing of real brains and into some features desired
in artificial (computer) intelligence. It is now possi-
ble to explicitly calculate spatial-temporal firing pat-
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terns of columns, as demonstrated by a Monte Carlo
program. The dynamics of synaptic modification
demand that their nonlinear interactions with these
most probable firing patterns be explicitly accounted
for in any treatment of information processing or
storage. This has been. demonstrated by calculating
changes and stabilities of most probable firing pat-
terns associated with changes of electrical-chemical
presynaptic and postsynaptic parameters induced by
extrinsic sources, and by calculating the probability
of extrinsic sources enabling hysteresis of firing pat-
terns to retain inforiiiation for epochs longer than
typical relaxation periods. Explicit directions are
given for future study of interlaminar and inter-
regional interactions and chaotic behavior.
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